Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.171
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 339-344, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448026

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of a neonate with Microvillus inclusion disease (MVID). METHODS: A neonate with MVID admitted to the First Affiliated Hospital of Zhengzhou University in May 2019 was selected as the study subject. Clinical data were collected. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA). A literature was also carried out to summarize the clinical and genetic characteristics of MVID. RESULTS: The prematurely born neonate had presented with unexplained refractory diarrhea and metabolic acidosis. Active symptomatic treatment was ineffective, and the child had died at 2 months old. WES revealed that he had harbored compound heterozygous variants of the MYO5B gene, namely c.1591C>T (p.R531W) and deletion of exon 9. Sanger sequencing showed that the R531W variant was inherited form his father, and MLPA confirmed that the exon 9 deletion was inherited from his mother. Seven children with MVID were reported in China, of which one was lost during follow-up and six had deceased. One hundred eighty eight patients were reported worldwide and only one was cured. The clinical features of MVID had included refractory diarrhea, metabolic acidosis and poor prognosis. CONCLUSION: The child was diagnosed with MVID due to the compound heterozygous variants of the MYO5B gene, which has provided a basis for genetic counseling and prenatal diagnosis.


Assuntos
Acidose , Síndromes de Malabsorção , Microvilosidades , Mucolipidoses , Miosina Tipo V , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Diarreia/genética , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina , Miosina Tipo V/genética
3.
Am J Ophthalmol ; 258: 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972748

RESUMO

PURPOSE: To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN: Multicenter cohort study. METHODS: A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS: Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS: MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.


Assuntos
Distrofias Hereditárias da Córnea , Mucolipidoses , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Estudos de Coortes , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mucolipidoses/patologia , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética
5.
Glycoconj J ; 40(6): 611-619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147151

RESUMO

Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing ß-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Neuraminidase , Animais , Humanos , Camundongos , Neuraminidase/química , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
8.
BMC Ophthalmol ; 23(1): 394, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752499

RESUMO

BACKGROUND: We describe the case of a 47-year-old man referred to a retinal clinic and diagnosed with late-onset retinitis pigmentosa. Surprisingly, genetic testing revealed compound heterozygous pathogenic variants in GNPTG, leading to the diagnosis of the autosomal recessive lysosomal storage disorder mucolipidosis type III gamma. Mucolipidosis type III gamma is typically diagnosed during childhood due to symptoms relating to skeletal dysplasia. Retinal dystrophy is not a common phenotypic feature. CASE PRESENTATION: Ophthalmologic examination was consistent with a mild form of retinitis pigmentosa and included fundus photography, measurement of best-corrected visual acuity, optical coherence tomography, electroretinogram and visual field testing. Extraocular findings included joint restriction and pains from an early age leading to bilateral hip replacement by age 30, aortic insufficiency, and hypertension. Genetic analysis was performed by whole genome sequencing filtered for a gene panel of 325 genes associated with retinal disease. Two compound heterozygous pathogenic variants were identified in GNPTG, c.347_349del and c.607dup. The diagnosis of mucolipidosis type III gamma was confirmed biochemically by measurement of increased activities of specific lysosomal enzymes in plasma. CONCLUSION: To our knowledge this is the first description of retinitis pigmentosa caused by compound heterozygous variants in GNPTG, providing further indications that late-onset retinal dystrophy is part of the phenotypic spectrum of mucolipidosis type III gamma.


Assuntos
Mucolipidoses , Distrofias Retinianas , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Sequenciamento Completo do Genoma , Eletrorretinografia , Transferases (Outros Grupos de Fosfato Substituídos)
9.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698928

RESUMO

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Assuntos
Nefropatias , Mucolipidoses , Animais , Humanos , Camundongos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mucolipidoses/genética , Mucolipidoses/patologia , Neuraminidase/genética
10.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37643022

RESUMO

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Assuntos
Síndromes de Malabsorção , Mucolipidoses , Miosina Tipo V , Humanos , Microvilosidades/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Enterócitos/metabolismo , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/terapia , Síndromes de Malabsorção/metabolismo , Mucolipidoses/genética , Mucolipidoses/terapia , Mucolipidoses/metabolismo
13.
Stem Cell Res ; 68: 103057, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868038

RESUMO

Mutations in UNC45A, a co-chaperone for myosins, were recently found causative of a syndrome combining cholestasis, diarrhea, loss of hearing and bone fragility. We generated induced pluripotent stem cells (iPSCs) from a patient with a homozygous missense mutation in UNC45A. Cells from this patient, which were reprogrammed using integration-free Sendaï virus, have normal karyotype, express pluripotency markers and are able to differentiate into the three germ cell layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes de Malabsorção , Mucolipidoses , Humanos , Mutação de Sentido Incorreto , Mutação , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Int J Rheum Dis ; 26(7): 1363-1367, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36869440

RESUMO

Juvenile idiopathic arthritis is the most common form of chronic arthritis in children and at times misdiagnosed in those presenting with arthropathy secondary to non-inflammatory causes. The overlap of symptoms often pose a diagnostic challenge for clinicians. This mostly results in a delayed diagnosis subjecting children to unnecessary use of long-term immunosuppressants and disease-modifying drugs. We present the case of a 9-year-old boy who was previously misdiagnosed as a case of juvenile idiopathic arthritis. Detailed evaluation later led to the diagnosis of mucolipidosis (type III) which was confirmed on genetic testing. Emphasis on detailed history and clinical examination including the subtle hints like lack of signs of inflammation, family history, no morning stiffness and normal inflammatory markers should be picked up to make a timely diagnosis. In today's era of genetic testing and diagnosis, it is prudent to offer these tests for such patients to make an accurate diagnosis and prognosticate them for the long-term outcome.


Assuntos
Artrite Juvenil , Artropatias , Mucolipidoses , Criança , Masculino , Humanos , Artrite Juvenil/diagnóstico , Artrite Juvenil/complicações , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mucolipidoses/complicações , Inflamação/complicações , Imunossupressores/uso terapêutico
15.
J Inherit Metab Dis ; 46(2): 206-219, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752951

RESUMO

Oligosaccharidoses, sphingolipidoses and mucolipidoses are lysosomal storage disorders (LSDs) in which defective breakdown of glycan-side chains of glycosylated proteins and glycolipids leads to the accumulation of incompletely degraded oligosaccharides within lysosomes. In metabolic laboratories, these disorders are commonly diagnosed by thin-layer chromatography (TLC) but more recently also mass spectrometry-based approaches have been published. To expand the possibilities to screen for these diseases, we developed an ultra-high-performance liquid chromatography (UHPLC) with a high-resolution accurate mass (HRAM) mass spectrometry (MS) screening platform, together with an open-source iterative bioinformatics pipeline. This pipeline generates comprehensive biomarker profiles and allows for extensive quality control (QC) monitoring. Using this platform, we were able to identify α-mannosidosis, ß-mannosidosis, α-N-acetylgalactosaminidase deficiency, sialidosis, galactosialidosis, fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, GM2 gangliosidosis (M. Sandhoff) and mucolipidosis II/III in patient samples. Aberrant urinary oligosaccharide excretions were also detected for other disorders, including NGLY1 congenital disorder of deglycosylation, sialic acid storage disease, MPS type IV B and GSD II (Pompe disease). For the latter disorder, we identified heptahexose (Hex7), as a potential urinary biomarker, in addition to glucose tetrasaccharide (Glc4), for the diagnosis and monitoring of young onset cases of Pompe disease. Occasionally, so-called "neonate" biomarker profiles were observed in young patients, which were probably due to nutrition. Our UHPLC/HRAM-MS screening platform can easily be adopted in biochemical laboratories and allows for simple and robust screening and straightforward interpretation of the screening results to detect disorders in which aberrant oligosaccharides accumulate.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Mucopolissacaridose IV , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucolipidoses/diagnóstico , Espectrometria de Massas em Tandem/métodos , Oligossacarídeos/química
16.
Autophagy ; 19(7): 2143-2145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36633450

RESUMO

Degradation of macromolecules delivered to lysosomes by processes such as autophagy or endocytosis is crucial for cellular function. Lysosomes require more than 60 soluble hydrolases in order to catabolize such macromolecules. These soluble hydrolases are tagged with mannose6-phosphate (M6P) moieties in sequential reactions by the Golgi-resident GlcNAc-1-phosphotransferase complex and NAGPA/UCE/uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase), which allows their delivery to endosomal/lysosomal compartments through trafficking mediated by cation-dependent and -independent mannose 6-phosphate receptors (MPRs). We and others recently identified TMEM251 as a novel regulator of the M6P pathway via independent genome-wide genetic screening strategies. We renamed TMEM251 to LYSET (lysosomal enzyme trafficking factor) to establish nomenclature reflective to this gene's function. LYSET is a Golgi-localized transmembrane protein important for the retention of the GlcNAc-1-phosphotransferase complex in the Golgi-apparatus. The current understanding of LYSET's importance regarding human biology is 3-fold: 1) highly pathogenic viruses that depend on lysosomal hydrolase activity require LYSET for infection. 2) The presence of LYSET is critical for cancer cell proliferation in nutrient-deprived environments in which extracellular proteins must be catabolized. 3) Inherited pathogenic alleles of LYSET can cause a severe inherited disease which resembles GlcNAc-1-phosphotransferase deficiency (i.e., mucolipidosis type II).Abbreviations: GlcNAc-1-PT: GlcNAc-1-phosphotransferase; KO: knockout; LSD: lysosomal storage disorder; LYSET: lysosomal enzyme trafficking factor; M6P: mannose 6-phosphate; MPRs: mannose-6-phosphate receptors, cation-dependent or -independent; MBTPS1/site-1 protease: membrane bound transcription factor peptidase, site 1; MLII: mucolipidosis type II; WT: wild-type.


Assuntos
Mucolipidoses , Humanos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Manose/metabolismo , Autofagia , Lisossomos/metabolismo , Hidrolases/metabolismo , Receptor IGF Tipo 2/metabolismo , Cátions/metabolismo , Fosfotransferases/metabolismo
17.
Science ; 378(6615): eabn5648, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074821

RESUMO

Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. We used genome-scale CRISPR screens to identify lysosomal enzyme trafficking factor (LYSET, also named TMEM251) as essential for infection by cathepsin-dependent viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes, and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery and mutations in LYSET can explain the phenotype of the associated disorder.


Assuntos
COVID-19 , Lisossomos , Mucolipidoses , Proteínas , Animais , COVID-19/genética , Catepsinas/metabolismo , Humanos , Lisossomos/metabolismo , Manose/metabolismo , Camundongos , Camundongos Knockout , Mucolipidoses/genética , Mucolipidoses/metabolismo , Proteínas/genética , Transferases (Outros Grupos de Fosfato Substituídos)
18.
Nat Commun ; 13(1): 5351, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096887

RESUMO

The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.


Assuntos
Proteínas de Membrana , Mucolipidoses , Peixe-Zebra , Animais , Humanos , Lisossomos/metabolismo , Manosefosfatos/metabolismo , Proteínas de Membrana/metabolismo , Mucolipidoses/genética , Mucolipidoses/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Peixe-Zebra/metabolismo
19.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35929194

RESUMO

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Lipofuscinoses Ceroides Neuronais , Animais , Pré-Escolar , Humanos , Lisossomos/metabolismo , Camundongos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Qualidade de Vida
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(8): 829-835, 2022 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-35929931

RESUMO

OBJECTIVE: To analyze the characteristics of lysosomal enzymes in mucolipidosis (ML) type II α/ß and type III α/ß for the choice of enzyme evaluating indicators. METHODS: Multiple lysosomal enzymes including α-iduronidase (IDUA), α -N-acetylglucosaminidase (NAGLU), ß-galactosidase-1 (GLB1), ß-glucuronidase (GUSB), α-galactosidase A (GLA), glucocerebrosidase (GBA) and arylsulphatase A (ASA) in plasma and leukocyte of two Chinese pedigrees with ML type II α/ß and type III α/ß and healthy controls were determined. Previous publications on ML type II α/ß and type III α/ß during the last five years were retrieved from PubMed, CNKI and WanFang databases by using "mucolipidosis" as key word. RESULTS: The activities of several lysosomal enzymes were increased in the plasma of both patients: ASA, IDUA (20-fold) > GUSB (10-fold) > GLB1, GLA (5-fold) > NAGLU (2-fold), whilst there was no significant change in GBA. The activities of several lysosomal enzymes in the leukocyte of the two patients were normal. 15 lysosomal enzymes have been used in 22 previous studies, the most frequently used were hexosaminidase A and B (Hex A+B) (12 papers), α-mannosidase (α-man) (11 papers) and GUSB (10 papers). The degree of Hex A+B and α-man elevation was most obvious (24.4-fold and 24.7-fold on average respectively), followed by ASA (22.4-fold on average), GUSB is 18.8-fold on average. CONCLUSION: Based on the lysosomal enzyme analysis of the two cases and literature review, ASA, GUSB, Hex A+B and α-man are recommended as the evaluating indicators for lysosomal enzyme analysis of ML type II α/ß and type III α/ß.


Assuntos
Mucolipidoses , China , Hexosaminidase A , Humanos , Iduronidase , Lisossomos , Mucolipidoses/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...