Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Invertebr Pathol ; 203: 108062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244836

RESUMO

In vitro propagation of shrimp viruses IHHNV (Infectious hematopoietic hypodermal necrosis virus)/PstDV1 and MBV (Monodon baculovirus)/PmNV in the primary haemocyte culture was successfully be accomplished in the present study. The haemocytes were maintained in double-strength L15 medium with growth supplements and antibiotics. Cytopathic changes observed in the cells were detachment, slendering of cells, vacuolation, and rounding of the cells. Replication of viruses in the culture was confirmed through the expression of DNA polymerase, polyhedrin and lef 4 of MBV and capsid gene of IHHNV. Ultrathin sections of haemocytes observed through electron microscopy revealed scattered chromatin, virogenic stroma and presence of viruses and occlusion bodies (MBV). The study revealed that primary haemocyte culture could be used as a platform for the propagation of a variety of shrimp viruses.


Assuntos
Densovirinae , Penaeidae , Animais , Baculoviridae/genética , Densovirinae/genética , Crustáceos , Necrose
2.
J Fish Dis ; 47(3): e13905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073005

RESUMO

The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.


Assuntos
Densovirinae , Doenças dos Peixes , Penaeidae , Animais , Reação em Cadeia da Polimerase/veterinária , Imuno-Histoquímica , Doenças dos Peixes/diagnóstico
3.
J Virol Methods ; 323: 114840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989459

RESUMO

Decapod Penstylhamaparvovirus 1, commonly known as infectious hypodermal and hematopoietic necrosis virus (IHHNV), remains an economically important viral pathogen for penaeid shrimp aquaculture due to its effects on growth performance. The World Organization for Animal Health (WOAH, Paris, France) recommended methods for the detection of IHHNV include both conventional and real-time PCR. However, published reports and anecdotal evidence suggest the occurrence of non-specific amplifications when testing for IHHNV using the WOAH protocols. Studies were designed to develop a sensitive, robust TaqMan PCR method for detection of IHHNV in the three commercially important penaeid shrimp: Penaeus vannamei, P. monodon and P. stylirostris. We compared the performance of the WOAH-recommended real-time PCR method to several published as well as in-house designed primer/probe sets spanning the entire genome of IHHNV. Our results show that (1) more than one primer/ probe set is needed when testing for the infectious form of IHHNV in all three species of shrimp and (2) primer pairs qIH-Fw/qIH-Rv and 3144F/ 3232R have diagnostic characteristics that would enable IHHNV detection in all three shrimp species. These findings are valuable for a large-scale screening of shrimp using a TaqMan real-time PCR assay.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
J Invertebr Pathol ; 201: 108024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992986

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is classified as a reportable crustacean disease by the World Organisation for Animal Health (WOAH), which causes poor growth in Penaeus vannamei. According to genome sequence alignment analysis, enzymatic recombinase amplification (ERA) primers and probe were designed based on the ORF1 region of IHHNV, and a real-time ERA assay for IHHNV detection (IHHNV-ERA) was established. The experimental results show that IHHNV-F2/IHHNV-R2 and IHHNV-Probe can effectively amplify the target gene, and the sensitivity is 1.4 × 101 copies/µL within 14.97 ± 0.19 min, while the qPCR using primers 309F/309R could reach the detection limit of 1.4 × 101 copies/µL within 21.76 ± 0.63 min, and the sensitivity results of one-step PCR could be as low as 1.4 copies/µL with expense of time and false positives. The IHHNV-ERA system can effectively amplify the target gene at 42 ℃ within 20 min, and has no cross-reaction with white spot syndrome virus (WSSV), Ecytonucleospora hepatopenaei (EHP), Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VpAHPND), and healthy shrimp genomic DNA. Test results of practical samples showed that the detection rate of IHHNV-ERA (18/20) was better than the industrial standard qPCR assay (17/20). Compared with the existing technology, the useful results of this detection assay are: (1) get rid of the dependence on the thermal cycle instrument in the PCR process; (2) the experimental procedure is simple, time-consuming and fast; (3) the detection sensitivity is high. This study provides an ERA based detection assay for IHHNV, which can be used not only for the rapid detection of IHHNV infection, but also for the field screening of pathogens. This assay can also be applied to clinical inspection, customs detection, enterprise quality inspection and other fields, and has obvious practical application value.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Recombinases , Reação em Cadeia da Polimerase/métodos , Primers do DNA
5.
J Invertebr Pathol ; 201: 108013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923117

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is one of the linearly single-stranded DNA viruses. Ecytonucleospora hepatopenaei (EHP) is an intracellular parasitic microsporidian. IHHNV and EHP are pathogens that have been widely prevalent in shrimp farming. Both of them are associated with growth retardation of the penaeid shrimp, which causes serious economic losses to shrimp farming. Shrimp can be co-infected with IHHNV and EHP. In this study, a rapid duplex polymerase chain reaction (PCR) was developed and optimized for the simultaneous detection of EHP and IHHNV. The detection limit of the duplex PCR could reach 1.5 × 102 copies for EHP and IHHNV. A total of 578 Litopenaeus vannamei samples were detected by the established duplex PCR detection method. The results suggested that 398 samples were infected with EHP, 362 samples were infected with IHHNV, and 265 samples were co-infected with EHP and IHHNV. The case-control analysis of the detected shrimp samples showed a certain synergistic effect between EHP and IHHNV.


Assuntos
Densovirinae , Microsporídios , Penaeidae , Animais , Densovirinae/genética , Reação em Cadeia da Polimerase/métodos , Agricultura , Microsporídios/genética
6.
Dis Aquat Organ ; 156: 53-57, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970846

RESUMO

Decapod hepanhamaparvovirus 1 (DHPV), also known as hepatopancreatic parvovirus (HPV), has caused death in larvae or stunted growth in juveniles of cultured shrimp. To date, 4 genotypes (genotype I, II, III, and IV) have been reported from various shrimp species and various geographical regions. In the present study, we isolated 2 types of DHPV (GHPV-Goseong and DHPV-Geoje) from cultured Penaeus vannamei in Korea. Based on the capsid protein (VP) amino acid sequences, DHPV-Goseong was highly identical to previously reported DHPV genotype IV in Taiwan and Korea. Different from DHPV-Goseong, DHPV-Geoje showed approximately 63% similarity with DHPV genotype I, II, III and 84% similarity with DHPV genotype IV, suggesting an independent new genotype of DHPV (genotype V). Further research is needed to elucidate the origin and biological meanings of the present new genotype.


Assuntos
Densovirinae , Penaeidae , Animais , República da Coreia/epidemiologia , Sequência de Aminoácidos , Genótipo
7.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535061

RESUMO

In the late 1980s, there was histological and electron microscopy evidence for a parvovirus-like virus in Australian prawns. The data were consistent with infectious hypodermal and haematopoietic necrosis virus (IHHNV). However, these cases did not fit the then current paradigms of the known viruses and sequencing did not find any meaningful sequence homology. The virus was named spawner-isolated mortality virus (SMV; GenBank AF499102.1) in order to allow publication of the information about its occurrence to inform the scientific and aquacultural communities. This virus was present in the early years of mid-crop mortality syndrome (1993-1995). However, as time passed, nucleotide and protein databases have expanded and sequence investigation tools have become more cost effective. The sequence of the entity known as SMV is now shown to be of Carnobacterium divergens (CP016843.1). Therefore, the publications with regard to SMV have been assessed and a recommendation to abolish the name with the still valid science transferred to IHHNV and C. divergens.


Assuntos
Densovirinae , Infecções por Parvoviridae , Penaeidae , Animais , Austrália , Aquicultura
8.
Arch Virol ; 168(8): 211, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486432

RESUMO

Infectious hypodermal hematopoietic necrosis virus (IHHNV/PstDVI) was isolated and propagated in the hybrid shrimp-insect cell line PmLyO-Sf9. A few hours after inoculation with an infected tissue extract or virus suspension, cytopathic changes could be observed in the cell line, including clustering, enlargement, syncytium formation, granulation, vacuole formation, tapering, irregularities in the plasma membrane with extended tails, detachment, cell death, and accumulation of cellular debris. Expression of viral genes, the presence of virions, and cytological changes observed using transmission electron microscopy suggested replication of the virus in these cells. The virus was purified by ultracentrifugation, negatively stained, and examined using an electron microscope, and the purified virus was found to be infectious both in vitro and in vivo. This development opens avenues for the study of the basic molecular mechanism of IHHNV infection, pathogenesis, and replication, which is much needed for developing an antiviral strategy in aquaculture.


Assuntos
Densovirinae , Vírus da Necrose Hematopoética Infecciosa , Penaeidae , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Densovirinae/genética , Células Sf9 , Aquicultura
9.
J Invertebr Pathol ; 199: 107952, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307944

RESUMO

Infectious hypodermal and haematopoietic necrosis virus (IHHNV) is a major viral pathogen in cultured shrimp. It is generally believed that the target organs of IHHNV in shrimp include tissues of ectodermal and mesodermal origin, but do not normally include organ systems of endodermal origin, such as hepatopancreas. In this study, the feeding challenge of IHHNV in different organs (pleopods, muscles, gills, and hepatopancreas) of Penaeus vannamei was studied. The PCR results showed that hepatopancreas of P. vannamei had the strongest IHHNV positivity (100% positive, 19.4 copies/mg) in the feeding challenge experiment. Gills and pleopods had similar infectivity to IHHNV (86.7% positive, 10.6 and 10.5 copies/mg). Among the four organs tested in this study, the IHHNV positivity of muscles was the weakest (33.3% positive, 4.7 copies/mg). The IHHNV infection to hepatopancreas of P. vannamei was also histological confirmed. Our current data indicated that the shrimp tissues derived from the endoderm such as hepatopancreas could also be infected by IHHNV.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Reação em Cadeia da Polimerase , Brânquias
10.
Infect Dis Poverty ; 12(1): 48, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161462

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS: The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS: The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS: MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.


Assuntos
Aedes , Vírus da Dengue , Densovirinae , Densovirus , Feminino , Animais , Densovirus/genética , Sorogrupo , Mosquitos Vetores
11.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851575

RESUMO

At present, there are few studies on the epidemiology of diseases in wild Chinese white shrimp Penaeus chinensis. In order to enrich the epidemiological information of the World Organisation for Animal Health (WOAH)-listed and emerging diseases in wild P. chinensis, we collected a total of 37 wild P. chinensis from the Yellow Sea in the past three years and carried out molecular detection tests for eleven shrimp pathogens. The results showed that infectious hypodermal and hematopoietic necrosis virus (IHHNV), Decapod iridescent virus 1 (DIV1), yellow head virus genotype 8 (YHV-8), and oriental wenrivirus 1 (OWV1) could be detected in collected wild P. chinensis. Among them, the coexistence of IHHNV and DIV1 was confirmed using qPCR, PCR, and sequence analysis with pooled samples. The infection with YHV-8 and OWV1 in shrimp was studied using molecular diagnosis, phylogenetic analysis, and transmission electron microscopy. It is worth highlighting that this study revealed the high prevalence of coinfection with YHV-8 and OWV1 in wild P. chinensis populations and the transmission risk of these viruses between the wild and farmed P. chinensis populations. This study enriches the epidemiological information of WOAH-listed and emerging diseases in wild P. chinensis in the Yellow Sea and raises concerns about biosecurity issues related to wild shrimp resources.


Assuntos
Coinfecção , Densovirinae , Penaeidae , Vírus de RNA , Roniviridae , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Roniviridae/genética , Filogenia , Genótipo
12.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560598

RESUMO

A co-expressed Penaeus stylirostris densovirus (PstDNV) capsid and dsRNA specific to the yellow head virus (YHV) protease (CoEx cpPstDNV/dspro) has been shown to suppress YHV replication in the Pacific white-legged shrimp (Litopenaeus vannamei). However, maintaining two plasmids in a single bacterial cell is not desirable; therefore, a single plasmid harboring both the PstDNV capsid and the dsRNA-YHV-pro gene was constructed under the regulation of a single T7 promoter, designated pET28a-Linked cpPstDNV-dspro. Following induction, this novel construct expressed an approximately 37-kDa recombinant protein associated with a roughly 400-bp dsRNA (Linked cpPstDNV-dspro). Under a transmission electron microscope, the virus-like particles (VLP; Linked PstDNV VLPs-dspro) obtained were seen to be monodispersed, similar to the native PstDNV virion. A nuclease digestion assay indicated dsRNA molecules were both encapsulated and present outside the Linked PstDNV VLPs-dspro. In addition, the amount of dsRNA produced from this strategy was higher than that obtained with a co-expression strategy. In a YHV infection challenge, the Linked PstDNV VLPs-dspro was more effective in delaying and reducing mortality than other constructs tested. Lastly, the linked construct provides protection for the dsRNA cargo from nucleolytic enzymes present in the shrimp hemolymph. This is the first report of a VLP carrying virus-inhibiting dsRNA that could be produced without disassembly and reassembly to control virus infection in shrimp.


Assuntos
Densovirinae , Densovirus , Penaeidae , Roniviridae , Animais , Roniviridae/genética , Roniviridae/metabolismo , Proteínas do Capsídeo/genética , Proteínas Recombinantes/genética , Densovirus/genética , Densovirinae/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
13.
BMC Genomics ; 23(1): 565, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933380

RESUMO

BACKGROUND: Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a genome sequence (GenBank record JABERT000000000) of the giant tiger shrimp (Penaeus monodon for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). RESULTS: The shrimp genome sequence contained three piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in pseudochromosome 35 (PC35). Both PC35 clusters contained multiple sequences with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called "non-infectious IHHNV Type A" (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two PC35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in pseudochromosome 7 (PC7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against current types of infectious IHHNV. One disadvantage was that some EVE in PC7 can give false positive PCR test results for infectious IHHNV. CONCLUSIONS: Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important because whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against the disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them.


Assuntos
Densovirinae , Parvovirus , Penaeidae , Animais , Austrália , DNA Viral/genética , Densovirinae/genética , Genoma Viral , Parvovirus/genética , Penaeidae/genética , RNA Interferente Pequeno
14.
PLoS One ; 17(8): e0272456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947538

RESUMO

Infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a crustacean disease that caused large-scale mortality in Penaeus stylirostris, deformity and growth retardation in Penaeus vannamei and Penaeus monodon. We surveyed the presence of IHHNV in three major shrimp-producing regions in Ecuador, namely Guayas, El Oro, and Esmeralda. The data show that IHHNV is endemic (3.3-100% prevalence) to shrimp farms in these regions. The whole genome sequences of representative circulating IHHNV genotypes in Ecuador and Peru showed that these genotypes formed a separate cluster within the Type II genotypes and were divergent from other geographical isolates of IHHNV originating in Asia, Africa, Australia, and Brazil. In experimental bioassays using specific pathogen-free (SPF) P. vannamei, P. monodon, and P. stylirostris and representative IHHNV isolates from Ecuador and Peru, the virus did not cause any mortality or induce clinical signs in any of the three penaeid species. Although IHHNV-specific Cowdry type A inclusion bodies were histologically detected in experimentally challenged P. vannamei and P. monodon and confirmed by in situ hybridization, no such inclusions were observed in P. stylirostris. Moreover, P. vannamei had the highest viral load, followed by P. monodon and P. stylirostris. Based on IHHNV surveillance data, we conclude that the currently farmed P. vannamei lines in Ecuador are tolerant to circulating IHHNV genotypes. The genome sequence and experimental bioassay data showed that, although the currently circulating genotypes are infectious, they do not induce clinical lesions in the three commercially important penaeid species. These findings suggest a potentially evolving virus-host relationship where circulating genotypes of IHHNV co-exist in equilibrium with P. vannamei raised in Peru and Ecuador.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Equador , Genoma , Penaeidae/genética , Peru/epidemiologia
15.
Dis Aquat Organ ; 150: 145-151, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35979988

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a World Organization for Animal Health (OIE)-classified notifiable crustacean disease. There is limited information on the current status of IHHNV in the Philippines. Thus, this research focuses on collecting samples from various municipality markets of known shrimp producers in Central Luzon to provide an update on the status of IHHNV. These samples were subjected to IHHNV detection using PCR. Results showed that 56 out of the 276 (~20%) samples were positive for IHHNV. This indicates that IHHNV persists in Philippine shrimps despite preventive measures such as testing of broodstock. Furthermore, the sequences of the isolates acquired from different municipalities reveal a high degree of similarity, suggesting transboundary movement of the infection. Our findings also support research that demonstrated a strong link between IHHNV strains in the western hemisphere and those in the Philippines. Our data suggest that farm-monitoring processes must be tightened and strictly implemented to prevent the spread of IHHNV.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Filipinas/epidemiologia , Filogenia , Prevalência
16.
Fish Shellfish Immunol ; 127: 329-339, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35760280

RESUMO

Infectious hypodermal and haematopoietic necrosis virus (IHHNV) is the smallest known virus in shrimp, which causes runt-deformity syndrome (RDS) and leads to huge economic loss every year in penaeid shrimp farming. Previous studies have shown that the juvenile Penaeus vannamei is more susceptible to IHHNV infection than the adults, but the mechanism is still unclear. In order to investigate the mechanism of pathogenic differences in IHHNV infection of P. vannamei at different developmental stages, the juvenile and adult P. vannamei were studied by transcriptome high-throughput sequencing to analyze their response to IHHNV infection. GO and KEGG enrichment were analyzed to search for differentially expressed genes (DEGs) related to immunity, growth and metabolism. The results showed that many immune-related genes of the juvenile and adult P. vannamei responded differently to IHHNV infection. For the adult P. vannamei, the expression of most immune-related genes was significantly up-regulated, which means that a cellular defense response was triggered after IHHNV infection. However, most immune-related genes in juvenile P. vannamei were inhibited, indicating that the immune system of juvenile the P. vannamei is imperfect and makes it to be more susceptible to IHHNV. Similarly, the growth-related genes of P. vannamei were changed during IHHNV infection. For the juvenile P. vannamei, the growth-related genes were significantly down-regulated, which resulted in a growth hormone disorder and prevented the juvenile P. vannamei from growth. In the adult P. vannamei, most molting-related genes were significantly up-regulated, indicating that IHHNV infection leads the adult P. vannamei to early molting to eliminate pathogen in the body. Metabolic process data showed that energy metabolism pathway was affected when P. vannamei infected with IHHNV. The adult P. vannamei infected with IHHNV can cause energetically costly and lead to the disturbance of the metabolism, activate complex immune systems to resist the invasion of pathogens. The results of this study clarified the response mechanism of P. vannamei at different developmental stages to IHHNV infection, which can provide new insights to IHHNV effective control and a reference for the study of sensitive period of different shrimp virus to host infection.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/fisiologia , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala , Penaeidae/genética , Transcriptoma
17.
J Fish Dis ; 45(8): 1201-1210, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35612903

RESUMO

Hepatopancreatic parvovirus (HPV) and Enterocytozoon hepatopenaei (EHP) are emerging and reemerging pathogens in shrimps. In the present study, a novel genotype of HPV concurrently infected with EHP in Penaeus vannamei in Taiwan leading to severe atrophy and damage of hepatopancreas were confirmed by histopathology, in situ hybridization, and PCR. The novel genotype of HPV exhibited 66%-69.5% sequence identities with all known HPVs and carried unique amino acid deletions and insertions in the VP gene. According to phylogenetic analysis, the Taiwan HPV isolates were classified as the genotype IV. The present study not only provided the histopathological and molecular proof of HPV and EHP co-infection in Taiwan, but also revealed the importance of investigating the geographical expansion of novel HPV genotypes.


Assuntos
Densovirinae , Enterocytozoon , Doenças dos Peixes , Infecções por Papillomavirus , Parvovirus , Penaeidae , Animais , Enterocytozoon/genética , Genótipo , Filogenia , Taiwan/epidemiologia
18.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143647

RESUMO

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Assuntos
Densovirinae , Penaeidae , Animais , Austrália , Densovirinae/genética , Genoma Viral , Penaeidae/genética , Reação em Cadeia da Polimerase
19.
Emerg Infect Dis ; 28(2): 373-381, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075996

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a nonenveloped, linear, single-stranded DNA virus belonging to the family Parvoviridae and is a World Organisation for Animal Health (OIE)-notifiable crustacean pathogen. During screening of Penaeus vannamei shrimp from 3 commercial shrimp facilities in the United States for a panel of OIE-listed (n = 7) and nonlisted (n = 2) crustacean diseases, shrimp from these facilities tested positive for IHHNV. Nucleotide sequences of PCR amplicons showed 99%-100% similarity to IHHNV isolates from Latin America and Asia. The whole genome of the isolates also showed high similarity to type 2 infectious forms of IHHNV. Phylogenetic analysis using capsid gene and whole-genome sequences demonstrated that the isolates clustered with an IHHNV isolate from Ecuador. The detection of an OIE-listed crustacean pathogen in the United States highlights the need for biosecurity protocols in hatcheries and grow-out ponds to mitigate losses.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Genoma , Penaeidae/genética , Filogenia , Reação em Cadeia da Polimerase , Estados Unidos/epidemiologia
20.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680151

RESUMO

In this study, we aimed to encapsulate the sizable double-stranded DNA (dsDNA, 3.9 kbp) into a small-sized infectious hypodermal and hematopoietic necrosis virus-like particle (IHHNV-VLP; T = 1) and compared the changes in capsid structure between dsDNA-filled VLP and empty VLP. Based on our encapsulation protocol, IHHNV-VLP was able to load dsDNA at an efficiency of 30-40% (w/w) into its cavity. Structural analysis revealed two subclasses of IHHNV-VLP, so-called empty and dsDNA-filled VLPs. The three-dimensional (3D) structure of the empty VLP produced in E. coli was similar to that of the empty IHHNV-VLP produced in Sf9 insect cells. The size of the dsDNA-filled VLP was slightly bigger (50 Å) than its empty VLP counterpart; however, the capsid structure was drastically altered. The capsid was about 1.5-fold thicker due to the thickening of the capsid interior, presumably from DNA-capsid interaction evident from capsid protrusions or nodules on the interior surface. In addition, the morphological changes of the capsid exterior were particularly observed in the vicinity of the five-fold axes, where the counter-clockwise twisting of the "tripod" structure at the vertex of the five-fold channel was evident, resulting in a widening of the channel's opening. Whether these capsid changes are similar to virion capsid maturation in the host cells remains to be investigated. Nevertheless, the ability of IHHNV-VLP to encapsulate the sizable dsDNA has opened up the opportunity to package a dsDNA vector that can insert exogenous genes and target susceptible shrimp cells in order to halt viral infection.


Assuntos
Capsídeo , Densovirinae , Capsídeo/química , Escherichia coli/genética , Proteínas do Capsídeo/química , DNA Viral/genética , DNA Viral/análise , Densovirinae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...