Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Mol Genet Genomic Med ; 12(1): e2283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688338

RESUMO

BACKGROUND: Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial neurometabolic disorder of energy deficit, with incidence of about 1 in 42,000 live births annually in the USA. The median and mean ages of diagnosis of PDCD are about 12 and 31 months, respectively. PDCD is a major cause of primary lactic acidosis with concomitant elevation in blood alanine (Ala) and proline (Pro) concentrations depending on phenotypic severity. Alanine/Leucine (Ala/Leu) ≥4.0 and Proline/Leucine (Pro/Leu) ≥3.0 combination cutoff from dried blood spot specimens was used as a biomarker for early identification of neonates/infants with PDCD. Further investigations were needed to evaluate the sensitivity (SN), specificity (SP), and clinical utility of such amino acid (AA) ratio combination cutoffs in discriminating PDCD from other inborn errors of metabolism (IEM) for early identification of such patients. METHODS: We reviewed medical records of patients seen at UPMC in the past 11 years with molecularly or enzymatically confirmed diagnosis. We collected plasma AA analysis data from samples prior to initiation of therapeutic interventions such as total parenteral nutrition and/or ketogenic diet. Conditions evaluated included organic acidemias, primary mitochondrial disorders (MtDs), fatty acid oxidation disorders (FAOD), other IEMs on current newborn screening panels, congenital cardiac great vessel anomalies, renal tubular acidosis, and non-IEMs. The utility of specific AA ratio combinations as biomarkers were evaluated using receiver operating characteristic curves, correlation analysis, principal component analysis, and cutoff SN, SP, and positive predictive value determined from 201 subjects with broad age range. RESULTS: Alanine/Lysine (Ala/Lys) and Ala/Leu as well as (Ala + Pro)/(Leu + Lys) and Ala/Leu ratio combinations effectively discriminated subjects with PDCD from those with other MtDs and IEMs on current newborn screening panels. Specific AA ratio combinations were significantly more sensitive in identifying PDCD than Ala alone or combinations of Ala and/or Pro in the evaluated cohort of subjects. Ala/Lys ≥3.0 and Ala/Leu ≥5.0 as well as (Ala + Pro)/(Leu + Lys) ≥2.5 and Ala/Leu ≥5.0 combination cutoffs identified patients with PDCD with 100% SN and ~85% SP. CONCLUSIONS: With the best predictor of survival and positive cognitive outcome in PDCD being age of diagnosis, PDCD patients would benefit from use of such highly SN and SP AA ratio combination cutoffs as biomarkers for early identification of at-risk newborns, infants, and children, for early intervention(s) with known and/or novel therapeutics for this disorder.


Assuntos
Erros Inatos do Metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Aminoácidos , Leucina , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Erros Inatos do Metabolismo/diagnóstico , Alanina , Prolina , Biomarcadores
2.
Prenat Diagn ; 43(6): 730-733, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160702

RESUMO

We report a case of pyruvate dehydrogenase E1 alpha subunit deficiency associated with a novel hemizygous PDHA1 variant presenting prenatally as multiple structural brain abnormalities in a male fetus. A healthy Finnish couple was initially referred to the Fetomaternal Medical Center because of suspected fetal choroid plexus cyst at 11 + 2 weeks of pregnancy. At 20 + 0 weeks, multiple abnormalities were observed with ultrasound including narrow thorax, slightly enlarged heart, hypoplastic cerebellum, absent cerebellar vermis and ventriculomegaly. Autopsy and genetic analyses were performed after the termination of pregnancy. The findings of macroscopic examination included cleft palate, abnormally overlapping position of fingers and toes and dysmorphic facial features. Neuropathological examination confirmed the absence of corpus callosum, cerebellar hypoplasia and ventriculomegaly. Nodular neuronal heterotopia was also observed. Trio exome sequencing revealed a novel hemizygous de novo variant c.1144C>T p.(Gln382*) in the PDHA1 gene, classified as likely pathogenic. We suggest that inherited metabolic disorders should be kept in mind as differential diagnoses in fetuses with structural brain abnormalities.


Assuntos
Anormalidades Múltiplas , Hidrocefalia , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Gravidez , Feminino , Humanos , Masculino , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cerebelo , Feto/diagnóstico por imagem , Feto/patologia
4.
Neurology ; 101(1): 46-49, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805432

RESUMO

Paroxysmal exercise-induced movement disorders may be caused by energy metabolism disorders, such as Glut 1 deficiency, pyruvate dehydrogenase deficiency, or mitochondrial respiratory chain disorders. A 4-year-old boy with a history of febrile seizures presented with paroxysmal dystonia, triggered by exercise, or occurring at rest. Additional investigations demonstrated pallidal hyperintensities on brain MRI and low CSF glucose. Pyruvate and lactate were elevated. The clinical presentation combined with neuroimaging abnormalities and biochemical profile (the lactate/pyruvate ratio) were clues to pyruvate dehydrogenase deficiency, a treatable metabolic disorder with neurologic presentations.


Assuntos
Coreia , Distonia , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Masculino , Humanos , Pré-Escolar , Doença da Deficiência do Complexo de Piruvato Desidrogenase/complicações , Distonia/etiologia , Coreia/complicações , Ácido Láctico , Ácido Pirúvico
5.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693417

RESUMO

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/uso terapêutico , Mutação , Fenótipo , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
8.
Zh Nevrol Psikhiatr Im S S Korsakova ; 122(9. Vyp. 2): 27-31, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36170095

RESUMO

Deficiency of the pyruvate dehydrogenase complex E1-alpha subunit is a rare genetic disease with X-linked dominant inheritance. The clinical spectrum of the disease is extremely wide: from lethal forms in children of the first year of life with lactic acidosis to chronic neurological manifestations with structural changes in the central nervous system without increasing the level of lactate in the blood. The authors report a case of this disease in a preschool child and present the results of laboratory and instrumental studies. The importance of early diagnosis of the disease is emphasized.


Assuntos
Epilepsia , Transtornos dos Movimentos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Pré-Escolar , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Lactatos , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/complicações , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
9.
Br J Biomed Sci ; 79: 10382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996497

RESUMO

Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Fenilbutiratos/uso terapêutico , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
10.
J Chem Inf Model ; 62(14): 3463-3475, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35797142

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αß/α'ß') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.


Assuntos
Piruvato Desidrogenase (Lipoamida) , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mitocôndrias , Mutação , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
12.
J Inherit Metab Dis ; 45(3): 557-570, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038180

RESUMO

Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αß/α'ß') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1ß nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1ß, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mutação , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Solventes
13.
J Inherit Metab Dis ; 45(2): 248-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873726

RESUMO

The vast clinical and radiological spectrum of pyruvate dehydrogenase complex (PDHc) deficiency continues to pose challenges both in diagnostics and disease monitoring. Prompt diagnosis is important to enable early initiation of ketogenic diet. The patients were recruited from an ongoing population-based study in Sweden. All patients with a genetically confirmed diagnosis who had been investigated with an MRI of the brain were included. Repeated investigations were assessed to study the evolution of the MRI changes. Sixty-two MRI investigations had been performed in 34 patients (23 females). The genetic cause was mutations in PDHA1 in 29, PDHX and DLAT in 2 each, and PDHB in 1. The lesions were prenatal developmental in 16, prenatal clastic in 18, and postnatal clastic in 15 individuals. Leigh-like lesions with predominant involvement of globus pallidus were present in 12, while leukoencephalopathy was present in 6 and stroke-like lesions in 3 individuals. A combination of prenatal developmental and clastic lesions was present in 15 individuals. In addition, one male with PDHA1 also had postnatal clastic lesions. The most common lesions found in our study were agenesis or hypoplasia of corpus callosum, ventriculomegaly, or Leigh-like lesions. Furthermore, we describe a broad spectrum of other MRI changes that include leukoencephalopathy and stroke-like lesions. We argue that a novel important clue, suggesting the possibility of PDHc deficiency on MRI scans, is the simultaneous presence of multiple lesions on MRI that have occurred during different phases of brain development.


Assuntos
Leucoencefalopatias , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Acidente Vascular Cerebral , Encéfalo/patologia , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Gravidez , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Acidente Vascular Cerebral/patologia
14.
Brain Dev ; 44(3): 244-248, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34863613

RESUMO

BACKGROUND: Pyruvate dehydrogenase complex (PDHC) deficiency is an inborn error of metabolism that causes lactic acidosis and neurodevelopmental changes. Five causative genes have been identified: PDHA1, PDHB, DLAT, DLD, and PDHX. Four neurological phenotypes have been reported: neonatal encephalopathy with lactic acidosis, non-progressive infantile encephalopathy, Leigh syndrome, and relapsing ataxia. Of these, neonatal encephalopathy has the worst mortality and morbidity and there is no effective treatment. SUBJECTS AND METHODS: We studied two girls who were clinically diagnosed with PDHC deficiency as neonates; they were subsequently found to have PDHA1 mutations. The clinical diagnosis was based on white matter loss and a lateral ventricular septum on fetal MRI, spasticity of the lower extremities, and lactic acidosis worsening after birth. Intravenous ketogenic diets were started within 24 h after birth. The ketogenic ratio was increased until the blood lactate level was controlled, while monitoring for side effects. RESULTS: In both cases, the lactic acidosis improved immediately with no apparent side effects. Both children had better developmental outcomes than previously reported cases; neither exhibited epilepsy. CONCLUSIONS: Intravenous ketogenic diet therapy is a treatment option for neonatal-onset PDHC deficiency. Further studies are needed to optimize this therapy.


Assuntos
Dieta Cetogênica , Doença da Deficiência do Complexo de Piruvato Desidrogenase/dietoterapia , Feminino , Humanos , Lactente , Recém-Nascido , Nutrição Parenteral
16.
Mol Genet Genomic Med ; 9(8): e1728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34156167

RESUMO

BACKGROUND: Pyruvate dehydrogenase complex (PDHC) deficiency is a common neurodegenerative disease associated with abnormal mitochondrial energy metabolism. The diagnosis of PDHC is difficult because of the lack of a rapid, accurate, and cost-effective clinical diagnostic method. METHODS: A 4-year-old boy was preliminarily diagnosed with putative Leigh syndrome based on the clinical presentation. PDHC activity in peripheral blood leukocytes and a corresponding gene analysis were subsequently undertaken. Sodium pyruvate 1-13 C was used for the analysis of PDHC activity in peripheral leukocytes. The genes encoding PDHC were then scanned for mutations. RESULTS: The results showed that the corresponding PDHC activity was dramatically decreased to 10.5 nmol/h/mg protein as compared with that of healthy controls (124.6 ± 7.1 nmol/h/mg). The ratio of PDHC to citrate synthase was 2.1% (control: 425.3 ± 27.1). The mutation analysis led to the identification of a missense mutation, NM_000284.4:g214C>T, in exon 3 of PDHC. CONCLUSION: The peripheral blood leukocyte PDHC activity assay may provide a practical enzymatic diagnostic method for PDHC-related mitochondrial diseases.


Assuntos
Ensaios Enzimáticos Clínicos/métodos , Leucócitos/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Complexo Piruvato Desidrogenase/metabolismo , Pré-Escolar , Testes Genéticos/métodos , Humanos , Masculino , Mutação de Sentido Incorreto , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo
17.
J Pediatr Orthop ; 41(6): e457-e463, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096551

RESUMO

INTRODUCTION: Organic acid disorders (OADs) are a subset of inborn errors of metabolism that result in a toxic accumulation of organic acids in the body, which can lead to metabolic derangements and encephalopathy. Patients with these disorders are managed by a team of biochemical geneticists and metabolic nutritionists. However, subspecialists such as neurologists and orthopaedic surgeons are often needed to help manage the sequelae of the metabolic derangements. The breadth of orthopaedic sequelae of these disease states is poorly understood. Herein, we describe orthopaedic problems associated with 5 types of OAD most commonly seen at our institution: maple syrup urine disease, methylmalonic aciduria, propionic aciduria, pyruvate dehydrogenase deficiency, and glutaric aciduria type 1. METHODS: We retrospectively reviewed medical records of 35 patients with an OAD who were seen at our academic tertiary care center from May 1999 to May 2020. Patients were grouped into cohorts according to OAD type and analyzed for orthopaedic presentations of hip, knee, or foot disorders, presence and severity of scoliosis, history of fracture, movement disorders, and osteopenia/osteoporosis. RESULTS: Of the 35 patients, 13 had maple syrup urine disease, 12 had methylmalonic aciduria, 4 had propionic aciduria, 4 had pyruvate dehydrogenase deficiency, and 2 had glutaric aciduria type 1. Associated orthopaedic problems included spasticity causing neuromuscular scoliosis and/or hip subluxation or dislocation (10 patients), fractures (7 patients), and osteopenia/osteoporosis (7 patients). Overall, 22 of 35 patients had some orthopaedic condition. CONCLUSIONS: Most in this cohort of patients with OAD also had an orthopaedic abnormality. It is important for physicians treating these patients to understand their propensity for musculoskeletal problems. When treating patients with OAD, it is important to initiate and maintain communication with specialists in several disciplines and to develop collaborative treatments for this unique population. LEVEL OF EVIDENCE: Level IV-prognostic study.


Assuntos
Ortopedia , Acidemia Propiônica/complicações , Acidemia Propiônica/cirurgia , Adolescente , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Encefalopatias Metabólicas/complicações , Criança , Pré-Escolar , Feminino , Glutaril-CoA Desidrogenase/deficiência , Humanos , Masculino , Doença da Urina de Xarope de Bordo/complicações , Doença da Urina de Xarope de Bordo/cirurgia , Pessoa de Meia-Idade , Doença da Deficiência do Complexo de Piruvato Desidrogenase/complicações , Doença da Deficiência do Complexo de Piruvato Desidrogenase/cirurgia , Estudos Retrospectivos
18.
Biochimie ; 183: 78-88, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588022

RESUMO

Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ßß') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.


Assuntos
Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Tiamina Pirofosfato/química , Substituição de Aminoácidos , Estabilidade Enzimática , Humanos , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
19.
Eur J Paediatr Neurol ; 31: 27-30, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33592356

RESUMO

We report a 5-year-old male with a PDHA1 variant who presented with alternating hemiplegia of childhood and later developed developmental regression, basal ganglia injury and episodic lactic acidosis. Enzyme assay in lymphocytes confirmed a diagnosis of Pyruvate Dehydrogenase Complex (PDC) deficiency. His mother who was heterozygous for the same variant suffered from ophthalmoplegia, chronic migraine and developed flaccid paralysis at 36 years of age. PDHA1 is the most common genetic cause of PDC deficiency and presents with a myriad of neurological phenotypes including neonatal form with lactic acidosis, non-progressive infantile encephalopathy, Leigh syndrome subtype and intermittent ataxia. The presentations in our 2 patients contribute to the clinical heterogeneity of this neurogenetic condition.


Assuntos
Síndrome de Guillain-Barré/genética , Hemiplegia/genética , Mães , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adulto , Pré-Escolar , Feminino , Hemizigoto , Heterozigoto , Humanos , Masculino , Paraplegia/genética , Linhagem , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico
20.
Physiol Rep ; 9(1): e14684, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400855

RESUMO

The Pyruvate Dehydrogenase Complex (PDC), a key enzyme in glucose metabolism, catalyzes an irreversible oxidative decarboxylation reaction of pyruvate to acetyl-CoA, linking the cytosolic glycolytic pathway to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Earlier we reported a down-regulation of several key hepatic lipogenic enzymes and their upstream regulators in liver-specific PDC-deficient mouse (L-PDCKO model by deleting the Pdha1 gene). In this study we investigated gene expression profiles of key glycolytic enzymes and other proteins that respond to various metabolic stresses in liver from L-PDCKO mice. Transcripts of several, such as hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase muscle-type 2, and lactate dehydrogenase B as well as those for the nonglycolysis-related proteins, CD-36, C/EBP homologous protein, and peroxisome proliferator-activated receptor γ, were up-regulated in L-PDCKO liver whereas hypoxia-induced factor-1α, pyruvate dehydrogenase kinase 1 and Sirtuin 1 transcripts were down-regulated. The protein levels of pyruvate kinase muscle-type 2 and lactate dehydrogenase B were increased whereas that of lactate dehydrogenase A was decreased in PDC-deficient mouse liver. Analysis of endoplasmic reticulum and oxidative stress indicators suggests that the L-PDCKO liver showed evidence of the former but not the latter. These findings indicate that (i) liver-specific PDC deficiency is sufficient to induce "aerobic glycolysis characteristic" in mouse liver, and (ii) the mechanism(s) responsible for these changes appears distinct from that which induces the Warburg effect in some cancer cells.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Glicólise , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Fosforilação Oxidativa , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...