Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(23): 4055-4074, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35796562

RESUMO

NADK2 encodes the mitochondrial form of nicotinamide adenine dinucleotide (NAD) kinase, which phosphorylates NAD. Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes, such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here, we describe two chemically induced mouse mutations in Nadk2-S326L and S330P-which cause severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on the brain, muscle, liver and spinal cord at the same ages and on plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNA sequencing and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases and describe mouse models that will be useful for future preclinical studies.


Assuntos
Hiperlisinemias , Distrofias Neuroaxonais , Animais , Camundongos , Humanos , NAD/genética , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Mitocondriais/genética , Fosfolipases A2 do Grupo VI/genética
2.
J Neurosci ; 42(13): 2631-2646, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35135854

RESUMO

Mutations in the Aminoadipate-Semialdehyde Synthase (AASS) gene encoding α-aminoadipic semialdehyde synthase lead to hyperlysinemia-I, a benign metabolic variant without clinical significance, and hyperlysinemia-II with developmental delay and intellectual disability. Although both forms of hyperlysinemia display biochemical phenotypes of questionable clinical significance, an association between neurologic disorder and a pronounced biochemical abnormality remains a challenging clinical question. Here, we report that Aass mutant male and female mice carrying the R65Q mutation in α-ketoglutarate reductase (LKR) domain have an elevated cerebral lysine level and a normal brain development, whereas the Aass mutant mice carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain exhibit elevations of both cerebral lysine and saccharopine levels and a smaller brain with defective neuronal development. Mechanistically, the accumulated saccharopine, but not lysine, leads to impaired neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). While extracellular supplementation of GPI restores defective neuronal development caused by G498E mutation in SDH of Aass. Altogether, our findings not only unravel the requirement for saccharopine degradation in neuronal development, but also provide the mechanistic insights for understanding the neurometabolic disorder of hyperlysinemia-II.SIGNIFICANCE STATEMENT The association between neurologic disorder and a pronounced biochemical abnormality in hyperlysinemia remains a challenging clinical question. Here, we report that mice carrying the R65Q mutation in lysine α-ketoglutarate reductase (LKR) domain of aminoadipate-semialdehyde synthase (AASS) have an elevated cerebral lysine levels and a normal brain development, whereas those carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain of AASS exhibit an elevation of both cerebral lysine and saccharopine and a small brain with defective neuronal development. Furthermore, saccharopine impairs neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). These findings demonstrate saccharopine degradation is essential for neuronal development.


Assuntos
Hiperlisinemias , Lisina , Animais , Feminino , Glucose-6-Fosfato Isomerase , Hiperlisinemias/genética , Hiperlisinemias/metabolismo , Lisina/análogos & derivados , Masculino , Camundongos , Sacaropina Desidrogenases/genética , Sacaropina Desidrogenases/metabolismo
3.
J Cell Biol ; 218(2): 580-597, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30573525

RESUMO

Amino acid catabolism is frequently executed in mitochondria; however, it is largely unknown how aberrant amino acid metabolism affects mitochondria. Here we report the requirement for mitochondrial saccharopine degradation in mitochondrial homeostasis and animal development. In Caenorhbditis elegans, mutations in the saccharopine dehydrogenase (SDH) domain of the bi-functional enzyme α-aminoadipic semialdehyde synthase AASS-1 greatly elevate the lysine catabolic intermediate saccharopine, which causes mitochondrial damage by disrupting mitochondrial dynamics, leading to reduced adult animal growth. In mice, failure of mitochondrial saccharopine oxidation causes lethal mitochondrial damage in the liver, leading to postnatal developmental retardation and death. Importantly, genetic inactivation of genes that raise the mitochondrial saccharopine precursors lysine and α-ketoglutarate strongly suppresses SDH mutation-induced saccharopine accumulation and mitochondrial abnormalities in C. elegans Thus, adequate saccharopine catabolism is essential for mitochondrial homeostasis. Our study provides mechanistic and therapeutic insights for understanding and treating hyperlysinemia II (saccharopinuria), an aminoacidopathy with severe developmental defects.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Homeostase , Lisina/análogos & derivados , Mitocôndrias Hepáticas , Sacaropina Desidrogenases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hiperlisinemias/genética , Hiperlisinemias/metabolismo , Lisina/metabolismo , Camundongos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mutação , Sacaropina Desidrogenases/deficiência , Sacaropina Desidrogenases/genética , Sacaropina Desidrogenases/metabolismo
4.
Genetics ; 207(4): 1255-1261, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986444

RESUMO

The fruit fly Drosophila melanogaster has emerged as a powerful model for investigating the molecular mechanisms that regulate animal metabolism. However, a major limitation of these studies is that many metabolic assays are tedious, dedicated to analyzing a single molecule, and rely on indirect measurements. As a result, Drosophila geneticists commonly use candidate gene approaches, which, while important, bias studies toward known metabolic regulators. In an effort to expand the scope of Drosophila metabolic studies, we used the classic mutant lysine (lys) to demonstrate how a modern metabolomics approach can be used to conduct forward genetic studies. Using an inexpensive and well-established gas chromatography-mass spectrometry-based method, we genetically mapped and molecularly characterized lys by using free lysine levels as a phenotypic readout. Our efforts revealed that lys encodes the Drosophila homolog of Lysine Ketoglutarate Reductase/Saccharopine Dehydrogenase, which is required for the enzymatic degradation of lysine. Furthermore, this approach also allowed us to simultaneously survey a large swathe of intermediate metabolism, thus demonstrating that Drosophila lysine catabolism is complex and capable of influencing seemingly unrelated metabolic pathways. Overall, our study highlights how a combination of Drosophila forward genetics and metabolomics can be used for unbiased studies of animal metabolism, and demonstrates that a single enzymatic step is intricately connected to diverse aspects of metabolism.


Assuntos
Hiperlisinemias/genética , Lisina/metabolismo , Metabolômica , Sacaropina Desidrogenases/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hiperlisinemias/metabolismo , Lisina/genética , Sacaropina Desidrogenases/metabolismo
5.
Pediatrics ; 138(5)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27940755

RESUMO

We report the case of a 10-year-old Spanish girl with mutations in NADK2 Prenatal central nervous system abnormalities showed ventriculomegaly, colpocephaly, and hypoplasia of the corpus callosum. At birth, axial hypotonia, uncoordinated movements, microcephaly, and generalized cerebellar atrophy were detected. Metabolic investigations revealed high lysine, lactate, and pipecolic acid levels in blood and cerebrospinal fluid. Pyruvate carboxylase and pyruvate dehydrogenase activity in fibroblasts were normal. Beginning at birth she received biotin, thiamine, and carnitine supplementation. A lysine-restricted diet was started when she was 1 month old. Because pipecolic acid was high, pyridoxine was added to treatment. At 3 years old, astatic myoclonic epilepsy appeared, with no response to levetiracetam. We switched pyridoxine to pyridoxal phosphate, with electroclinical improvement. Because the activity of mitochondrial respiratory chain complexes III and IV was slightly low in muscle, other cofactors such as ubidecarenone, idebenone, vitamin E, and creatine were added to the treatment. At 8 years old, plasma acylcarnitine testing was performed, and high levels of 2-trans, 4-cis-decadienoylcarnitine were found. Whole exome sequencing identified a homozygous splice site mutation in NADK2 (c.956+6T>C; p.Trp319Cysfs*21). This substitution generates exon skipping, leading to a truncated protein. In fact, NADK2 messenger RNA and the corresponding protein were almost absent. Now, at 10 years of age she presents with ataxia and incoordination. She has oromotor dysphasia but is able to understand fluid language and is a very friendly girl. We hypothesize that the patient's clinical improvement could be due to her lysine-restricted diet together with cofactors and pyridoxal phosphate administration.


Assuntos
Dieta , Hiperlisinemias/genética , Lisina/administração & dosagem , Proteínas Mitocondriais/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfato de Piridoxal/uso terapêutico , Complexo Vitamínico B/uso terapêutico , Criança , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Feminino , Homozigoto , Humanos , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Lisina/sangue , Lisina/líquido cefalorraquidiano , Doenças Mitocondriais/genética , Malformações do Sistema Nervoso/genética , Ácidos Pipecólicos/sangue , Ácidos Pipecólicos/líquido cefalorraquidiano , RNA Mensageiro/metabolismo
7.
Hum Mol Genet ; 23(18): 5009-16, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24847004

RESUMO

Dienoyl-CoA reductase (DECR) deficiency with hyperlysinemia is a rare disorder affecting the metabolism of polyunsaturated fatty acids and lysine. The molecular basis of this condition is currently unknown. We describe a new case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy suggestive of a mitochondrial disorder. Exome sequencing revealed a causal mutation in NADK2. NADK2 encodes the mitochondrial NAD kinase, which is crucial for NADP biosynthesis evidenced by decreased mitochondrial NADP(H) levels in patient fibroblasts. DECR and also the first step in lysine degradation are performed by NADP-dependent oxidoreductases explaining their in vivo deficiency. DECR activity was also deficient in lysates of patient fibroblasts and could only be rescued by transfecting patient cells with functional NADK2. Thus NADPH is not only crucial as a cosubstrate, but can also act as a molecular chaperone that activates and stabilizes enzymes. In addition to polyunsaturated fatty acid oxidation and lysine degradation, NADPH also plays a role in various other mitochondrial processes. We found decreased oxygen consumption and increased extracellular acidification in patient fibroblasts, which may explain why the disease course is consistent with clinical criteria for a mitochondrial disorder. We conclude that DECR deficiency with hyperlysinemia is caused by mitochondrial NADP(H) deficiency due to a mutation in NADK2.


Assuntos
Hiperlisinemias/genética , Proteínas Mitocondriais/genética , NADP/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fibroblastos/metabolismo , Humanos , Hiperlisinemias/fisiopatologia , Mutação , Análise de Sequência de DNA , Estresse Fisiológico
8.
Mol Genet Metab ; 110(3): 231-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23890588

RESUMO

Our aim was to report two new cases of hyperlysinemia type I describing the clinical, biochemical and molecular features of the disease and the outcome of lysine restriction. Two children presented with febrile seizures followed by developmental delay, clumsiness and epilepsy. At age 2 and 8 years a biochemical and genetic diagnosis of hyperlysinemia type I was confirmed and lysine-restricted diet was started in both cases. Three years after initiation of lysine restriction, case 1 had not suffered further seizures. In case 2, tremor and dysmetria improved, but fine motor clumsiness persisted. Mild cognitive impairment was present in both patients despite dietary treatment. Laboratory studies: Plasma, urine and cerebrospinal fluid amino acid concentrations were measured by ion exchange chromatography. Mutation analysis of the AASS gene was performed by directly sequencing the PCR products. The plasma lysine values were higher than 1200 µmol/L in both cases. Additionally, an increase in dibasic aminoaciduria was observed. Lysine restriction decreased plasma lysine values and nearly normalised dibasic aminoaciduria. Mutational screening of the AASS gene revealed that case 1 was a compound heterozygote for c.2662 + 1_2662 + 5delGTAAGinsTT and c.874A>G and that case 2 was a compound heterozygote for c.976_977delCA and c.1925C>G. In conclusion, we present two children with hyperlysinemia type I and neurological impairment in which implementation of lysine-restricted diet achieved a mild improvement of symptoms but did not reverse cognitive impairment. The partial decrease of lysine concentrations and the normalisation of urine excretion of dibasic amino acids after lysine restriction further reinforce the possibility of this therapeutic intervention, although further investigations seem necessary.


Assuntos
Hiperlisinemias/dietoterapia , Hiperlisinemias/diagnóstico , Substituição de Aminoácidos , Aminoácidos/sangue , Aminoácidos/urina , Criança , Pré-Escolar , Éxons , Feminino , Ordem dos Genes , Genótipo , Humanos , Hiperlisinemias/genética , Hiperlisinemias/metabolismo , Mutação , Sacaropina Desidrogenases/genética
9.
Orphanet J Rare Dis ; 8: 57, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23570448

RESUMO

BACKGROUND: Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding α-aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. METHODS: We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. RESULTS: We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. CONCLUSIONS: Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient.


Assuntos
Hiperlisinemias/genética , Sequência de Bases , Western Blotting , Linhagem Celular , Estudos de Coortes , Hibridização Genômica Comparativa , Primers do DNA , DNA Complementar/genética , Humanos , Hiperlisinemias/sangue , Hiperlisinemias/fisiopatologia , Mutação , Sacaropina Desidrogenases/genética
10.
Epilepsia ; 54(2): 239-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23350806

RESUMO

PURPOSE: Pyridoxine-dependent epilepsy seizure (PDE; OMIM 266100) is a disorder associated with severe seizures that can be controlled pharmacologically with pyridoxine. In the majority of patients with PDE, the disorder is caused by the deficient activity of the enzyme α-aminoadipic semialdehyde dehydrogenase (antiquitin protein), which is encoded by the ALDH7A1 gene. The aim of this work was the clinical, biochemical, and genetic analysis of 12 unrelated patients, mostly from Spain, in an attempt to provide further valuable data regarding the wide clinical, biochemical, and genetic spectrum of the disease. METHODS: The disease was confirmed based on the presence of α-aminoadipic semialdehyde (α-AASA) in urine measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and pipecolic acid (PA) in plasma and/or cerebrospinal fluid (CSF) measured by high performance liquid chromatography (HPLC)/MS/MS and by sequencing analysis of messenger RNA (mRNA) and genomic DNA of ALDH7A1. KEY FINDINGS: Most of the patients had seizures in the neonatal period, but they responded to vitamin B6 administration. Three patients developed late-onset seizures, and most patients showed mild-to-moderate postnatal developmental delay. All patients had elevated PA and α-AASA levels, even those who had undergone pyridoxine treatment for several years. The clinical spectrum of our patients is not limited to seizures but many of them show associated neurologic dysfunctions such as muscle tone alterations, irritability, and psychomotor retardation. The mutational spectrum of the present patients included 12 mutations, five already reported (c.500A>G, c.919C>T, c.1429G>C c.1217_1218delAT, and c.1482-1G>T) and seven novel sequence changes (c.75C>T, c.319G>T, c.554_555delAA, c.757C>T, c.787 + 1G>T, c.1474T>C, c.1093-?_1620+?). Only one mutation, p.G477R (c.1429G>C), was recurrent; this was detected in four different alleles. Transcriptional profile analysis of one patient's lymphoblasts and ex vivo splicing analysis showed the silent nucleotide change c.75C>T to be a novel splicing mutation creating a new donor splice site inside exon 1. Antisense therapy of the aberrant mRNA splicing in a lymphoblast cell line harboring mutation c.75C>T was successful. SIGNIFICANCE: The present results broaden our knowledge of PDE, provide information regarding the genetic background of PDE in Spain, afford data of use when making molecular-based prenatal diagnosis, and provide a cellular proof-of concept for antisense therapy application.


Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/genética , Terapia Genética/métodos , Oligonucleotídeos Antissenso/uso terapêutico , Deficiência de Vitamina B 6/complicações , Aldeído Desidrogenase/genética , Linhagem Celular , Análise Mutacional de DNA , Epilepsia/etiologia , Éxons/genética , Feminino , Humanos , Hiperlisinemias/urina , Lactente , Recém-Nascido , Linfócitos/efeitos dos fármacos , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Sacaropina Desidrogenases/deficiência , Sacaropina Desidrogenases/urina , Espectrometria de Massas em Tandem
11.
Metab Brain Dis ; 24(2): 349-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19370404

RESUMO

Accumulation of lysine (Lys) in tissues and biochemical fluids is the biochemical hallmark of patients affected by familial hyperlysinemia (FH) and also by other inherited neurometabolic disorders. In the present study, we investigated the in vitro effect of Lys on various parameters of energy metabolism in cerebral cortex of 30-day-old Wistar rats. We verified that total (tCK) and cytosolic creatine kinase activities were significantly inhibited by Lys, in contrast to the mitochondrial isoform which was not affected by this amino acid. Furthermore, the inhibitory effect of Lys on tCK activity was totally prevented by reduced glutathione, suggesting a possible role of reactive species oxidizing critical thiol groups of the enzyme. In contrast, Lys did not affect (14)CO(2) production from [U-(14)C] glucose (aerobic glycolytic pathway) and [1-(14)C] acetic acid (citric acid cycle activity) neither the various activities of the electron transfer chain and synaptic Na(+)K(+)-ATPase at concentrations as high as 5.0 mM. Considering the importance of creatine kinase (CK) activity for brain energy metabolism homeostasis and especially ATP transfer and buffering, our results suggest that inhibition of this enzyme by Lys may contribute to the neurological signs presented by symptomatic patients affected by FH and other neurodegenerative disorders in which Lys accumulates.


Assuntos
Córtex Cerebral/enzimologia , Creatina Quinase/metabolismo , Metabolismo Energético/fisiologia , Hiperlisinemias/enzimologia , Lisina/metabolismo , Análise de Variância , Animais , Modelos Animais de Doenças , Transporte de Elétrons/fisiologia , Glutationa/fisiologia , Isoenzimas , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Arch Dis Child ; 92(8): 687-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17088338

RESUMO

BACKGROUND: Pyridoxine-dependent seizures (PDS) is a rare, autosomal recessively inherited disorder. Recently alpha-aminoadipic semialdehyde (alpha-AASA) dehydrogenase deficiency was identified as a major cause of PDS, which causes accumulation of both alpha-AASA and pipecolic acid (PA) in body fluids. METHODS: We studied urinary and plasma alpha-AASA and PA levels in 12 Dutch clinically diagnosed patients with PDS. RESULTS: Alpha-AASA was elevated in both urine and plasma in 10 patients. In these patients plasma PA levels were also elevated but urinary PA levels were normal. DISCUSSION: In all patients with clinically definite PDS, and in most patients with probable or possible PDS, the clinical diagnosis of PDS could be confirmed at the metabolite level. Non-invasive urinary screening for alpha-AASA accumulation provides a reliable tool to diagnose PDS and can save these patients from the classical and potentially dangerous pyridoxine withdrawal test to prove PDS.


Assuntos
Hiperlisinemias/diagnóstico , Ácidos Pipecólicos , Convulsões/diagnóstico , Aldeído Desidrogenase/sangue , Aldeído Desidrogenase/urina , Biomarcadores/sangue , Biomarcadores/urina , Feminino , Humanos , Países Baixos , Ácidos Pipecólicos/sangue , Ácidos Pipecólicos/urina , Piridoxina/uso terapêutico , Convulsões/sangue , Convulsões/urina , Complexo Vitamínico B/uso terapêutico
13.
South Med J ; 98(2): 253-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15759964

RESUMO

The authors describe a case of fatal hypermagnesemia caused by an Epsom salt enema. A 7-year-old male presented with cardiac arrest and was found to have a serum magnesium level of 41.2 mg/dL (33.9 mEq/L) after having received an Epsom salt enema earlier that day. The medical history of Epsom salt, the common causes and symptoms of hypermagnesemia, and the treatment of hypermagnesemia are reviewed. The easy availability of magnesium, the subtle initial symptoms of hypermagnesemia, and the need for education about the toxicity of magnesium should be of interest to physicians.


Assuntos
Hiperlisinemias/etiologia , Sulfato de Magnésio/efeitos adversos , Dor Abdominal/terapia , Criança , Enema/efeitos adversos , Evolução Fatal , Parada Cardíaca/terapia , Humanos , Magnésio/sangue , Sulfato de Magnésio/uso terapêutico , Masculino
14.
Am J Hum Genet ; 66(6): 1736-43, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10775527

RESUMO

The first two steps in the mammalian lysine-degradation pathway are catalyzed by lysine-ketoglutarate reductase and saccharopine dehydrogenase, respectively, resulting in the conversion of lysine to alpha-aminoadipic semialdehyde. Defects in one or both of these activities result in familial hyperlysinemia, an autosomal recessive condition characterized by hyperlysinemia, lysinuria, and variable saccharopinuria. In yeast, lysine-ketoglutarate reductase and saccharopine dehydrogenase are encoded by the LYS1 and LYS9 genes, respectively, and we searched the available sequence databases for their human homologues. We identified a single cDNA that encoded an apparently bifunctional protein, with the N-terminal half similar to that of yeast LYS1 and with the C-terminal half similar to that of yeast LYS9. This bifunctional protein has previously been referred to as "alpha-aminoadipic semialdehyde synthase," and we have tentatively designated this gene "AASS." The AASS cDNA contains an open reading frame of 2,781 bp predicted to encode a 927-amino-acid-long protein. The gene has been sequenced and contains 24 exons scattered over 68 kb and maps to chromosome 7q31.3. Northern blot analysis revealed the presence of several transcripts in all tissues examined, with the highest expression occurring in the liver. We sequenced the genomic DNA from a single patient with hyperlysinemia (JJa). The patient is the product of a consanguineous mating and is homozygous for an out-of-frame 9-bp deletion in exon 15, which results in a premature stop codon at position 534 of the protein. On the basis of these and other results, we propose that AASS catalyzes the first two steps of the major lysine-degradation pathway in human cells and that inactivating mutations in the AASS gene are a cause of hyperlysinemia.


Assuntos
Hiperlisinemias/enzimologia , Hiperlisinemias/genética , Complexos Multienzimáticos/genética , Mutação/genética , Sacaropina Desidrogenases/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos Par 7/genética , Clonagem Molecular , Consanguinidade , Análise Mutacional de DNA , Éxons/genética , Feminino , Perfilação da Expressão Gênica , Genes Recessivos/genética , Homozigoto , Humanos , Hibridização in Situ Fluorescente , Lisina/metabolismo , Masculino , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mapeamento Físico do Cromossomo , Sítios de Splice de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Sacaropina Desidrogenases/química , Sacaropina Desidrogenases/metabolismo , Alinhamento de Sequência , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...