Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
Kidney Int ; 105(5): 927-929, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642991

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/diagnóstico , Hipercalciúria/genética , Medicina de Precisão , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Fosfatos
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542517

RESUMO

X-linked hypophosphatemia (XLH) is a rare genetic disorder that increases fibroblast growth factor 23 (FGF23). XLH patients have an elevated risk of early-onset hypertension. The precise factors contributing to hypertension in XLH patients have yet to be identified. A multicenter cross-sectional study of adult patients diagnosed with XLH. Metabolomic analysis was performed using ultra-performance liquid chromatography (UPLC) coupled to a high-resolution mass spectrometer. Twenty subjects were included, of which nine (45%) had hypertension. The median age was 44 years. Out of the total, seven (35%) subjects had a family history of hypertension. No statistically significant differences were found between both groups for nephrocalcinosis or hyperparathyroidism. Those with hypertension exhibited significantly higher levels of creatinine (1.08 ± 0.31 mg/dL vs. 0.78 ± 0.19 mg/dL; p = 0.01) and LDL-C (133.33 ± 21.92 mg/dL vs. 107.27 ± 20.12 mg/dL, p = 0.01). A total of 106 metabolites were identified. Acetylcarnitine (p = 0.03), pyruvate p = (0.04), ethanolamine (p = 0.03), and butyric acid (p = 0.001) were significantly different between both groups. This study is the first to examine the metabolomics of hypertension in patients with XLH. We have identified significant changes in specific metabolites that shed new light on the potential mechanisms of hypertension in XLH patients. These findings could lead to new studies identifying associated biomarkers and developing new diagnostic approaches for XLH patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipertensão , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Estudos Transversais , Fatores de Crescimento de Fibroblastos
3.
BMC Oral Health ; 24(1): 259, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383400

RESUMO

BACKGROUND: X-linked hypophosphatemia (XLH) is a type of vitamin D-resistant rickets. It is the most common form of it and is related with oral health problems. This study aimed to analyze the OHRQoL of people suffering from XLH and measure physical oral health to confirm or refute evidence of reduced oral health. METHODS: The German version of the Oral Health Impact Profile (OHIP-14G), was used to measure OHRQoL. All study participants underwent clinical examination, and oral health was scored using the Physical Oral Health Index (PhOX). RESULTS: A total of 26 people participated in the study, of whom five were male and 21 were female. The average participant age was 40.9 ± 12.8 years. The OHIP-14G score was 14.3 (± 12.1; 95% CI: 9.37. 19.16) points (range 0-44 points). The PhOX score was 77.1 (± 9.9; 95% CI: 73.10-81.13) points (range 61-95 points). CONCLUSIONS: The results of this study confirm that oral health and OHRQoL are both reduced in the studied cohort of people affected by XLH. Particular attention should be paid to perfect oral hygiene in people with XLH, as the impaired enamel mineralisation increases the risk of caries and thus also the occurrence of apical infections.


Assuntos
Cárie Dentária , Raquitismo Hipofosfatêmico Familiar , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Qualidade de Vida , Saúde Bucal , Raquitismo Hipofosfatêmico Familiar/complicações , Inquéritos e Questionários
4.
Bone ; 181: 117044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331306

RESUMO

X-linked hypophosphatemia (XLH) is caused by inactivating variants of the phosphate regulating endopeptidase homolog X-linked (PHEX) gene. Although the overproduction of fibroblast growth factor 23 (FGF23) is responsible for hypophosphatemia and impaired vitamin D metabolism, the pathogenesis of XLH remains unclear. We herein generated PHEX-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene ablation to an iPS clone derived from a healthy male, and analyzed PHEX-KO iPS cells with deletions extending from exons 1 to 3 and frameshifts by inducing them to differentiate into the osteoblast lineage. We confirmed the increased production of FGF23 in osteoblast lineage cells differentiated from PHEX-KO iPS cells. In vitro mineralization was enhanced in osteoblast lineage cells from PHEX-KO iPS cells than in those from isogenic control iPS cells, which reminded us of high bone mineral density and enthesopathy in patients with XLH. The extracellular level of pyrophosphate (PPi), an inhibitor of mineralization, was elevated, and this increase appeared to be partly due to the reduced activity of tissue non-specific alkaline phosphatase (TNSALP). Osteoblast lineage cells derived from PHEX-KO iPS cells also showed the increased expression of multiple molecules such as dentine matrix protein 1, osteopontin, RUNX2, FGF receptor 1 and early growth response 1. This gene dysregulation was similar to that in the osteoblasts/osteocytes of Phex-deficient Hyp mice, suggesting that common pathogenic mechanisms are shared between human XLH and Hyp mice. Moreover, we found that the phosphorylation of CREB was markedly enhanced in osteoblast lineage cells derived from PHEX-KO iPS cells, which appeared to be associated with the up-regulation of the parathyroid hormone related protein gene. PHEX deficiency also affected the response of the ALPL gene encoding TNSALP to extracellular Pi. Collectively, these results indicate that complex intrinsic abnormalities in osteoblasts/osteocytes underlie the pathogenesis of human XLH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Camundongos , Animais , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Osteoblastos/metabolismo , Hipofosfatemia/genética , Fatores de Crescimento de Fibroblastos/metabolismo
5.
BMC Pediatr ; 24(1): 121, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355430

RESUMO

BACKGROUND: Hereditary hypophosphatemia rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterised by reduced renal phosphate reabsorption leading to hypophosphataemia, rickets and bone pain. Here, we present a case of HHRH in a Chinese boy. CASE PRESENTATION: We report a 11-year-old female proband, who was admitted to our hospital with bilateral genuvarum deformity and short stature. Computed Tomography (CT) showed kidney stones, blood tests showed hypophosphatemia, For a clear diagnosis, we employed high-throughput sequencing technology to screen for variants. Our gene sequencing approach encompassed whole exome sequencing, detection of exon and intron junction regions, and examination of a 20 bp region of adjacent introns. Flanking sequences are defined as ±50 bp upstream and downstream of the 5' and 3' ends of the coding region.The raw sequence data were compared to the known gene sequence data in publicly available sequence data bases using Burrows-Wheeler Aligner software (BWA, 0.7.12-r1039), and the pathogenic variant sites were annotated using Annovar. Subsequently, the suspected pathogenic variants were classified according to ACMG's gene variation classification system. Simultaneously, unreported or clinically ambiguous pathogenic variants were predicted and annotated based on population databases. Any suspected pathogenic variants identified through this analysis were then validated using Sanger sequencing technology. At last, the proband and her affected sister carried pathogenic homozygous variant in the geneSLC34A3(exon 13, c.1402C > T; p.R468W). Their parents were both heterozygous carriers of the variant. Genetic testing revealed that the patient has anLRP5(exon 18, c.3917C > T; p.A1306V) variant of Uncertain significance, which is a rare homozygous variant. CONCLUSION: This case report aims to raise awareness of the presenting characteristics of HHRH. The paper describes a unique case involving variants in both theSLC34A3andLRP5genes, which are inherited in an autosomal recessive manner. This combination of gene variants has not been previously reported in the literature. It is uncertain whether the presence of these two mutated genes in the same individual will result in more severe clinical symptoms. This report shows that an accurate diagnosis is critical, and with early diagnosis and correct treatment, patients will have a better prognosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Distúrbios do Metabolismo do Fósforo , Criança , Feminino , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Heterozigoto , Hipercalciúria/diagnóstico , Hipercalciúria/genética , Hipofosfatemia/genética , Íntrons , Mutação , Distúrbios do Metabolismo do Fósforo/genética
6.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337700

RESUMO

The definition of "Vitamin D" encompasses a group of fat-soluble steroid compounds of different origins with similar chemical structures and the same biological effects. Vitamin D deficiency and/or a defect in the process of its synthesis or transport predispose individuals to several types of rickets. In addition to cholecalciferol, ergocalciferol, and vitamins D3 and D2, there are also active metabolites for the treatment of this condition which are commercially available. Calcitriol and aphacalcidiol are active metabolites that do not require the renal activation step, which is required with calcifediol, or hepatic activation. The purpose of this review is to summarize current approaches to the treatment of rickets for generalist physicians, focusing on the best vitamin D form to be used in each type, or, in the case of X-linked hypophosphatemic rickets (XLH), on both conventional and innovative monoclonal antibody treatments.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo , Humanos , Vitamina D/uso terapêutico , Raquitismo/tratamento farmacológico , Raquitismo/metabolismo , Calcitriol/uso terapêutico , Colecalciferol/uso terapêutico , Colecalciferol/metabolismo , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Vitaminas
7.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365463

RESUMO

Vitamin D is mainly produced in the skin (cholecalciferol) by sun exposure while a fraction of it is obtained from dietary sources (ergocalciferol). Vitamin D is further processed to 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D (calcitriol) in the liver and kidneys, respectively. Calcitriol is the active form which mediates the actions of vitamin D via vitamin D receptor (VDR) which is present ubiquitously. Defect at any level in this pathway leads to vitamin D deficient or resistant rickets. Nutritional vitamin D deficiency is the leading cause of rickets and osteomalacia worldwide and responds well to vitamin D supplementation. Inherited disorders of vitamin D metabolism (vitamin D-dependent rickets, VDDR) account for a small proportion of calcipenic rickets/osteomalacia. Defective 1α hydroxylation of vitamin D, 25 hydroxylation of vitamin D, and vitamin D receptor result in VDDR1A, VDDR1B and VDDR2A, respectively whereas defective binding of vitamin D to vitamin D response element due to overexpression of heterogeneous nuclear ribonucleoprotein and accelerated vitamin D metabolism cause VDDR2B and VDDR3, respectively. Impaired dietary calcium absorption and consequent calcium deficiency increases parathyroid hormone in these disorders resulting in phosphaturia and hypophosphatemia. Hypophosphatemia is a common feature of all these disorders, though not a sine-qua-non and leads to hypomineralisation of the bone and myopathy. Improvement in hypophosphatemia is one of the earliest markers of response to vitamin D supplementation in nutritional rickets/osteomalacia and the lack of such a response should prompt evaluation for inherited forms of rickets/osteomalacia.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Osteomalacia , Raquitismo , Deficiência de Vitamina D , Humanos , Calcitriol , Receptores de Calcitriol , Osteomalacia/tratamento farmacológico , Osteomalacia/etiologia , Osteomalacia/metabolismo , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Raquitismo/tratamento farmacológico , Raquitismo/etiologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Vitaminas
8.
Mol Genet Genomic Med ; 12(2): e2387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38337160

RESUMO

BACKGROUND: Disease-related variants in PHEX cause XLH by an increase of fibroblast growth factor 23 (FGF23) circulating levels, resulting in hypophosphatemia and 1,25(OH)2 vitamin D deficiency. XLH manifests in early life with rickets and persists in adulthood with osseous and extraosseous manifestations. Conventional therapy (oral phosphate and calcitriol) improves some symptoms, but evidence show that it is not completely effective, and it can lead to nephrocalcinosis (NC) and hyperparathyroidism (HPT). Burosumab (anti-FGF23 antibody) has shown to be effective and safety in the clinical trials. METHODS: The current real-world collaborative study evaluated genetic, clinical and laboratory data of XLH Brazilian adult patients treated with burosumab. RESULTS: Nineteen unrelated patients were studied. Patients reported pain, limb deformities and claudication, before burosumab initiation. 78% of them were previously treated with conventional therapy. The severity of the disease was moderate to severe (15 patients with score >5). At the baseline, 3 patients presented NC (16.7%) and 12 HPT (63%). After 16 ± 8.4 months under burosumab, we observed a significant: increase in stature (p = 0.02), in serum phosphate from 1.90 ± 0.43 to 2.67 ± 0.52 mg/dL (p = 0.02); in TmP/GFR from 1.30 ± 0.46 to 2.27 ± 0.64 mg/dL (p = 0.0001), in 1,25 (OH)2 D from 50.5 ± 23.3 to 71.1 ± 19.1 pg/mL (p = 0.03), and a decrease in iPTH from 86.8 ± 37.4 pg/mL to 66.5 ± 31.1 (p = 0.002). Nineteen variants were found (10 novel). HPT tended to develop in patients with truncated PHEX variants (p = 0.06). CONCLUSIONS: This study confirms the efficacy and safety of burosumab on XLH adult patients observed in clinical trials. Additionally, we observed a decrease in iPTH levels in patients with moderate to severe HPT at the baseline.


Assuntos
Anticorpos Monoclonais Humanizados , Raquitismo Hipofosfatêmico Familiar , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Anticorpos Monoclonais/uso terapêutico , Brasil , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/uso terapêutico
9.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364990

RESUMO

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Rim/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
10.
Bone ; 182: 117057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412893

RESUMO

Excessive actions of FGF23 cause several kinds of hypophosphatemic rickets/osteomalacia. It is possible that there still remain unknown causes or mechanisms for FGF23-related hypophosphatemic diseases. We report two male cousins who had been suffering form FGF23-related hypophosphatemic osteomalacia. Sequencing of exons and exon-intron junctions of known causative genes for FGF23-related hypophosphatemic diseases and whole genome sequencing were conducted. Luciferase assay was used to evaluate the effect of a detected nucleotide change on mRNA stability. Two cousins showed hypophosphatemia with impaired proximal tubular phosphate reabsorption and high FGF23. Serum phosphate of their mothers was within the reference range. Exome sequencing of the proband detected no mutations. Whole genome sequencing of the patients and their mothers identified a nucleotide change in the 3'-UTR of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene (c.*1280_*1287dupGTGTGTGT) which is heterozygous in the mothers and hemizygous in the patients. While sixteen is the most prevalent number of GT repeats, this family had twenty repeats. Luciferase assay indicated that mRNA with 3'-UTR of PHEX with 20 GT repeats was more unstable than that with 16 repeats. Sequencing of exons and exon-intron junctions of known causative genes for FGF23-related hypophosphatemic diseases cannot identify all the genetic causes. Our results strongly suggest that changes of PHEX expression by a nucleotide change in the 3'-UTR is a novel mechanism of FGF23-related hypophosphatemic osteomalacia.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Osteomalacia , Endopeptidase Neutra Reguladora de Fosfato PHEX , Adulto , Humanos , Masculino , Análise Mutacional de DNA , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipofosfatemia , Luciferases/genética , Nucleotídeos , Osteomalacia/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fosfatos
11.
J Bone Miner Metab ; 42(2): 155-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310177

RESUMO

INTRODUCTION: Fanconi renotubular syndromes (FRTS) are a rare group of inherited phosphaturic disorders with limited Indian as well as global data on this condition. Here, we describe the experience of a single Endocrinology center from Western India on FRTS. MATERIALS AND METHODS: Comprehensive clinical, biochemical, radiological, management, and genetic details of FRTS patients managed between 2010 and 2023 were collected and analyzed. RESULTS: FRTS probands had mutations (eight novel) in six genes [CLCN5 (n = 4), SLC2A2 (n = 2), GATM, EHHADH, HNF4A, and OCRL (1 each)]. Among 15 FRTS patients (11 families), rickets/osteomalacia was the most common (n = 14) presentation with wide inter- and intra-familial phenotypic variability. Delayed diagnosis (median: 8.8 years), initial misdiagnosis (8/11 probands), and syndrome-specific discriminatory features (8/11 probands) were commonly seen. Hypophosphatemia, elevated alkaline phosphatase, normal parathyroid hormone (median: 36 pg/ml), high-normal/elevated 1,25(OH)2D (median: 152 pg/ml), hypercalciuria (median spot urinary calcium to creatinine ratio: 0.32), and variable proximal tubular dysfunction(s) were observed. Elevated C-terminal fibroblast growth factor 23 in two probands was misleading, till the genetic diagnosis was reached. Novel observations in our FRTS cohort were preserved renal function (till sixth decade) and enthesopathy in FRTS1 and FRTS3 families, respectively. CONCLUSION: Our findings underscore frequent under- and misdiagnosis of FRTS; hence, a high index of suspicion for FRTS in phosphopenic rickets/osteomalacia, with early consideration of genetic testing is essential to ensure timely diagnosis of FRTS. The novel variants and phenotypic manifestations described here expand the disease spectrum of FRTS.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Síndrome de Fanconi , Hipofosfatemia Familiar , Osteomalacia , Raquitismo Hipofosfatêmico , Humanos , Osteomalacia/genética , Raquitismo Hipofosfatêmico Familiar/genética , Hipofosfatemia Familiar/genética , Hipofosfatemia Familiar/metabolismo , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo
12.
Eur J Med Genet ; 68: 104912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296036

RESUMO

X-linked hypophosphatemia (XLH) is a rare, multi-systemic, invalidating disease requiring a multi-disciplinary approach. No specific action in XLH, neither for the patients' specific needs nor for the methodology for the evaluation of these were found. Thus, to identify the needs of XLH patients and their caregivers, we organised focus groups in our reference centre with a view to build educational sessions. Focus groups including either XLH children, XLH adults, or caregivers ran in parallel. Each group was led by a person trained in therapeutic education (nurse, paediatric nephrologist) with another healthcare provider specialised in XLH (rheumatologist, nephrologist). One additional person with knowledge of XLH (clinical research associate, paediatric resident) took minutes. The duration of each session was 1.5h; XLH patients/caregivers were asked to answer age-adapted "open questions" on their daily life and quality of life. At the end, a global restitution was made. The needs identified were later grouped and analysed, which allowed us to build the educational sessions. The XLH children group included 5 children, the XLH adults group included 10 adults, and the caregivers group included 6 parents or partners. Major needs were identified: knowledge of XLH, treatment, dental care and adapted physical activity, with additional questions on socio-professional adaptations and financial support in adults. Partner patients were also identified to co-build the support programme. The study allowed us to identify the needs of XLH patients and their caregivers using the focus group method and then, using these needs, to build educational sessions and a therapeutic education programme for XLH patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Adulto , Criança , Humanos , Raquitismo Hipofosfatêmico Familiar/terapia , Grupos Focais , Qualidade de Vida , Cuidadores/educação , Retroalimentação
13.
Calcif Tissue Int ; 114(3): 310-314, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195892

RESUMO

X-linked hypophosphatemic rickets (XLH) is a genetic cause of renal hypophosphatemia due to inactivation of the PHEX gene, with an inappropriate concentration of fibroblast growth factor 23 (FGF23). Burosumab, an anti-FGF23 monoclonal antibody, is a validated treatment for XLH, but its use in patients with chronic kidney disease (CKD) has not been validated. A 61-year-old man with XLH developed CKD during follow-up. Conventional treatment (phosphate salts and active vitamin D analogs) was poorly tolerated. Treatment with burosumab was decided at a multi-professional meeting. Before burosumab initiation, his measured glomerular filtration rate was 44 mL/min/1.73 m2 defining CKD stage 3b and intact FGF23 concentration was very high (4496.0 ng/mL, N: 22.7-93.1) due to both XLH and CKD. Severe hypophosphatemia was observed after the two first injections of burosumab at usual doses (1 mg/kg monthly) and concomitant discontinuation of the conventional treatment. After increasing the dose and reducing the interval between doses (1.3 mg/kg every three weeks) from the third injection, serum phosphate concentration normalized and remained around the lower limit of the normal range. A local cutaneous reaction was observed just after the second injection, but did not recur. We report for the first time the efficacy and good short-term tolerance of burosumab in a patient with XLH and CKD, subject to a higher dosage aimed at achieving a phosphatemia at the lower limit of the normal range.


Assuntos
Anticorpos Monoclonais Humanizados , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Insuficiência Renal Crônica , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos , Hipofosfatemia/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
14.
Calcif Tissue Int ; 114(3): 255-266, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38226986

RESUMO

X-linked hypophosphatemia (XLH) is the most common monogenetic cause of chronic hypophosphatemia, characterized by rickets and osteomalacia. Disease manifestations and treatment of XLH patients in the Netherlands are currently unknown. Characteristics of XLH patients participating in the Dutch observational registry for genetic hypophosphatemia and acquired renal phosphate wasting were analyzed. Eighty XLH patients, including 29 children, were included. Genetic testing, performed in 78.8% of patients, showed a PHEX mutation in 96.8%. Median (range) Z-score for height was - 2.5 (- 5.5; 1.0) in adults and - 1.4 (- 3.7; 1.0) in children. Many patients were overweight or obese: 64.3% of adults and 37.0% of children. All children received XLH-related medication e.g., active vitamin D, phosphate supplementation or burosumab, while 8 adults used no medication. Lower age at start of XLH-related treatment was associated with higher height at inclusion. Hearing loss was reported in 6.9% of children and 31.4% of adults. Knee deformities were observed in 75.0% of all patients and osteoarthritis in 51.0% of adult patients. Nephrocalcinosis was observed in 62.1% of children and 33.3% of adults. Earlier start of XLH-related treatment was associated with higher risk of nephrocalcinosis and detection at younger age. Hyperparathyroidism longer than six months was reported in 37.9% of children and 35.3% of adults. This nationwide study confirms the high prevalence of adiposity, hearing loss, bone deformities, osteoarthritis, nephrocalcinosis and hyperparathyroidism in Dutch XLH patients. Early start of XLH-related treatment appears to be beneficial for longitudinal growth but may increase development of nephrocalcinosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Perda Auditiva , Hiperparatireoidismo , Hipofosfatemia , Nefrocalcinose , Osteoartrite , Criança , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Nefrocalcinose/genética , Nefrocalcinose/complicações , Fatores de Crescimento de Fibroblastos/genética , Hipofosfatemia/epidemiologia , Hipofosfatemia/genética , Fosfatos , Hiperparatireoidismo/complicações , Obesidade/complicações , Perda Auditiva/complicações , Perda Auditiva/tratamento farmacológico
16.
PLoS One ; 19(1): e0295080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241270

RESUMO

The importance of patient centricity and keeping the patient at the heart of research design is now well recognised within the healthcare community. The involvement of patient, caregiver and clinician representatives in the study design process may help researchers to achieve this goal and to ensure robust and meaningful data generation. Real-world data collection allows for a more flexible and patient-centred research approach for gaining important insights into the experience of disease and treatments, which is acutely relevant for rare diseases where knowledge about the disease is more likely to be limited. Here, we describe a practical example of a patient-centric, multi-stakeholder approach that led to the co-design of a prospective observational study investigating the lived experience of adolescents with the rare disease, X-linked hypophosphataemia. Specifically, we describe how the knowledge and expertise of a diverse research team, which included expert physicians, research and technology specialists, patients and caregivers, were applied in order to identify the relevant research questions and to ensure the robustness of the study design and its appropriateness to the population of interest within the context of the current clinical landscape. We also demonstrate how a structured patient engagement exercise was key to informing the selection of appropriate outcome measures, data sources, timing of data collection, and to assessing the feasibility and acceptability of the proposed data collection approach.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Médicos , Humanos , Adolescente , Estudos Prospectivos , Atenção à Saúde , Cuidadores , Estudos Observacionais como Assunto
17.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858479

RESUMO

Hypophosphatemic rickets/osteomalacia caused by FGF23 excess is conventionally treated with multiple doses of inorganic phosphate salts and active vitamin D analogs. However, conventional therapy targets the consequences of elevated FGF23 and not the elevated FGF23 itself and is associated with poor adherence and long-term complications such as nephrocalcinosis and secondary/tertiary hyperparathyroidism. Burosumab is a fully human IgG1 monoclonal antibody that binds to and neutralises FGF-23, thereby leading to improvement in phosphate homeostasis and healing of rickets and osteomalacia. Data from phase 2 and 3 trials report overall safety and efficacy and Burosumab is now FDA approved for treatment of XLH and TIO in children and adults. Cost and absence of long-term data are major issues with Burosumab which should be addressed in near future. At present, experts recommend Burosumab use in patients with severe disease or those with mild-moderate disease and a failed response to a trial of conventional therapy.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Osteomalacia , Adulto , Criança , Humanos , Osteomalacia/induzido quimicamente , Osteomalacia/tratamento farmacológico , Fatores de Crescimento de Fibroblastos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico
18.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044258

RESUMO

Syndromes of inherited fibroblast growth factor 23 (FGF-23) excess encompass a wide spectrum that includes X-linked hypophosphataemia (XLH), autosomal dominant and recessive forms of rickets as well as various syndromic conditions namely fibrous dysplasia/McCune Albright syndrome, osteoglophonic dysplasia, Jansen's chondrodysplasia and cutaneous skeletal hypophosphataemia syndrome. A careful attention to patient symptomatology, family history and clinical features, supported by appropriate laboratory tests will help in making a diagnosis. A genetic screen may be done to confirm the diagnosis. While phosphate supplements and calcitriol continue to be the cornerstone of treatment, in recent times burosumab, the monoclonal antibody against FGF-23 has been approved for the treatment of children and adults with XLH. While health-related outcomes may be improved by ensuring adherence and compliance to prescribed treatment with a smooth transition to adult care, bony deformities may persist in some, and this would warrant surgical correction.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Adulto , Criança , Humanos , Anticorpos Monoclonais/uso terapêutico , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Fosfatos/metabolismo
19.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042745

RESUMO

Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Nefropatias , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/terapia , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Hipercalciúria , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato
20.
FEBS Open Bio ; 14(2): 290-299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050660

RESUMO

Congenital fibroblast growth factor 23 (FGF23)-related hypophosphatemic rickets/osteomalacia is a rare bone metabolism disorder characterized by hypophosphatemia and caused by genetic abnormalities that result in excessive secretion of FGF23. Hyp mice are a model of X-linked hypophosphatemia (XLH) caused by deletion of the PHEX gene and excessive production of FGF23. The purpose of this study was to investigate the potential of TM5614 as a therapeutic agent for the treatment of congenital FGF23-related hypophosphatemic rickets and osteomalacia in humans by administering TM5614 to Hyp mice and examining its curative effect on hypophosphatemia. After a single oral administration of TM5614 10 mg·kg-1 to female Hyp mice starting at 17 weeks of age, the serum phosphate concentration increased with a peak at 6 h after administration. ELISA confirmed that TM5614 administration decreased the intact FGF23 concentration in the blood. Expression of 25-hydroxyvitamin D-1α-hydroxylase protein encoded by Cyp27b1 mRNA in the kidney was suppressed in Hyp mice, and treatment with 10 mg·kg-1 of TM5614 normalized the expression of 25-hydroxyvitamin D-1α-hydroxylase protein and Cyp27b1 mRNA in the kidneys of these mice. Our data indicate that oral administration of TM5614 ameliorates hypophosphatemia in Hyp mice, suggesting that TM5614 may be an effective treatment for congenital FGF23-related hypophosphatemic rickets and osteomalacia.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Camundongos , Feminino , Humanos , Animais , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Osteomalacia/tratamento farmacológico , Osteomalacia/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/uso terapêutico , Hipofosfatemia/tratamento farmacológico , Hipofosfatemia/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...