Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
1.
Neurology ; 102(1): e207898, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165373

RESUMO

BACKGROUND AND OBJECTIVES: GM2 gangliosidoses, a group of autosomal-recessive neurodegenerative lysosomal storage disorders, result from ß-hexosaminidase (HEX) deficiency with GM2 ganglioside as its main substrate. Historically, GM2 gangliosidoses have been classified into infantile, juvenile, and late-onset forms. With disease-modifying treatment trials now on the horizon, a more fine-grained understanding of the disease course is needed. METHODS: We aimed to map and stratify the clinical course of GM2 gangliosidoses in a multicenter cohort of pediatric and adult patients. Patients were stratified according to age at onset and age at diagnosis. The 2 resulting GM2 disease clusters were characterized in-depth for respective disease features (detailed standardized clinical, laboratory, and MRI assessments) and disease evolution. RESULTS: In 21 patients with GM2 gangliosidosis (17 Tay-Sachs, 2 GM2 activator deficiency, 2 Sandhoff disease), 2 disease clusters were discriminated: an early-onset and early diagnosis cluster (type I; n = 8, including activator deficiency and Sandhoff disease) and a cluster with very variable onset and long interval until diagnosis (type II; n = 13 patients). In type I, rapid onset of developmental stagnation and regression, spasticity, and seizures dominated the clinical picture. Cherry red spot, startle reactions, and elevated AST were only seen in this cluster. In type II, problems with balance or gait, muscle weakness, dysarthria, and psychiatric symptoms were specific and frequent symptoms. Ocular signs were common, including supranuclear vertical gaze palsy in 30%. MRI involvement of basal ganglia and peritrigonal hyperintensity was seen only in type I, whereas predominant infratentorial atrophy (or normal MRI) was characteristic in type II. These types were, at least in part, associated with certain genetic variants. DISCUSSION: Age at onset alone seems not sufficient to adequately predict different disease courses in GM2 gangliosidosis, as required for upcoming trial planning. We propose an alternative classification based on age at disease onset and dynamics, predicted by clinical features and biomarkers, into type I-an early-onset, rapid progression cluster-and type II-a variable onset, slow progression cluster. Specific diagnostic workup, including GM2 gangliosidosis, should be performed in patients with combined ataxia plus lower motor neuron weakness to identify type II patients.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Adulto , Humanos , Criança , Doença de Sandhoff/diagnóstico por imagem , Doença de Sandhoff/genética , Gangliosidoses GM2/diagnóstico por imagem , Gangliosidoses GM2/genética , Diagnóstico por Imagem , Ataxia , Progressão da Doença
2.
Ann Neurol ; 94(5): 969-986, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526361

RESUMO

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Criança , Animais , Gatos , Humanos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Sandhoff/veterinária , Insuficiência de Múltiplos Órgãos/terapia , Vetores Genéticos , Sistema Nervoso Central/patologia , Terapia Genética
3.
BMC Neurol ; 23(1): 240, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344817

RESUMO

BACKGROUND: Sandhoff disease (SD) is a rare neurological disease with high clinical heterogeneity. SD in juvenile form is much rarer and it is often misdiagnosed in clinics. Therein, it is necessary to provide more cases and review the literature on juvenile onset SD. CASE PRESENTATION: A 14 years-old boy with eight years of walking difficulties, and was ever misdiagnosed as spinocerebellar ataxia. We found this patient after genetic testing carried rs201580118 and a novel gross deletion in HEXB (g.74012742_74052694del). Through review the literature, we found that was the first gross deletion identified at the 3'end of HEXB, associated with juvenile onset SD from China. CONCLUSION: This case expanded our knowledge about the genotype and phenotype correlations in SD. Comprehensive genetic testing is important for the diagnosis of unexplained ataxia.


Assuntos
Doença de Sandhoff , Humanos , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Cadeia beta da beta-Hexosaminidase/genética , Testes Genéticos , Genótipo , Fenótipo , Mutação
4.
Medicine (Baltimore) ; 102(24): e33890, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327298

RESUMO

BACKGROUND: Sandhoff disease (SD, Online Mendelian Inheritance in Man: 268800) is an autosomal recessive lysosomal storage disorder caused by variants of the ß-hexosaminidase B (HEXB) gene (Online Mendelian Inheritance in Man: 606873). The HEXB gene has been mapped to chromosome 5q13 and contains 14 exons. The symptoms of SD include progressive weakness, intellectual disability, visual and hearing impairment, exaggerated startle response, and seizures; the patients usually die before the age of 3 years.[1]. CASE SUMMARY: We present a case of SD caused by a homozygous frameshift mutation in the HEXB gene, c.118delG (p.A40fs*24). The male child, aged 2 years 7 months, showed movement retrogression with orbital hypertelorism at age 2 years, accompanied by seizures. Magnetic resonance imaging of the head showed cerebral atrophy and delayed myelination of the white matter of the brain. CONCLUSION: A novel homozygous frameshift c.118delG (p.A40fs*24) variant of HEXB has caused SD in the child. The major symptoms are intellectual disability, visual and hearing impairment, and seizures. Investigation will be continued in the future to comprehensively describe the genotype/phenotype and gain information on other associated features to understand the variable expressivity of this condition.


Assuntos
Deficiência Intelectual , Doença de Sandhoff , Humanos , Masculino , Cadeia beta da beta-Hexosaminidase/genética , beta-N-Acetil-Hexosaminidases/genética , Mutação da Fase de Leitura , Hexosaminidase B/genética , Mutação , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Convulsões , Pré-Escolar
5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108372

RESUMO

The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Atrofia , Gangliosidoses GM2/metabolismo , Neuritos/metabolismo , Doença de Sandhoff/terapia , Ácido Ursodesoxicólico/farmacologia , eIF-2 Quinase/metabolismo
6.
Yakugaku Zasshi ; 143(1): 65-75, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-36596541

RESUMO

Sandhoff disease (SD) is a glycosphingolipid storage disease resulting from a genetic mutation in HEXB and associated deficiency in ß-hexosaminidase activity. This defect causes abnormal accumulation of ganglioside GM2 and related glycolipids in lysosomes, resulting in progressive deterioration of the central nervous system. Hexb-knockout (Hexb-/-) mice, an established animal model, show abnormalities similar to the severe phenotype seen in human infants. We used iPS cells derived from this mouse model (SD-iPSCs) to examine abnormal neuronal lineage differentiation and development in vitro during the asymptomatic phase of SD. Differentiation ability along the time axis appears to be altered in SD-iPSCs in which the differentiation ability of neural stem cells is promoted and differentiation into neurons is completed earlier, while the timing of differentiation into astrocytes is accelerated. This abnormal differentiation was suppressed by introducing the Hexb gene. These results indicate that the abnormal differentiation of SD-iPSCs into the nervous system reflects the pathogenesis of SD. Analysis using Hexb-/- mice revealed that activated microglia causes astrogliosis at the early stage of development that can be ameliorated via immunosuppression. Furthermore, reactive astrocytes in the cortex of Hexb-/- mice express adenosine A2A receptors in the late inflammatory phase. Inhibition of this receptor resulted in a decrease in activated microglial cells and inflammatory cytokines/chemokines. These results suggest that the astrocyte A2A receptor is important as a sensor that regulates microglial activation in the late inflammatory phase. Thus, our results provide new insights into the complex pathogenesis of SD.


Assuntos
Células-Tronco Neurais , Doença de Sandhoff , Humanos , Camundongos , Animais , Doença de Sandhoff/genética , Doença de Sandhoff/patologia , Camundongos Knockout , Neurônios/patologia , Astrócitos/patologia , Modelos Animais de Doenças
7.
Mol Genet Metab ; 138(2): 106983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709536

RESUMO

GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of GM2 ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal ß-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of ß-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP. We developed a rapid, specific and sensitive liquid chromatography-mass spectrometry-based method to measure simultaneously GM1, GM2, GM3 and GD3 molecular species. Gangliosides were analysed in plasma from 19 patients with GM2-Gangliosidosis: Tay-Sachs (n = 9), Sandhoff (n = 9) and AB variant of GM2-Gangliosidosis (n = 1) and compared to 20 age-matched controls. Among patients, 12 have a late adult-juvenile-onset and 7 have an infantile early-onset of the disease. Plasma GM2 molecular species were increased in all GM2-Gangliosidosis patients (19/19), including the patient with GM2A mutation, compared to control individuals and compared to patients with different other lysosomal storage diseases. GM234:1 and GM234:1/GM334:1 ratio discriminated patients from controls with 100% sensitivity and specificity. GM234:1 and GM234:1/GM334:1 were higher in patients with early-onset compared to those with late-onset of the disease, suggesting a relationship with severity. Longitudinal analysis in one adult with Tay-Sachs disease over 9 years showed a positive correlation of GM234:1 and GM234:1/GM334:1 ratio with age at sampling. We propose that plasma GM2 34:1 and its ratio to GM3 34:1 could be sensitive and specific biochemical diagnostic biomarkers for GM2-Gangliosidosis including AB variant and could be useful as a first line diagnostic test and potential biomarkers for monitoring upcoming therapeutic efficacy.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Doença de Tay-Sachs , Adulto , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/diagnóstico , Gangliosidoses GM2/genética , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Hexosaminidase A , Biomarcadores , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Doença de Sandhoff/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
8.
Neurology ; 100(10): e1072-e1083, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36456200

RESUMO

BACKGROUND AND OBJECTIVES: GM2 gangliosidoses (Tay-Sachs and Sandhoff diseases) are rare, autosomal recessive, neurodegenerative diseases with no available symptomatic or disease-modifying treatments. This clinical trial investigated N-acetyl-l-leucine (NALL), an orally administered, modified amino acid in pediatric (≥6 years) and adult patients with GM2 gangliosidoses. METHODS: In this phase IIb, multinational, open-label, rater-blinded study (IB1001-202), male and female patients aged ≥6 years with a genetically confirmed diagnosis of GM2 gangliosidoses received orally administered NALL for a 6-week treatment period (4 g/d in patients ≥13 years, weight-tiered doses for patients 6-12 years), followed by a 6-week posttreatment washout period. For the primary Clinical Impression of Change in Severity analysis, patient performance on a predetermined primary anchor test (the 8-Meter Walk Test or the 9-Hole Peg Test) at baseline, after 6 weeks on NALL, and again after a 6-week washout period was videoed and evaluated centrally by blinded raters. Secondary outcomes included assessments of ataxia, clinical global impression, and quality of life. RESULTS: Thirty patients between the age of 6 and 55 years were enrolled. Twenty-nine had an on-treatment assessment and were included in the primary modified intention-to-treat analysis. The study met its CI-CS primary end point (mean difference 0.71, SD = 2.09, 90% CI 0.00, 1.50, p = 0.039), as well as secondary measures of ataxia and global impression. NALL was safe and well tolerated, with no serious adverse reactions. DISCUSSION: Treatment with NALL was associated with statistically significant and clinically relevant changes in functioning and quality of life in patients with GM2 gangliosidosis. NALL was safe and well tolerated, contributing to an overall favorable risk:benefit profile. NALL is a promising, easily administered (oral) therapeutic option for these rare, debilitating diseases with immense unmet medical needs. TRIAL REGISTRATION INFORMATION: The trial is registered with ClinicalTrials.gov (NCT03759665; registered on November 30, 2018), EudraCT (2018-004406-25), and DRKS (DRKS00017539). The first patient was enrolled on June 7, 2019. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that NALL improves outcomes for patients with GM2 gangliosidoses.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Ataxia , Gangliosidoses GM2/diagnóstico , Qualidade de Vida , Doença de Sandhoff/metabolismo , Doença de Sandhoff/terapia
9.
Genes (Basel) ; 13(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36360256

RESUMO

Sandhoff disease (SD) is a fatal neurodegenerative disorder belonging to the family of diseases called GM2 Gangliosidosis. There is no curative treatment of SD. The molecular pathogenesis of SD is still unclear though it is clear that the pathology initiates with the build-up of ganglioside followed by microglial activation, inflammation, demyelination and apoptosis, leading to massive neuronal loss. In this article, we explored the expression profile of selected immune and myelination associated transcripts (Wfdc17, Ccl3, Lyz2, Fa2h, Mog and Ugt8a) at 5-, 10- and 16-weeks, representing young, pre-symptomatic and late stages of the SD mice. We found that immune system related genes (Wfdc17, Ccl3, Lyz2) are significantly upregulated by several fold at all ages in Hexb-KO mice relative to Hexb-het mice, while the difference in the expression levels of myelination related genes is not statistically significant. There is an age-dependent significant increase in expression of microglial/pro-inflammatory genes, from 5-weeks to the near humane end-point, i.e., 16-week time point; while the expression of those genes involved in myelination decreases slightly or remains unchanged. Future studies warrant use of new high-throughput gene expression modalities (such as 10X genomics) to delineate the underlying pathogenesis in SD by detecting gene expression changes in specific neuronal cell types and thus, paving the way for rational and precise therapeutic modalities.


Assuntos
Doença de Sandhoff , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Modelos Animais de Doenças , Doença de Sandhoff/genética , Doença de Sandhoff/metabolismo , Doença de Sandhoff/patologia , Microglia/metabolismo , Encéfalo/metabolismo
10.
Metab Brain Dis ; 37(8): 2669-2675, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190588

RESUMO

Sandhoff disease is a rare neurodegenerative and autosomal recessive disorder, which is characterized by a defect in ganglioside metabolism. Also, it is caused by mutations in the HEXB gene for the ß-subunit isoform 1 of ß-N-acetyl hexosaminidase. In the present study, an Iranian 14- month -old girl with 8- month history of unsteady walking and involuntary movements was described. In this regard, biochemical testing showed some defects in the normal activity of beta-hexosaminidase protein. Following sequencing of HEXB gene, a homozygous c.833C > T mutation was identified in the patient's genome. After recognition of p.A278V, several different in silico methods were used to assess the mutant protein stability, ranging from mutation prediction methods to ligand docking. The p.A278V mutation might be disruptive because of changing the three-dimensional folding at the end of the 5th alpha helix. According to the medical prognosis, in silico and structural analyses, it was predicted to be disease cause.


Assuntos
Doença de Sandhoff , Feminino , Humanos , Doença de Sandhoff/genética , Doença de Sandhoff/metabolismo , Irã (Geográfico) , Mutação , Homozigoto , Cadeia beta da beta-Hexosaminidase/genética
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1124-1128, 2022 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-36184097

RESUMO

OBJECTIVE: To explore the genetic basis for a girl featuring epilepsy, developmental delay and regression. METHODS: Clinical data of the patient was collected. Activities of hexosaminidase A (Hex A) and hexosaminidase A&B (Hex A&B) in blood leukocytes were determined by using a fluorometric assay. Peripheral blood samples were collected from the proband and six members from her pedigree. Following extraction of genomic DNA, whole exome sequencing was carried out. Candidate variants were verified by Sanger sequencing. RESULTS: Enzymatic studies of the proband have shown reduced plasma Hex A and Hex A&B activities. Genetic testing revealed that she has carried c.1260_1263del and c.1601G>C heterozygous compound variants of the HEXB gene. Her mother, brother and sister were heterozygous carriers of c.1260_1263del, while her father, mother, three brothers and sister did not carry the c.1601G>C variant, suggesting that it has a de novo origin. Increased eosinophils were discovered upon cytological examination of peripheral blood and bone marrow samples. CONCLUSION: The compound heterozygous variants of c.1260_1263del and c.1601G>C of the HEXB gene probably underlay the Sandhoff disease in this child. Eosinophilia may be noted in infantile Sandhoff disease.


Assuntos
Eosinofilia , Doença de Sandhoff , Criança , Eosinofilia/genética , Feminino , Testes Genéticos , Hexosaminidase A/genética , Hexosaminidase B/genética , Humanos , Masculino , Mutação , Linhagem , Doença de Sandhoff/genética
12.
J Med Case Rep ; 16(1): 317, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36002893

RESUMO

BACKGROUND: Infantile Sandhoff disease is a rare inherited disorder that progressively destroys nerve cells in the brain and spinal cord, and is classified under lysosomal storage disorder. It is an autosomal recessive disorder of sphingolipid metabolism that results from deficiency of the lysosomal enzymes ß-hexosaminidase A and B. The resultant accumulation of GM2 ganglioside within both gray matter nuclei and myelin sheaths of the white matter results in eventual severe neuronal dysfunction and neurodegeneration. CASE PRESENTATION: We evaluated a 3.5-year-old Comorian girl from the United Arab Emirates who presented with repeated chest infections with heart failure due to ventricular septal defect, neuroregression, recurrent seizures, and cherry-red spots over macula. She had macrocephaly, axial hypotonia, hyperacusis, and gastroesophageal reflux. Organomegaly was absent. Brain magnetic resonance imaging, metabolic tests, and genetic mutations confirmed the diagnosis. Despite multidisciplinary therapy, the girl succumbed to her illness. CONCLUSION: Though early cardiac involvement can be seen with novel mutations, it is extremely rare to find association of ventricular septal defect in infantile Sandhoff disease. Neuroregression typically starts around 6 months of age. We report this case because of the unusual association of a congenital heart disease with underlying infantile Sandhoff disease and symptomatic heart failure in the first month of life with eventual fatal outcome.


Assuntos
Insuficiência Cardíaca , Comunicação Interventricular , Doença de Sandhoff , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Mutação , Doença de Sandhoff/complicações , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética
13.
Curr Gene Ther ; 22(3): 262-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34530708

RESUMO

BACKGROUND: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of ß-hexosaminidase A enzyme (Hex A), an α/ß-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEX M, has previously been shown to form a stable homodimer, Hex M, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Hexosaminidases , Humanos , Camundongos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Distribuição Tecidual , beta-N-Acetil-Hexosaminidases/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33650927

RESUMO

Sandhoff disease is an infrequent, genetically caused disorder with a recessive autosomal inheritance pattern. It belongs to the gangliosidosis GM2 group and is produced by mutations in gen HEXB leading to reduction in enzymatic activity of enzymes ß-hexosaminidase A and B. Adult-onset GM2 gangliosidosis is rare. Here we report a white male who presented at age 69 with a fast-progression, motor neuron disease, mimicking amyotrophic lateral sclerosis (ALS), combined with autonomic dysfunction, sensory ataxia, and exaggerated startle to noise. Enzymatic assays demonstrated deficiency of both Hexosaminidases A and B leading to the diagnosis of Sandhoff disease.


Assuntos
Esclerose Amiotrófica Lateral , Doença dos Neurônios Motores , Doença de Sandhoff , Adulto , Idoso , Hexosaminidase A/genética , Humanos , Masculino , Mutação , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética
15.
Ideggyogy Sz ; 74(11-12): 425-429, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856081

RESUMO

BACKGROUND AND PURPOSE: Sandhoff disease is a rare type of hereditary (autosomal recessive) GM2-gangliosidosis, which is caused by mutation of the HEXB gene. Disruption of the ß subunit of the hexosaminidase (Hex) enzyme affects the function of both the Hex-A and Hex-B isoforms. The severity and the age of onset of the disease (infantile or classic; juvenile; adult) depends on the residual activity of the enzyme. The late-onset form is characterized by diverse symptomatology, comprising motor neuron disease, ataxia, tremor, dystonia, psychiatric symptoms and neuropathy. METHODS: A 36-year-old female patient has been presenting progressive, symmetrical lower limb weakness for 9 years. Detailed neurological examination revealed mild symmetrical weakness in the hip flexors without the involvement of other muscle groups. The patellar reflex was decreased on both sides. Laboratory tests showed no relevant alteration and routine electroencephalography and brain MRI were normal. Nerve conduction studies and electromyography revealed alterations corresponding to sensory neuropathy. Muscle biopsy demonstrated signs of mild neurogenic lesion. Her younger brother (32-year-old) was observed with similar symptoms. RESULTS: Detailed genetic study detected a known pathogenic missense mutation and a 15,088 base pair long known pathogenic deletion in the HEXB gene (NM_000521.4:c.1417G>A; NM_000521:c.-376-5836_669+1473del; double heterozygous state). Segregation analysis and hexosaminidase enzyme assay of the family further confirmed the diagnosis of late-onset Sandhoff disease. CONCLUSION: The purpose of this case report is to draw attention to the significance of late-onset Sandhoff disease amongst disorders presenting with proximal predominant symmetric lower limb muscle weakness in adulthood.


Assuntos
Doença dos Neurônios Motores , Doença de Sandhoff , Adulto , Feminino , Hexosaminidase A/genética , Hexosaminidase B/genética , Humanos , Masculino , Mutação , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética
16.
Cells ; 10(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34831346

RESUMO

AIMS: Tay-Sachs and Sandhoff diseases (GM2 gangliosidosis) are autosomal recessive disorders of lysosomal function that cause progressive neurodegeneration in infants and young children. Impaired hydrolysis catalysed by ß-hexosaminidase A (HexA) leads to the accumulation of GM2 ganglioside in neuronal lysosomes. Despite the storage phenotype, the role of autophagy and its regulation by mTOR has yet to be explored in the neuropathogenesis. Accordingly, we investigated the effects on autophagy and lysosomal integrity using skin fibroblasts obtained from patients with Tay-Sachs and Sandhoff diseases. RESULTS: Pathological autophagosomes with impaired autophagic flux, an abnormality confirmed by electron microscopy and biochemical studies revealing the accelerated release of mature cathepsins and HexA into the cytosol, indicating increased lysosomal permeability. GM2 fibroblasts showed diminished mTOR signalling with reduced basal mTOR activity. Accordingly, provision of a positive nutrient signal by L-arginine supplementation partially restored mTOR activity and ameliorated the cytopathological abnormalities. INNOVATION: Our data provide a novel molecular mechanism underlying GM2 gangliosidosis. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for these diseases. CONCLUSIONS: We contend that the expression of autophagy/lysosome/mTOR-associated molecules may prove useful peripheral biomarkers for facile monitoring of treatment of GM2 gangliosidosis and neurodegenerative disorders that affect the lysosomal function and disrupt autophagy.


Assuntos
Arginina/farmacologia , Autofagia , Gangliosidoses GM2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Catepsinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Hexosaminidase A/química , Hexosaminidase A/metabolismo , Hexosaminidase B/química , Hexosaminidase B/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mutação/genética , Permeabilidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Sandhoff/patologia , Transdução de Sinais/efeitos dos fármacos , Doença de Tay-Sachs/patologia , Transcriptoma/genética
17.
Mol Genet Metab ; 133(4): 386-396, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34226107

RESUMO

OBJECTIVE: Our study aimed to quantify structural changes in relation to metabolic abnormalities in the cerebellum, thalamus, and parietal cortex of patients with late-onset GM2-gangliosidosis (LOGG), which encompasses late-onset Tay-Sachs disease (LOTS) and Sandhoff disease (LOSD). METHODS: We enrolled 10 patients with LOGG (7 LOTS, 3 LOSD) who underwent a neurological assessment battery and 7 age-matched controls. Structural MRI and MRS were performed on a 3 T scanner. Structural volumes were obtained from FreeSurfer and normalized by total intracranial volume. Quantified metabolites included N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), and combined glutamate-glutamine (Glx). Metabolic concentrations were corrected for partial volume effects. RESULTS: Structural analyses revealed significant cerebellar atrophy in the LOGG cohort, which was primarily driven by LOTS patients. NAA was lower and mI higher in LOGG, but this was also significantly driven by the LOTS patients. Clinical ataxia deficits (via the Scale for the Assessment and Rating of Ataxia) were associated with neuronal injury (via NAA), neuroinflammation (via mI), and volumetric atrophy in the cerebellum. INTERPRETATION: The decrease of NAA in the cerebellum suggests that, in addition to cerebellar atrophy, there is ongoing impaired neuronal function and/or loss, while an increase in mI indicates possible neuroinflammation in LOGG (more so within the LOTS subvariant). Quantifying cerebellar atrophy in relation to neurometabolic differences in LOGG may lead to improvements in assessing disease severity, progression, and pharmacological efficacy. Lastly, additional neuroimaging studies in LOGG are required to contrast LOTS and LOSD more accurately.


Assuntos
Gangliosidoses GM2/diagnóstico por imagem , Gangliosidoses GM2/fisiopatologia , Transtornos de Início Tardio/diagnóstico por imagem , Transtornos de Início Tardio/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Análise Espectral/métodos , Adulto , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Doença de Sandhoff/diagnóstico por imagem , Doença de Sandhoff/fisiopatologia , Doença de Tay-Sachs/diagnóstico por imagem , Doença de Tay-Sachs/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
18.
Brain Dev ; 43(10): 1029-1032, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34217565

RESUMO

BACKGROUND: The clinical severity of Sandhoff disease is known to vary widely. Furthermore, long-term follow-up report is very limited in the literature. CASE PRESENTATION: We present a long-term follow-up report of a patient with juvenile-onset Sandhoff disease with a motor neuron disease phenotype. The patient had compound heterozygous variants of HEXB (p.Trp460Arg, p. Arg533His); the Trp460Arg was a novel variant. Long-term follow-up revealed no intellectual deterioration, swallowing dysfunction, or respiratory muscle dysfunction despite progressive weakness of the extremities and sensory disturbances. CONCLUSION: We need to be aware of Sandhoff disease in patients with juvenile-onset motor neuron disease.


Assuntos
Doença dos Neurônios Motores/etiologia , Doença de Sandhoff/genética , Adulto , Idade de Início , Seguimentos , Humanos , Fenótipo , Doença de Sandhoff/complicações
19.
Neuromuscul Disord ; 31(8): 769-772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34210542

RESUMO

Defects in the HEXB gene which encodes the ß-subunit of ß-hexosaminidase A and B enzymes, cause a GM2 gangliosidosis, also known as Sandhoff disease, which is a rare lysosomal storage disorder. The most common form of the disease lead to quickly progressing mental and motor decline in infancy; however there are other less severe forms with later onset that can also involve lower motor neurons. The diagnosis of this disease is based on low serum ß-hexosaminidases A and B levels and confirmed using genetic test. We report two siblings with compound heterozygous HEXB mutations whose phenotype was extremely mild consisting in stuttering in both cases associated to mild proximal weakness in one of the cases, broadening the clinical spectrum of late onset Sandhoff disease.


Assuntos
Doença dos Neurônios Motores/complicações , Doença de Sandhoff/diagnóstico , Gagueira/complicações , Adulto , Feminino , Hexosaminidase A , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo
20.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201771

RESUMO

GM2 gangliosidosis disorders are a group of neurodegenerative diseases that result from a functional deficiency of the enzyme ß-hexosaminidase A (HexA). HexA consists of an α- and ß-subunit; a deficiency in either subunit results in Tay-Sachs Disease (TSD) or Sandhoff Disease (SD), respectively. Viral vector gene transfer is viewed as a potential method of treating these diseases. A recently constructed isoenzyme to HexA, called HexM, has the ability to effectively catabolize GM2 gangliosides in vivo. Previous gene transfer studies have revealed that the scAAV9-HEXM treatment can improve survival in the murine SD model. However, it is speculated that this treatment could elicit an immune response to the carrier capsid and "non-self"-expressed transgene. This study was designed to assess the immunocompetence of TSD and SD mice, and test the immune response to the scAAV9-HEXM gene transfer. HexM vector-treated mice developed a significant anti-HexM T cell response and antibody response. This study confirms that TSD and SD mouse models are immunocompetent, and that gene transfer expression can create an immune response in these mice. These mouse models could be utilized for investigating methods of mitigating immune responses to gene transfer-expressed "non-self" proteins, and potentially improve treatment efficacy.


Assuntos
Dependovirus/genética , Gangliosídeo G(M2)/metabolismo , Vetores Genéticos/administração & dosagem , Imunidade/imunologia , Doença de Sandhoff/imunologia , Doença de Tay-Sachs/imunologia , Cadeia alfa da beta-Hexosaminidase/genética , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...