Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
BMC Vet Res ; 19(1): 256, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053140

RESUMO

BACKGROUND: Ectromelia virus (ECTV) is the causative agent of mousepox in mice. In the past century, ECTV was a serious threat to laboratory mouse colonies worldwide. Recombinase polymerase amplification (RPA), which is widely used in virus detection, is an isothermal amplification method. RESULTS: In this study, a probe-based RPA detection method was established for rapid and sensitive detection of ECTV.Primers were designed for the highly conserved region of the crmD gene, the main core protein of recessive poxvirus, and standard plasmids were constructed. The lowest detection limit of the ECTV RT- RPA assay was 100 copies of DNA mol-ecules per reaction. In addition, the method showed high specificity and did not cross-react with other common mouse viruses.Therefore, the practicability of the RPA method in the field was confirmed by the detection of 135 clinical samples. The real-time RPA assay was very similar to the ECTV real-time PCR assay, with 100% agreement. CONCLUSIONS: In conclusion, this RPA assay offers a novel alternative for the simple, sensitive, and specific identification of ECTV, especially in low-resource settings.


Assuntos
Vírus da Ectromelia , Recombinases , Animais , Camundongos , Recombinases/metabolismo , Vírus da Ectromelia/genética , Vírus da Ectromelia/metabolismo , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
Vopr Virusol ; 68(4): 277-282, 2023 Sep 21.
Artigo em Russo | MEDLINE | ID: mdl-38156584

RESUMO

INTRODUCTION: The mouse-specific orthopoxvirus, ectromelia virus, is one of the best models that can be used to study key issues of pathogenesis, prevention, and treatment of smallpox, and to develop measures to increase virulence, transmissibility, or the ability to overcome vaccine immunity. The aim of the work is to screen the antiviral activity of samples from Inonotus obliquus chaga and humic acid from brown coal in vitro against ectromelia virus. MATERIALS AND METHODS: We used ectromelia virus, strain K-1 (reg. No V-142), obtained from the State Collection of Pathogens of Viral Infections and Rickettsioses of the State Scientific Center of Virology and Biotechnology "Vector"; Vero Е6 cell culture (No 70) from the Collection of cell cultures of the State Scientific Center of Virology and Biotechnology "Vector". Nine samples from chaga I. obliquus and humic acid from brown coal were used to evaluate the changes in the infectivity of the ectromelia virus on cell culture using 2 schemes of application of drugs and virus (preventive and therapeutic schemes), and to assess their cytotoxicity and antiviral activity. RESULTS: 50% cytotoxic concentration, 50% virus-inhibiting concentrations and selectivity index were determined for all samples. The studied samples were shown to be non-toxic to the monolayer of Vero cell culture in a dilution of 300 and more micrograms/ml, while demonstrated high antiviral activity against strain K-1 of ectromelia virus in two application schemes - preventive and curative. CONCLUSION: All samples tested for ectromelia virus in vitro can be considered promising for further development of drugs against diseases caused by orthopoxviruses.


Assuntos
Antivirais , Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Antivirais/farmacologia , Técnicas de Cultura de Células , Carvão Mineral , Vírus da Ectromelia/efeitos dos fármacos , Ectromelia Infecciosa/prevenção & controle , Substâncias Húmicas , Células Vero , Chlorocebus aethiops , Inonotus/química
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958732

RESUMO

The recent spread of the monkeypox virus among humans has heightened concerns regarding orthopoxvirus infections. Consequently, conducting a comprehensive study on the immunobiology of the monkeypox virus is imperative for the development of effective therapeutics. Ectromelia virus (ECTV) closely resembles the genetic and disease characteristics of monkeypox virus, making it a valuable research tool for studying orthopoxvirus-host interactions. Guanylate-binding proteins (GBPs), highly expressed interferon-stimulated genes (ISGs), have antagonistic effects against various intracellular pathogenic microorganisms. Our previous research has shown that GBP2 has a mild but statistically significant inhibitory effect on ECTV infection. The presence of a significant number of molecules in the poxvirus genome that encode the host immune response raises questions about whether it also includes proteins that counteract the antiviral activity of GBP2. Using IP/MS and co-IP technology, we discovered that the poly(A) polymerase catalytic subunit (PAPL) protein of ECTV is a viral regulatory molecule that interacts with GBP2. Further studies have shown that PAPL antagonizes the antiviral activity of GBP2 by reducing its protein levels. Knocking out the PAPL gene of ECTV with the CRISPR/Cas9 system significantly diminishes the replication ability of the virus, indicating the indispensable role of PAPL in the replication process of ECTV. In conclusion, our study presents preliminary evidence supporting the significance of PAPL as a virulence factor that can interact with GBP2.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Camundongos , Humanos , Vírus da Ectromelia/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Domínio Catalítico , Antivirais/farmacologia
4.
Vopr Virusol ; 68(3): 242-251, 2023 07 06.
Artigo em Russo | MEDLINE | ID: mdl-37436415

RESUMO

INTRODUCTION: Following the successful eradication of smallpox, mass vaccination against this disease was discontinued in 1980. The unvaccinated population continues to be at risk of infection due to military use of variola virus or exposure to monkeypox virus in Africa and non-endemic areas. In cases of these diseases, rapid diagnosis is of great importance, since the promptness and effectiveness of therapeutic and quarantine measures depend on it. The aim of work is to develop a kit of reagents for enzyme-linked immunosorbent assay (ELISA) for fast and highly sensitive detection of orthopoxviruses (OPV) in clinical samples. MATERIALS AND METHODS: The efficiency of virus detection was evaluated by single-stage ELISA in the cryolisate of CV-1 cell culture samples infected with vaccinia, cowpox, rabbitpox, and ectromelia viruses, as well as in clinical samples of infected rabbits and mice. RESULTS: The method of rapid ELISA was shown to allow the detection of OPV in crude viral samples in the range of 5.0 1025.0 103 PFU/ml, and in clinical samples with a viral load exceeding 5 103 PFU/ml. CONCLUSIONS: The assay involves a minimum number of operations and can be performed within 45 minutes, which makes it possible to use it in conditions of a high level of biosecurity. Rapid ELISA method was developed using polyclonal antibodies, which significantly simplifies and reduces the cost of manufacturing a diagnostic system.


Assuntos
Vírus da Ectromelia , Orthopoxvirus , Vírus da Varíola , Coelhos , Animais , Camundongos , Orthopoxvirus/genética , Vírus Vaccinia , Vírus da Varíola/genética , Ensaio de Imunoadsorção Enzimática
5.
J Virol ; 97(2): e0194522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651749

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.


Assuntos
Ectromelia Infecciosa , Animais , Camundongos , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Necroptose/imunologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia
6.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203729

RESUMO

Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Camundongos , Adesivos , Adesividade , Células Dendríticas
7.
Cell Rep ; 41(8): 111676, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417857

RESUMO

Inflammatory monocytes (iMOs) and B cells are the main targets of the poxvirus ectromelia virus (ECTV) in the lymph nodes of mice and play distinct roles in surviving the infection. Infected and bystander iMOs control ECTV's systemic spread, preventing early death, while B cells make antibodies that eliminate ECTV. Our work demonstrates that within an infected animal that survives ECTV infection, intrinsic and bystander infection of iMOs and B cells differentially control the transcription of genes important for immune cell function and, perhaps, cell identity. Bystander cells upregulate metabolism, antigen presentation, and interferon-stimulated genes. Infected cells downregulate many cell-type-specific genes and upregulate transcripts typical of non-immune cells. Bystander (Bys) and infected (Inf) iMOs non-redundantly contribute to the cytokine milieu and the interferon response. Furthermore, we uncover how type I interferon (IFN-I) or IFN-γ signaling differentially regulates immune pathways in Inf and Bys iMOs and that, at steady state, IFN-I primes iMOs for rapid IFN-I production and antigen presentation.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Interferon Tipo I , Poxviridae , Animais , Camundongos , Monócitos , Antivirais
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177474

RESUMO

Viral causes of pneumonia pose constant threats to global public health, but there are no specific treatments currently available for the condition. Antivirals are ineffective when administered late after the onset of symptoms. Pneumonia is caused by an exaggerated inflammatory cytokine response to infection, but tissue necrosis and damage caused by virus also contribute to lung pathology. We hypothesized that viral pneumonia can be treated effectively if both virus and inflammation are simultaneously targeted. Combined treatment with the antiviral drug cidofovir and etanercept, which targets tumor necrosis factor (TNF), down-regulated nuclear factor kappa B-signaling and effectively reduced morbidity and mortality during respiratory ectromelia virus (ECTV) infection in mice even when treatment was initiated after onset of clinical signs. Treatment with cidofovir alone reduced viral load, but animals died from severe lung pathology. Treatment with etanercept had no effect on viral load but diminished levels of inflammatory cytokines and chemokines including TNF, IL-6, IL-1ß, IL-12p40, TGF-ß, and CCL5 and dampened activation of the STAT3 cytokine-signaling pathway, which transduces signals from multiple cytokines implicated in lung pathology. Consequently, combined treatment with a STAT3 inhibitor and cidofovir was effective in improving clinical disease and lung pathology in ECTV-infected mice. Thus, the simultaneous targeting of virus and a specific inflammatory cytokine or cytokine-signaling pathway is effective in the treatment of pneumonia. This approach might be applicable to pneumonia caused by emerging and re-emerging viruses, like seasonal and pandemic influenza A virus strains and severe acute respiratory syndrome coronavirus 2.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antivirais/uso terapêutico , Cidofovir/uso terapêutico , Etanercepte/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cidofovir/farmacologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Vírus da Ectromelia/efeitos dos fármacos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia Viral/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Carga Viral/efeitos dos fármacos
9.
Virology ; 564: 1-12, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560573

RESUMO

Many poxviruses produce proteins that are related to epidermal growth factor (EGF). Prior genome sequencing of ectromelia virus revealed a gene predicted to produce a protein with homology to EGF, which we refer to as ectromelia growth factor (ECGF). ECGF is truncated relative to vaccinia growth factor (VGF) because the former lacks a transmembrane domain. We show these proteins can experience differential N-linked glycosylation. Despite these differences, both proteins maintain the six conserved cysteine residues important for the function of EGF. Since ECGF has not been characterized, our objective was to determine if it can act as a growth factor. We added ECGF to cultured cells and found that the EGF receptor becomes activated, S-phase was induced, doubling time decreased, and in vitro wound healing occurred faster compared to untreated cells. In summary, we demonstrate that ECGF can act as a mitogen in a similar manner as VGF.


Assuntos
Vírus da Ectromelia/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Mitógenos/metabolismo , Proteínas Virais/metabolismo , Animais , Divisão Celular , Linhagem Celular , Movimento Celular , Fator de Crescimento Epidérmico/química , Glicosilação , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Ligação Proteica , Fase S , Transdução de Sinais , Vírus Vaccinia/metabolismo , Proteínas Virais/química , Cicatrização
10.
Viruses ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203773

RESUMO

Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.


Assuntos
Vírus da Ectromelia/genética , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/patologia , Ectromelia Infecciosa/virologia , Genômica , Filogenia , Animais , Modelos Animais de Doenças , Vírus da Ectromelia/classificação , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Feminino , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Filogeografia , Proteínas Virais/genética , Virulência
11.
J Virol ; 95(19): e0056621, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260270

RESUMO

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ectromelia Infecciosa/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Viroses/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD11/análise , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Citotoxicidade Imunológica , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/virologia , Antígenos de Histocompatibilidade Classe II/análise , Fígado/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Th1/metabolismo , Transcriptoma , Replicação Viral
12.
PLoS Pathog ; 17(5): e1009593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015056

RESUMO

Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Animais , Citocinas/imunologia , Resistência à Doença , Ectromelia Infecciosa/virologia , Feminino , Hepatócitos/imunologia , Hepatócitos/virologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/virologia , Receptor de Interferon alfa e beta/genética
13.
Mol Ther ; 29(9): 2769-2781, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992803

RESUMO

It is well established that memory CD8 T cells protect susceptible strains of mice from mousepox, a lethal viral disease caused by ectromelia virus (ECTV), the murine counterpart to human variola virus. While mRNA vaccines induce protective antibody (Ab) responses, it is unknown whether they also induce protective memory CD8 T cells. We now show that immunization with different doses of unmodified or N(1)-methylpseudouridine-modified mRNA (modified mRNA) in lipid nanoparticles (LNP) encoding the ECTV gene EVM158 induced similarly strong CD8 T cell responses to the epitope TSYKFESV, albeit unmodified mRNA-LNP had adverse effects at the inoculation site. A single immunization with 10 µg modified mRNA-LNP protected most susceptible mice from mousepox, and booster vaccination increased the memory CD8 T cell pool, providing full protection. Moreover, modified mRNA-LNP encoding TSYKFESV appended to green fluorescent protein (GFP) protected against wild-type ECTV infection while lymphocytic choriomeningitis virus glycoprotein (GP) modified mRNA-LNP protected against ECTV expressing GP epitopes. Thus, modified mRNA-LNP can be used to create protective CD8 T cell-based vaccines against viral infections.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Proteínas Virais/genética , Vacinas de mRNA/administração & dosagem , Animais , Composição de Medicamentos , Ectromelia Infecciosa/imunologia , Imunização Secundária , Memória Imunológica , Lipossomos , Masculino , Camundongos , Nanopartículas , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Pseudouridina/análogos & derivados , Pseudouridina/química , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/farmacologia , Vacinas de mRNA/química , Vacinas de mRNA/farmacologia
14.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765134

RESUMO

Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.


Assuntos
Linfócitos B/imunologia , Citotoxicidade Imunológica/imunologia , Vírus da Ectromelia/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Viroses/imunologia , Animais , Linfócitos B/metabolismo , Linfócitos B/virologia , Efeito Espectador/imunologia , Citotoxicidade Imunológica/genética , Vírus da Ectromelia/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Viroses/virologia
16.
Proc Natl Acad Sci U S A ; 117(43): 26885-26894, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046647

RESUMO

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1ß, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti-IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Assuntos
Vírus da Ectromelia/fisiologia , Interações Hospedeiro-Patógeno , Receptores do Fator de Necrose Tumoral/metabolismo , Infecções Respiratórias/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Respiratórias/patologia , Carga Viral
17.
Acta Virol ; 64(3): 307-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32985205

RESUMO

Mitochondria are multitasking organelles that play a central role in energy production, survival and primary host defense against viral infections. Therefore, viruses target mitochondria dynamics and functions to benefit their replication and morphogenetic processes. We endeavor to understand the role of mitochondria during infection of ectromelia virus (ECTV), hence our investigations on mitochondria-related genes in non-immune (L929 fibroblasts) and immune (RAW 264.7 macrophages) cells. Our results show that during later stages of infection, ECTV significantly decreases the expression of mitochondria-related genes regulating many aspects of mitochondrial physiology and functions, including mitochondrial transport, small molecule transport, membrane polarization and potential, targeting proteins to mitochondria, inner membrane translocation, and apoptosis. Such down-regulation is cell-specific, since macrophages exhibited a more profound down-regulation of mitochondria-related genes compared to infected L929 fibroblasts. Only L929 cells exhibited up-regulation of two important genes responsible for oxidative phosphorylation and subsequent ATP production: Slc25a23 and Slc25a31. Changes in the expression of mitochondria-related genes are accompanied by altered mitochondria morphology and distribution in both types of cells. In depth Ingenuity Pathway Analysis (IPA) identified the "Sirtuin Signaling Pathway" as the most significant top canonical pathway associated with ECTV infection in both analyzed cell types. Taken together, down-regulation of mitochondria-related genes observed especially in macrophages indicates dysfunctional mitochondria, possibly contributing to energy collapse and induction of intrinsic pathway of apoptosis. Meanwhile, alteration of the expression of several mitochondria-related genes in fibroblasts without apoptosis induction may represent poxviral strategy to control cellular energy metabolism for efficient replication. Keywords: ectromelia virus; mitochondria; fibroblasts; macrophages.


Assuntos
Ectromelia Infecciosa/genética , Fibroblastos , Macrófagos , Mitocôndrias/genética , Transcriptoma , Animais , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Camundongos , Células RAW 264.7
18.
Sci Rep ; 10(1): 13167, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759969

RESUMO

Vaccination with vaccinia virus (VACV) elicits heterotypic immunity to smallpox, monkeypox, and mousepox, the mechanistic basis for which is poorly understood. It is generally assumed that heterotypic immunity arises from the presentation of a wide array of VACV-derived, CD8+ T cell epitopes that share homology with other poxviruses. Herein this assumption was tested using a large panel of VACV-derived peptides presented by HLA-B*07:02 (B7.2) molecules in a mousepox/ectromelia virus (ECTV)-infection, B7.2 transgenic mouse model. Most dominant epitopes recognized by ECTV- and VACV-reactive CD8+ T cells overlapped significantly without altering immunodominance hierarchy. Further, several epitopes recognized by ECTV-reactive CD8+ T cells were not recognized by VACV-reactive CD8+ T cells, and vice versa. In one instance, the lack of recognition owed to a N72K variation in the ECTV C4R70-78 variant of the dominant VACV B8R70-78 epitope. C4R70-78 does not bind to B7.2 and, hence, it was neither immunogenic nor antigenic. These findings provide a mechanistic basis for VACV vaccination-induced heterotypic immunity which can protect against Variola and Monkeypox disease. The understanding of how cross-reactive responses develop is essential for the rational design of a subunit-based vaccine that would be safe, and effectively protect against heterologous infection.


Assuntos
Ectromelia Infecciosa/prevenção & controle , Antígeno HLA-B7/genética , Peptídeos/imunologia , Vírus Vaccinia/imunologia , Proteínas Virais/química , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/imunologia , Antígeno HLA-B7/metabolismo , Epitopos Imunodominantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
19.
PLoS Pathog ; 16(8): e1008685, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745153

RESUMO

Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Virais/imunologia , Animais , Ectromelia Infecciosa/metabolismo , Ectromelia Infecciosa/virologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/metabolismo , Virulência
20.
Aging Cell ; 19(7): e13170, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32657004

RESUMO

It is known that aging decreases natural resistance to viral diseases due to dysfunctional innate and adaptive immune responses, but the nature of these dysfunctions, particularly in regard to innate immunity, is not well understood. We have previously shown that C57BL/6J (B6) mice lose their natural resistance to footpad infection with ectromelia virus (ECTV) due to impaired maturation and recruitment of natural killer (NK) cells to the draining popliteal lymph node (dLN). More recently, we have also shown that in young B6 mice infected with ECTV, the recruitment of NK cells is dependent on a complex cascade whereby migratory dendritic cells (mDCs) traffic from the skin to the dLN, where they produce CCL2 and CCL7 to recruit inflammatory monocytes (iMOs). In the dLN, mDCs also upregulate NKG2D ligands to induce interferon gamma (IFN-γ) expression by group 1 innate lymphoid cells (G1-ILCs), mostly NK in cells but also some ILC1. In response to the IFN-γ, the incoming uninfected iMOs secret CXCL9 to recruit the critical NK cells. Here, we show that in aged B6 mice, the trafficking of mDCs to the dLN in response to ECTV is decreased, resulting in impaired IFN-γ expression by G1-ILCs, reduced accumulation of iMOs, and attenuated CXCL9 production by iMOs, which likely contributes to decrease in NK cell recruitment. Together, these data indicate that defects in the mDC response to viral infection during aging result in a reduced innate immune response in the dLN and contribute to increased susceptibility to viral disease in the aged.


Assuntos
Células Dendríticas/metabolismo , Vírus da Ectromelia/imunologia , Imunidade Inata/imunologia , Linfonodos/metabolismo , Envelhecimento , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...