Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.978
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38617829

RESUMO

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Degenerações Espinocerebelares , Humanos , Distonia/diagnóstico , Distonia/genética , Mioclonia/diagnóstico , Mioclonia/genética , Hipercinese , Ataxia , Doenças Raras , Síndrome , Proteínas de Membrana
2.
Hum Genomics ; 18(1): 35, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570878

RESUMO

BACKGROUND: To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS: We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS: Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS: Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.


Assuntos
Degenerações Espinocerebelares , Criança , Humanos , Irã (Geográfico)/epidemiologia , Degenerações Espinocerebelares/genética , Testes Genéticos , Fenótipo , Genes Recessivos
3.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453233

RESUMO

Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Degenerações Espinocerebelares , Feminino , Humanos , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Mutação , Adolescente
4.
J Alzheimers Dis ; 98(1): 275-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393916

RESUMO

Background: While many studies focus on the prognosis of individual neurological diseases, very few comprehensively compare and analyze real-world data of these diseases. Objective: To address this gap in knowledge, in this study, we comprehensively analyzed the real-life data of patients with neurological diseases. Methods: We prospectively enrolled patients with neurological diseases at three hospitals from December 1, 2016 to September 30, 2020. Neurological diseases were classified into nine groups: Dementia, Cerebrovascular disease, Parkinson's and related, Functional, Spinocerebellar degeneration, Neuroimmune, Epilepsy, Muscle dystrophy disease, and Hypertension. Patients were followed up for three years, and their prognosis and evaluation of their cognitive function served as the endpoint. Results: A total of 426 patients were finally enrolled. Both mortality and cognitive function differed among the neurological disease categories. After 3 years, mortality was highest in the Dementia (25.5%), Parkinson's and related (21.6%), and Spinocerebellar degeneration (35.3%) groups while the cognitive function of patients in these three groups was significantly lowest. Conclusions: When the neurological diseases were holistically observed, both mortality and cognitive function of the Dementia, Parkinson's and related, and Spinocerebellar degeneration groups were significantly worse than the remaining diseases.


Assuntos
Doença de Alzheimer , Demência , Epilepsia , Doença de Parkinson , Degenerações Espinocerebelares , Humanos , Doença de Parkinson/psicologia , Estudos de Coortes , Cognição , Prognóstico , Demência/diagnóstico
5.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391932

RESUMO

Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia/patologia , Cerebelo/patologia
6.
Rinsho Shinkeigaku ; 64(3): 135-147, 2024 Mar 22.
Artigo em Japonês | MEDLINE | ID: mdl-38382935

RESUMO

Spinocerebellar degeneration (SCD) is a neurodegenerative disorder characterized by cerebellar ataxia and other multisystem manifestations, such as Parkinsonism and pyramidal tract symptoms. No effective treatment is available for SCD. Approximately one-third of the cases of SCD are inherited, and the remaining two-third are sporadic, including multiple system atrophy. This article provides an overview of hereditary SCD, its clinical features, recent treatment advances, biomarkers, role of genomic medicine, and future treatment prospects.


Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Degenerações Espinocerebelares , Humanos , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/terapia
7.
Clin Genet ; 105(4): 446-452, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38221848

RESUMO

A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Grécia/epidemiologia , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
8.
J Neurol ; 271(4): 2078-2085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263489

RESUMO

BACKGROUND: Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES: To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS: FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS: After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS: FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.


Assuntos
Atrofia de Múltiplos Sistemas , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Estudos Prospectivos , Ataxias Espinocerebelares/diagnóstico , Cerebelo , Degenerações Espinocerebelares/diagnóstico
9.
BMJ Case Rep ; 17(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182166

RESUMO

Progressive multifocal leucoencephalopathy (PML) is a demyelinating disease caused by the John Cunningham (JC) virus, which may get reactivated under certain immunosuppressive states such as AIDS, immunomodulatory therapy and haematological malignancies. PML has been reported rarely even in immunocompetent individuals where no immunodeficiency was present. PML characteristically involves periventricular and juxtacortical white matter. Isolated cerebellar or brainstem PML may be seen rarely. We present a case of a man in his 70s who presented with rapidly progressive cerebellar ataxia, ptosis and bipyramidal signs. Investigations excluded a direct viral cerebellar infection, acute disseminated encephalomyelitis, paraneoplastic cerebellar degeneration or any structural cerebellar lesion. MRI PET study revealed the classical shrimp sign which raised the possibility of cerebellar PML, and the same was confirmed by a positive JC virus PCR in the cerebrospinal fluid. Our patient had no known immune-compromising state, but further workup revealed a low CD4 count suggestive of idiopathic CD4 lymphopenia. The case illustrates the importance of the shrimp sign on MRI, the possibility of cerebellar involvement of PML as well as the need to consider a differential diagnosis of PML even in individuals with no obvious immunocompromised state.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Degeneração Paraneoplásica Cerebelar , Degenerações Espinocerebelares , Masculino , Humanos , Cerebelo/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem
10.
Ann Clin Transl Neurol ; 11(1): 96-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916889

RESUMO

BACKGROUND AND OBJECTIVES: The GAA repeat expansion within the fibroblast growth factor 14 (FGF14) gene has been found to be associated with late-onset cerebellar ataxia. This study aimed to investigate the genetic causes of cerebellar ataxia in patients in Japan. METHODS: We collected a case series of 940 index patients who presented with chronic cerebellar ataxia and remained genetically undiagnosed after our preliminary genetic screening. To investigate the FGF14 repeat locus, we employed an integrated diagnostic strategy that involved fluorescence amplicon length analysis polymerase chain reaction (PCR), repeat-primed PCR, and long-read sequencing. RESULTS: Pathogenic FGF14 GAA repeat expansions were detected in 12 patients from 11 unrelated families. The median size of the pathogenic GAA repeat was 309 repeats (range: 270-316 repeats). In these patients, the mean age of onset was 66.9 ± 9.6 years, with episodic symptoms observed in 56% of patients and parkinsonism in 30% of patients. We also detected FGF14 repeat expansions in a patient with a phenotype of multiple system atrophy, including cerebellar ataxia, parkinsonism, autonomic ataxia, and bilateral vocal cord paralysis. Brain magnetic resonance imaging (MRI) showed normal to mild cerebellar atrophy, and a follow-up study conducted after a mean period of 6 years did not reveal any significant progression. DISCUSSION: This study highlights the importance of FGF14 GAA repeat analysis in patients with late-onset cerebellar ataxia, particularly when they exhibit episodic symptoms, or their brain MRI shows no apparent cerebellar atrophy. Our findings contribute to a better understanding of the clinical variability of GAA-FGF14-related diseases.


Assuntos
Ataxia Cerebelar , Fatores de Crescimento de Fibroblastos , Ataxia de Friedreich , Transtornos Parkinsonianos , Degenerações Espinocerebelares , Humanos , Pessoa de Meia-Idade , Idoso , Ataxia Cerebelar/genética , Ataxia de Friedreich/genética , Seguimentos , Japão , Degenerações Espinocerebelares/genética , Atrofia
11.
Clin Genet ; 105(2): 228-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903629

RESUMO

A novel homozygous variant in KIFBP was identified in a consanguineous family with four sibs affected by Goldberg-Sphrintzen Syndrome (GOSHS). We report for the first time, early-adulthood-onset progressive ataxia, opthalmoparesis, and hypogonadotropic hypogonadism in GOSHS.


Assuntos
Ataxia Cerebelar , Hipogonadismo , Oftalmoplegia , Degenerações Espinocerebelares , Humanos , Adulto , Ataxia Cerebelar/genética , Hipogonadismo/genética , Linhagem
12.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964426

RESUMO

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aniridia , Anidrases Carbônicas , Ataxia Cerebelar , Deficiência Intelectual , Transtornos dos Movimentos , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto/genética , Transtornos dos Movimentos/complicações , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
13.
J Neurol ; 271(2): 1004-1012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989963

RESUMO

INTRODUCTION: Assessing dysarthria features in patients with neurodegenerative diseases helps diagnose underlying pathologies. Although deep neural network (DNN) techniques have been widely adopted in various audio processing tasks, few studies have tested whether DNNs can help differentiate neurodegenerative diseases using patients' speech data. This study evaluated whether a DNN model using a transformer architecture could differentiate patients with Parkinson's disease (PD) from patients with spinocerebellar degeneration (SCD) using speech data. METHODS: Speech data were obtained from 251 and 101 patients with PD and SCD, respectively, while they read a passage. We fine-tuned a pre-trained DNN model using log-mel spectrograms generated from speech data. The DNN model was trained to predict whether the input spectrogram was generated from patients with PD or SCD. We used fivefold cross-validation to evaluate the predictive performance using the area under the receiver operating characteristic curve (AUC) and accuracy, sensitivity, and specificity. RESULTS: Average ± standard deviation of the AUC, accuracy, sensitivity, and specificity of the trained model for the fivefold cross-validation were 0.93 ± 0.04, 0.87 ± 0.03, 0.83 ± 0.05, and 0.89 ± 0.05, respectively. CONCLUSION: The DNN model can differentiate speech data of patients with PD from that of patients with SCD with relatively high accuracy and AUC. The proposed method can be used as a non-invasive, easy-to-perform screening method to differentiate PD from SCD using patient speech and is expected to be applied to telemedicine.


Assuntos
Doença de Parkinson , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Fala , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Redes Neurais de Computação
14.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035881

RESUMO

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/genética , Ataxia/genética , Ataxia Cerebelar/genética , Fenótipo , Degenerações Espinocerebelares/genética , Proteínas de Homeodomínio/genética
15.
J Hum Genet ; 69(1): 27-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37848721

RESUMO

In Japan, approximately 30% of spinocerebellar degeneration (SCD) is hereditary, and more than 90% of hereditary SCD is autosomal dominant SCD (AD-SCD). We have previously reported the types of AD-SCD in Hokkaido, twice. In this study, we investigated the status of AD-SCD mainly due to repeat expansions, covering the period since the last report. We performed genetic analysis for 312 patients with a clinical diagnosis of SCD, except for multiple system atrophy at medical institutions in Hokkaido between January 2007 and December 2020. The median age at the time of analysis was 58 (1-86) years. Pathogenic variants causing AD-SCD due to repeat expansion were found in 61.5% (192 cases). Spinocerebellar ataxia (SCA) 6 was the most common type in 25.3% (79 cases), followed by Machado-Joseph disease (MJD)/SCA3 in 13.8% (43), SCA1 in 6.4% (20), SCA2 in 5.1% (16), SCA31 in 4.8% (15), dentatorubral-pallidoluysian atrophy in 4.8% (15), SCA7 in 0.6% (2), and SCA8 in 0.6% (2). SCA17, 27B, 36, and 37 were not found. Compared to previous reports, this study found a higher prevalence of SCA6 and a lower prevalence of MJD/SCA3. An increasing number of cases identified by genetic testing, including cases with no apparent family history, accurately revealed the distribution of disease types in Hokkaido.


Assuntos
Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Japão/epidemiologia , Prevalência , Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/epidemiologia , Degenerações Espinocerebelares/genética , Testes Genéticos
16.
Cerebellum ; 23(1): 121-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640220

RESUMO

Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes.


Assuntos
Ataxia Telangiectasia , Ataxia de Friedreich , Degenerações Espinocerebelares , Humanos , Movimentos Oculares , Ataxia , Genótipo , Progressão da Doença
17.
J Neurol ; 271(1): 526-542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787810

RESUMO

Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Suécia , Ataxia/diagnóstico , Ataxia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Fenótipo
18.
Clin Neurophysiol ; 158: 1-15, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113692

RESUMO

OBJECTIVE: The aim of this study was to clarify the roles of the cerebellum and basal ganglia for temporal integration. METHODS: We studied 39 patients with spinocerebellar degeneration (SCD), comprising spinocerebellar atrophy 6 (SCA6), SCA31, Machado-Joseph disease (MJD, also called SCA3), and multiple system atrophy (MSA). Thirteen normal subjects participated as controls. Participants were instructed to tap on a button in synchrony with isochronous tones. We analyzed the inter-tap interval (ITI), synchronizing tapping error (STE), negative asynchrony, and proportion of delayed tapping as indicators of tapping performance. RESULTS: The ITI coefficient of variation was increased only in MSA patients. The standard variation of STE was larger in SCD patients than in normal subjects, especially for MSA. Negative asynchrony, which is a tendency to tap the button before the tones, was prominent in SCA6 and MSA patients, with possible basal ganglia involvement. SCA31 patients exhibited normal to supranormal performance in terms of the variability of STE, which was surprising. CONCLUSIONS: Cerebellar patients generally showed greater STE variability, except for SCA31. The pace of tapping was affected in patients with possible basal ganglia pathology. SIGNIFICANCE: Our results suggest that interaction between the cerebellum and the basal ganglia is essential for temporal processing. The cerebellum and basal ganglia and their interaction regulate synchronized tapping, resulting in distinct tapping pattern abnormalities among different SCD subtypes.


Assuntos
Atrofia de Múltiplos Sistemas , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Cerebelo , Ataxias Espinocerebelares/patologia , Gânglios da Base/patologia
19.
Parkinsonism Relat Disord ; 119: 105961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145611

RESUMO

INTRODUCTION: Hereditary ataxias (HAs) encompass a diverse and genetically intricate group of rare neurodegenerative disorders, presenting diagnostic challenges. Whole-exome sequencing (WES) has significantly improved diagnostic success. This study aimed to elucidate genetic causes of cerebellar ataxia within a diverse Brazilian cohort. METHODS: Biological samples were collected from individuals with sporadic or familial cerebellar ataxia, spanning various ages and phenotypes, excluding common SCAs and Friedreich ataxia. RFC1 biallelic AAGGG repeat expansion was screened in all patients. For AAGGG-negative cases, WES targeting 441 ataxia-related genes was performed, followed by ExpansionHunter analysis for repeat expansions, including the recently described GGC-ZFHX3. Variant classification adhered to ClinGen guidelines, yielding definitive or probable diagnoses. RESULTS: The study involved 76 diverse Brazilian families. 16 % received definitive diagnoses, and another 16 % received probable ones. RFC1-related ataxia was predominant, with two definitive cases, followed by KIF1A (one definitive and one probable) and SYNE-1 (two probable). Early-onset cases exhibited higher diagnostic rates. ExpansionHunter improved diagnosis by 4 %.We did not detected GGC-ZFHX3 repeat expansion in this cohort. CONCLUSION: This study highlights diagnostic complexities in cerebellar ataxia, even with advanced genetic methods. RFC1, KIF1A, and SYNE1 emerged as prevalent mutations. ZFHX3 repeat expansion seem to be rare in Brazilian population. Early-onset cases showed higher diagnostic success. WES coupled with ExpansionHunter holds promise as a primary diagnostic tool, emphasizing the need for broader NGS accessibility in Brazil.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Brasil , Ataxia/genética , Fenótipo , Mutação/genética , Degenerações Espinocerebelares/complicações , Cinesinas/genética
20.
BMJ Case Rep ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977846

RESUMO

Early-onset cerebellar ataxia has a broad range of challenging differential diagnoses. Identification of hypogonadism can assist in narrowing down differential diagnosis in the presentation of progressive ataxia. Gordon Holmes syndrome as described by Sir Gordon Holmes in 1908 consists of ataxia with hypogonadism. It is due to mutation in RNF216 and OTUD4 genes which encode for enzymes in the ubiquitin-proteasome system. In this case report, we describe a 30-year-old male presenting with insidious-onset progressive ataxia with hypogonadotropic hypogonadism, cataract, pan-cerebellar atrophy with bilateral cerebral white matter hyperintensities and a positive homozygous mutation for RNF216 making the diagnosis of Gordon Holmes syndrome. The presence of hypogonadism in a patient with ataxia should alert the clinician to look for such a diagnosis.


Assuntos
Ataxia Cerebelar , Hipogonadismo , Degenerações Espinocerebelares , Humanos , Masculino , Adulto , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ubiquitina-Proteína Ligases/genética , Ataxia/genética , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Mutação , Proteases Específicas de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...