Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38337179

RESUMO

One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.


Assuntos
Anelloviridae , Infecções por Vírus de DNA , Humanos , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Evasão da Resposta Imune
2.
BMC Microbiol ; 24(1): 40, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281930

RESUMO

Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.


Assuntos
Anelloviridae , Líquidos Corporais , Infecções por Vírus de DNA , Torque teno virus , Humanos , Anelloviridae/genética , Infecções por Vírus de DNA/epidemiologia , Torque teno virus/genética , Fígado , DNA Viral
3.
Viruses ; 16(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257799

RESUMO

Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.


Assuntos
Anelloviridae , COVID-19 , Coinfecção , Humanos , Adulto , Pandemias , SARS-CoV-2
4.
Braz J Microbiol ; 55(1): 981-989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286944

RESUMO

Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world. In this study, we investigated the detection rate and diversity of TTSuVk2a in free-living wild boars from northeastern Patagonia, Argentina. Total DNA was extracted from tonsil samples of 50 animals, nested PCR assays were carried out, and infection was verified in 60% of the cases. Sequence analysis of the viral non-coding region revealed distinct phylogenetic groups. These clusters showed contrasting patterns of spatial distribution, which presented statistically significant differences when evaluating spatial aggregation. In turn, the sequences were compared with those available in the database to find that the clusters were distinguished by having similarity with TTSuVk2a variants of different geographic origin. The results suggested that Patagonian wild boar populations are bearers of diverse viral strains of Asian, European, and South American provenance.


Assuntos
Anelloviridae , Infecções por Vírus de DNA , Doenças dos Suínos , Torque teno virus , Suínos , Animais , Sus scrofa , Filogenia , Argentina , Doenças dos Suínos/epidemiologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Torque teno virus/genética
5.
Arch Virol ; 168(11): 277, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864606

RESUMO

The family Anelloviridae comprises negative single-stranded circular DNA viruses. Within this family, there are 30 established genera. Anelloviruses in the genus Gyrovirus have been identified infecting various avian species, whereas those in the remaining 29 genera have been found primarily infecting various mammal species. We renamed the 146 anellovirus species with binomial species names, as required by the International Committee on Taxonomy of Viruses (ICTV) using a "genus + freeform epithet" format.


Assuntos
Anelloviridae , Gyrovirus , Vírus , Animais , Anelloviridae/genética , Mamíferos
6.
J Med Virol ; 95(9): e29107, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721473

RESUMO

Anelloviridae and Human Pegivirus 1 (HPgV-1) blood burden have been postulated to behave as surrogate markers for immunosuppression in transplant recipients. Here, we assessed the potential utility plasma Torque teno virus (TTV), total Anelloviridae (TAV), and HPgV-1 load monitoring for the identification of allogeneic hematopoietic stem cell transplantation recipients (allo-HSCT) at increased risk of infectious events or acute graft versus host disease (aGvHD). In this single-center, observational study, plasma TTV DNA, TAV DNA, and HPgV-1 RNA loads were monitored in 75 nonconsecutive allo-HSCT recipients (median age, 54 years). Monitoring was conducted before at baseline or by days +30, +60, +90, +120, and +180 after transplantation. Pneumonia due to different viruses or Pneumocystis jirovecii, BK polyomavirus-associated haemorrhagic cystitis (BKPyV-HC), and Cytomegalovirus DNAemia were the infectious events considered in the current study. Kinetics of plasma TTV, TAV DNA, and HPgV-1 RNA load was comparable, with though and peak levels measured by days +30 and day +90 (+120 for HPgV-1). Forty patients (53%) developed one or more infectious events during the first 180 days after allo-HSCT, whereas 29 patients (39%) had aGvHD (grade II-IV in 18). Neither, TTV, TAV, nor HPgV-1 loads were predictive of overall infection or CMV DNAemia. A TTV DNA load cut-off ≥4.40 log10 (pretransplant) and ≥4.58 log10 (baseline) copies/mL predicted the occurrence of BKPyV-HC (sensitivity ≥89%, negative predictive value, ≥96%). TTV DNA loads ≥3.38 log10 by day +30 anticipated the occurrence of aGvHD (sensitivity, 90%; negative predictive value, 97%). Pretransplant HPgV-1 loads were significantly lower (p = 0.03) in patients who had aGvHD than in those who did not. Monitoring of TTV DNA or HPgV-1 RNA plasma levels either before or early after transplantation may be ancillary to identify allo-HSCT recipients at increased risk of BKPyV-HC or aGvHD.


Assuntos
Anelloviridae , Vírus BK , Vírus GB C , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Torque teno virus , Humanos , Pessoa de Meia-Idade , Anelloviridae/genética , Torque teno virus/genética , Carga Viral , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
7.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766228

RESUMO

The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).


Assuntos
Anelloviridae , Bacteriófagos , Lemur , Humanos , Animais , North Carolina , Projetos Piloto , Viroma , DNA
8.
Virol J ; 20(1): 198, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658428

RESUMO

Sepsis is one of the possible outcomes of severe trauma, and it poses a dire threat to human life, particularly in immunocompromised people. The most prevalent pathogens are bacteria and fungi, but viruses should not be overlooked. For viral metagenomic analysis, we collected blood samples from eight patients with post-traumatic sepsis before and seven days after treatment. The results demonstrated that Anellovirus predominated the viral community, followed by Siphoviridae and Myoviridae, and that the variations in viral community and viral load before and after treatment were not statistically significant. This study allows us to investigate methods for establishing NGS-based viral diagnostic instruments for detecting viral infections in the blood of sepsis patients so that antiviral therapy can be administered quickly.


Assuntos
Anelloviridae , Sepse , Humanos , Viroma , Sepse/diagnóstico , Anelloviridae/genética , Hospedeiro Imunocomprometido , Metagenoma
9.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631978

RESUMO

Anellovirus (AV) is a ubiquitous virus in the human population. Individuals can be infected with multiple AV genera and species to form a heterogeneous repertoire, termed the anellome. Using advanced methods, we examined the anellomes from 12 paired serum and liver samples, as well as 2701 subjects with different clinical diagnoses. Overall, anellomes are remarkably individualized, with significant among-group differences (Kruskal-Wallis test p = 6.6 × 10-162 for richness and p = 7.48 × 10-162 for Shannon entropy). High dissimilarity scores (beta diversity) were observed between patient groups, except for paired serum and liver samples. At the population level, the relative abundance of combinational AV genus Betatorquevirus (torque teno mini viruses, TTMV), and Gammatorquevirus (torque teno midi viruses, TTMDV) exhibited an exponential distribution with a low bound point at 32%. Defined by this value, the AV TTMV/TTMDV-expanded anellome was significantly enriched among patients with acute liver failure (31.7%) and liver transplantation (40.7%), compared with other patient groups (χ2 test: p = 4.1 × 10-8-3.2 × 10-3). Therefore, anellome heterogeneity may be predictive of clinical outcomes in certain diseases, such as liver disease. The consistency of anellome between paired serum and liver samples indicates that a liquid biopsy approach would be suitable for longitudinal studies to clarify the causality of the AV TTMV/TTMDV-expanded anellome in the outcomes of liver disease.


Assuntos
Anelloviridae , Falência Hepática Aguda , Transplante de Fígado , Humanos , Anelloviridae/genética , Penicilinas
10.
Arch Virol ; 168(8): 208, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462757

RESUMO

Wild boars can act as a reservoir of pathogenic viruses that affect the pig industry. Here, we assessed the presence of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars in northeastern Patagonia (Argentina). Total DNA was extracted from the tonsils of 27 animals (collected between early 2016 and mid-2019) and used to prepare sample pools, which were subjected to viral detection through two-round PCR assays. Sequencing of the amplification products and phylogenetic analysis confirmed the occurrence of all of the aforementioned infectious agents.


Assuntos
Anelloviridae , Circovirus , Infecções por Vírus de DNA , Parvovirus Suíno , Doenças dos Suínos , Torque teno virus , Suínos , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Circovirus/genética , Parvovirus Suíno/genética , Doenças dos Suínos/epidemiologia , Filogenia , Argentina/epidemiologia , Torque teno virus/genética , Sus scrofa
11.
Viruses ; 15(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515113

RESUMO

Blood transfusion safety is an essential element of public health. Current blood screening strategies rely on targeted techniques that could miss unknown or unexpected pathogens. Recent studies have demonstrated the presence of a viral community (virobiota/virome) in the blood of healthy individuals. Here, we characterized the blood virome in patients frequently exposed to blood transfusion by using Illumina metagenomic sequencing. The virome of these patients was compared to viruses present in healthy blood donors. A total number of 155 beta-thalassemia, 149 hemodialysis, and 100 healthy blood donors were pooled with five samples per pool. Members of the Anelloviridae and Flaviviridae family were most frequently observed. Interestingly, samples of healthy blood donors harbored traces of potentially pathogenic viruses, including adeno-, rota-, and Merkel cell polyomavirus. Viruses of the Anelloviridae family were most abundant in the blood of hemodialysis patients and displayed a higher anellovirus richness. Pegiviruses (Flaviviridae) were only observed in patient populations. An overall trend of higher eukaryotic read abundance in both patient groups was observed. This might be associated with increased exposure through blood transfusion. Overall, the findings in this study demonstrated the presence of various viruses in the blood of Iranian multiple-transfused patients and healthy blood donors.


Assuntos
Anelloviridae , Vírus , Humanos , Irã (Geográfico)/epidemiologia , Viroma , Vírus/genética , Anelloviridae/genética , Metagenoma , Metagenômica/métodos
12.
Viruses ; 15(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37515261

RESUMO

Anelloviruses are extremely prevalent in the human population and are considered to be commensal parts of the human virome. The best-known member in humans is the Torque teno virus. Recent metagenomic next-generation sequencing investigations have helped reveal the considerable number of species and genotypes from the same genus that can be co-detected within a single individual and that this diversity increases as a function of age during the first months/years of life. As a result, to date, the bioinformatics analysis of this genetic diversity remains complex and constraining for researchers. Here, we present SCANellome, a user-friendly tool to investigate the anellome composition at the genus, species, and genotype levels of samples from metagenomics data generated by the Illumina and Nanopore platforms. SCANellome is based on an in-house up-to-date database that includes all human and non-human primate anellovirus reference sequences available on GenBank and meets the latest classification criteria established by the International Committee on Taxonomy of Viruses.


Assuntos
Anelloviridae , Torque teno virus , Vírus , Humanos , Animais , Anelloviridae/genética , Metagenômica , Vírus/genética , Primatas
13.
Res Vet Sci ; 161: 145-155, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384973

RESUMO

A novel Torque teno neovison virus (TTVs) was identified in specimens collected from dead mink during an outbreak of the Aleutian mink disease virus. Eighteen complete genomic sequences were obtained, ranging from 2109 to 2158 nucleotides in length and consisting of an untranslated region and three open reading frames. The genomic organization of mink TTVs is similar to previously reported anelloviruses. However, the deduced amino acid sequence of its ORF1 protein shows genetic diversity compared to related anelloviruses, suggesting that it represents a putative new species within the Anelloviridae family. This study provides a detailed molecular characterization of the novel mink anelloviruses, including its codon usage pattern, origin, and evolution. Analysis of the viral genomic sequences reveals the existence of multiple genotypes of co-infection. Principal component analysis and phylogenetic trees confirm the coexistence of multiple genotypes. Furthermore, the codon usage analyses indicate that mink TTVs have a genotype-specific codon usage pattern and show a low codon usage bias. Host-specific adaptation analysis suggests that TTVs are less adapted to mink. The possible origin and evolutionary history of mink TTVs were elucidated. Mink TTVs was genetically closely related to giant panda anellovirus, representing a new species. The observed incongruence between the phylogenetic history of TTVs and that of their hosts suggests that the evolution of anellovirus is largely determined by cross-species transmission. The study provides insights into the co-infection and genetic evolution of anellovirus in China.


Assuntos
Anelloviridae , Coinfecção , Torque teno virus , Animais , Anelloviridae/genética , Torque teno virus/genética , Vison , Filogenia , Coinfecção/veterinária , Genótipo
14.
Microbiol Spectr ; 11(3): e0492822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199659

RESUMO

Anelloviruses represent the major and most diverse component of the healthy human virome, referred to as the anellome. In this study, we determined the anellome of 50 blood donors, forming two sex- and age-matched groups. Anelloviruses were detected in 86% of the donors. The number of detected anelloviruses increased with age and was approximately twice as high in men as in women. A total of 349 complete or nearly complete genomes were classified as belonging to torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV) anellovirus genera (197, 88, and 64 sequences, respectively). Most donors had intergenus (69.8%) or intragenus (72.1%) coinfections. Despite the limited number of sequences, intradonor recombination analysis showed 6 intragenus recombination events in ORF1. As thousands of anellovirus sequences have been described recently, we finally analyzed the global diversity of human anelloviruses. Species richness and diversity were close to saturation in each anellovirus genus. Recombination was found to be the main factor promoting diversity, although its effect was significantly lower in TTV than in TTMV and TTMDV. Overall, our results suggest that differences in diversity between genera may be caused by variations in the relative contribution of recombination. IMPORTANCE Anelloviruses are the most common human infectious viruses and are considered essentially harmless. Compared to other human viruses, they are characterized by enormous diversity, and recombination is suggested to play an important role in their diversification and evolution. Here, by analyzing the composition of the plasma anellome of 50 blood donors, we find that recombination is also a determinant of viral evolution at the intradonor level. On a larger scale, analysis of anellovirus sequences currently available in databases shows that their diversity is close to saturation and differs among the three human anellovirus genera and that recombination is the main factor explaining this intergenus variability. Global characterization of anellovirus diversity could provide clues about possible associations between certain virus variants and pathologies, as well as facilitate the implementation of unbiased PCR-based detection protocols, which may be relevant for using anelloviruses as endogenous markers of immune status.


Assuntos
Anelloviridae , Infecções por Vírus de DNA , Torque teno virus , Masculino , Humanos , Feminino , Anelloviridae/genética , Infecções por Vírus de DNA/epidemiologia , Torque teno virus/genética , Demografia , Recombinação Genética , DNA Viral
15.
Sci Rep ; 13(1): 8319, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221274

RESUMO

Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.


Assuntos
Anelloviridae , Asma , Bacteriófagos , Criança , Humanos , Pré-Escolar , Eucariotos , Viroma , Células Eucarióticas , Doenças Assintomáticas
16.
J Neurovirol ; 29(2): 226-231, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36857017

RESUMO

Etiology of vestibular schwannoma (VS) is unknown. Viruses can infect and reside in neural tissues for decades, and new viruses with unknown tumorigenic potential have been discovered. The presence of herpesvirus, polyomavirus, parvovirus, and anellovirus DNA was analyzed by quantitative PCR in 46 formalin-fixed paraffin-embedded VS samples. Five samples were analyzed by targeted next-generation sequencing. Viral DNA was detected altogether in 24/46 (52%) tumor samples, mostly representing anelloviruses (46%). Our findings show frequent persistence of anelloviruses, considered normal virome, in VS. None of the other viruses showed an extensive presence, thereby suggesting insignificant role in VS.


Assuntos
Anelloviridae , Herpesviridae , Neuroma Acústico , Parvovirus , Polyomavirus , Humanos , Polyomavirus/genética , Anelloviridae/genética , Neuroma Acústico/genética , Herpesviridae/genética , Parvovirus/genética , DNA Viral/genética
17.
Sci Rep ; 13(1): 3703, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878942

RESUMO

The complete genome of a novel torque teno virus species (Torque teno equus virus 2 (TTEqV2) isolate Alberta/2018) was obtained by high-throughput sequencing (HTS) of nucleic acid extracted from the lung and liver tissue of a Quarter Horse gelding that died of nonsuppurative encephalitis in Alberta, Canada. The 2805 nucleotide circular genome is the first complete genome from the Mutorquevirus genus and has been approved as a new species by the International Committee on Taxonomy of Viruses. The genome contains several characteristic features of torque teno virus (TTV) genomes, including an ORF1 encoding a putative 631 aa capsid protein with an arginine-rich N-terminus, several rolling circle replication associated amino acid motifs, and a downstream polyadenylation signal. A smaller overlapping ORF2 encodes a protein with an amino acid motif (WX7HX3CXCX5H) which, in general, is highly conserved in TTVs and anelloviruses. The UTR contains two GC-rich tracts, two highly conserved 15 nucleotide sequences, and what appears to be an atypical TATA-box sequence also observed in two other TTV genera. Codon usage analysis of TTEqV2 and 11 other selected anelloviruses from five host species revealed a bias toward adenine ending (A3) codons in the anelloviruses, while in contrast, A3 codons were observed at a low frequency in horse and the four other associated host species examined. Phylogenetic analysis of TTV ORF1 sequences available to date shows TTEqV2 clusters with the only other currently reported member of the Mutorquevirus genus, Torque teno equus virus 1 (TTEqV1, KR902501). Genome-wide pairwise alignment of TTEqV2 and TTEqV1 shows the absence of several highly conserved TTV features within the UTR of TTEqV1, suggesting it is incomplete and TTEqV2 is the first complete genome within the genus Mutorquevirus.


Assuntos
Anelloviridae , Torque teno virus , Cavalos , Animais , Masculino , Filogenia , Alberta , Genômica
18.
Front Cell Infect Microbiol ; 13: 1061230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844406

RESUMO

Introduction: Nucleic acid from viruses is common in peripheral blood, even in asymptomatic individuals. How physiologic changes of pregnancy impact host-virus dynamics for acute, chronic, and latent viral infections is not well described. Previously we found higher viral diversity in the vagina during pregnancy associated with preterm birth (PTB) and Black race. We hypothesized that higher diversity and viral copy numbers in the plasma would show similar trends. Methods: To test this hypothesis, we evaluated longitudinally collected plasma samples from 23 pregnant patients (11 term and 12 preterm) using metagenomic sequencing with ViroCap enrichment to enhance virus detection. Sequence data were analyzed with the ViroMatch pipeline. Results: We detected nucleic acid from at least 1 virus in at least 1 sample from 87% (20/23) of the maternal subjects. The viruses represented 5 families: Herpesviridae, Poxviridae, Papillomaviridae, Anelloviridae, and Flaviviridae. We analyzed cord plasma from 18 of the babies from those patients and found nucleic acid from viruses in 33% of the samples (6/18) from 3 families: Herpesviridae, Papillomaviridae, and Anelloviridae. Some viral genomes were found in both maternal plasma and cord plasma from maternal-fetal pairs (e.g. cytomegalovirus, anellovirus). We found that Black race associated with higher viral richness (number of different viruses detected) in the maternal blood samples (P=0.003), consistent with our previous observations in vaginal samples. We did not detect associations between viral richness and PTB or the trimester of sampling. We then examined anelloviruses, a group of viruses that is ubiquitous and whose viral copy numbers fluctuate with immunological state. We tested anellovirus copy numbers in plasma from 63 pregnant patients sampled longitudinally using qPCR. Black race associated with higher anellovirus positivity (P<0.001) but not copy numbers (P=0.1). Anellovirus positivity and copy numbers were higher in the PTB group compared to the term group (P<0.01, P=0.003, respectively). Interestingly, these features did not occur at the time of delivery but appeared earlier in pregnancy, suggesting that although anelloviruses were biomarkers for PTB they were not triggering parturition. Discussion: These results emphasize the importance of longitudinal sampling and diverse cohorts in studies of virome dynamics during pregnancy.


Assuntos
Anelloviridae , Herpesviridae , Nascimento Prematuro , Viroses , Recém-Nascido , Gravidez , Feminino , Humanos , Viroma , Viroses/diagnóstico , Plasma , Anelloviridae/genética , Metagenômica/métodos
19.
Transfusion ; 63(1): 23-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36268708

RESUMO

BACKGROUND: It is important to maintain the safety of blood products by avoiding the transfusion of units with known and novel viral pathogens. It is unknown whether COVID-19 convalescent plasma (CCP) may contain pathogenic viruses (either newly acquired or reactivated) that are not routinely screened for by blood centers. METHODS: The DNA virome was characterized in potential CCP donors (n = 30) using viral genome specific PCR primers to identify DNA plasma virome members of the Herpesviridae [Epstein Barr Virus (EBV), cytomegalovirus (CMV), human herpesvirus 6A/B, human herpesvirus 7] and Anelloviridae [Torque teno viruses (TTV), Torque teno mini viruses (TTMV), and Torque teno midi viruses (TTMDV)] families. In addition, the RNA plasma virome was characterized using unbiased metagenomic sequencing. Sequencing was done on a HiSeq2500 using high output mode with a read length of 2X100 bp. The sequencing reads were taxonomically classified using Kraken2. CMV and EBV seroprevalence were evaluated using a chemiluminescent immunoassay. RESULTS: TTV and TTMDV were detected in 12 (40%) and 4 (13%) of the 30 study participants, respectively; TTMDV was always associated with infection with TTV. We did not observe TTMV DNAemia. Despite CMV and EBV seroprevalences of 33.3% and 93.3%, respectively, we did not detect Herpesviridae DNA among the study participants. Metagenomic sequencing did not reveal any human RNA viruses in CCP, including no evidence of circulating SARS-CoV-2. DISCUSSION: There was no evidence of pathogenic viruses, whether newly acquired or reactivated, in CCP despite the presence of non-pathogenic Anelloviridae. These results confirm the growing safety data supporting CCP.


Assuntos
Anelloviridae , COVID-19 , Infecções por Citomegalovirus , Infecções por Vírus de DNA , Infecções por Vírus Epstein-Barr , Torque teno virus , Humanos , Estudos Soroepidemiológicos , Herpesvirus Humano 4/genética , COVID-19/terapia , Soroterapia para COVID-19 , SARS-CoV-2/genética , Anelloviridae/genética , Torque teno virus/genética , Citomegalovirus/genética , DNA , DNA Viral/genética
20.
Transplantation ; 107(2): 511-520, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36042550

RESUMO

BACKGROUND: Torque teno virus, the major member of the genus Alphatorquevirus , is an emerging biomarker of the net state of immunosuppression after kidney transplantation. Genetic diversity constitutes a main feature of the Anelloviridae family, although its posttransplant dynamics and clinical correlates are largely unknown. METHODS: The relative abundance of Alphatorquevirus , Betatorquevirus , and Gammatorquevirus genera was investigated by high-throughput sequencing in plasma specimens obtained at various points during the first posttransplant year (n = 91 recipients). Total loads of all members of the Anelloviridae family were also quantified by an "in-house" polymerase chain reaction assay targeting conserved DNA sequences (n = 195 recipients). In addition to viral kinetics, clinical study outcomes included serious infection, immunosuppression-related adverse event (opportunistic infection and cancer)' and acute rejection. RESULTS: Alphatorquevirus DNA was detected in all patients at every point, with an increase from pretransplantation to month 1. A variable proportion of recipients had detectable Betatorquevirus and Gammatorquevirus at lower frequencies. At least 1 change in the predominant genus (mainly as early transition to Alphatorquevirus predominance) was shown in 35.6% of evaluable patients. Total anelloviruses DNA levels increased from baseline to month 1, to peak by month 3 and decrease thereafter, and were higher in patients treated with T-cell depleting agents. There was a significant albeit weak-to-moderate correlation between total anelloviruses and TTV DNA levels. No associations were found between the predominant Anelloviridae genus or total anelloviruses DNA levels and clinical outcomes. CONCLUSIONS: Our study provides novel insight into the evolution of the anellome after kidney transplantation.


Assuntos
Anelloviridae , Transplante de Rim , Torque teno virus , Humanos , Anelloviridae/genética , Transplante de Rim/efeitos adversos , DNA Viral/genética , Torque teno virus/genética , Terapia de Imunossupressão , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...