Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
1.
Methods Mol Biol ; 2794: 271-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630236

RESUMO

Malformations of cortical development (MCDs) are a diverse group of disorders that result from abnormal neuronal migration, proliferation, and differentiation during brain development. Head computed tomography (CT) has limited use in the diagnosis of MCDs and should be reserved for selected cases with specific indications or when magnetic resonance imaging is not available or contraindicated. CT can detect brain calcifications associated with MCDs, thus helping in the differential diagnosis between acquired and genetic MCDs or in the identification of different genetic patterns. Moreover, CT can provide high-resolution images of the skull and bones, thus identifying associated malformations, such as craniosynostosis, inner and middle ear malformations, and vertebral anomalies. In this chapter, we review the CT scan technique, data analysis, and indications in the investigation of MCDs.


Assuntos
Malformações do Desenvolvimento Cortical , Osteocondrodisplasias , Humanos , Cintilografia , Análise de Dados
2.
Methods Mol Biol ; 2794: 281-292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630237

RESUMO

Brain magnetic resonance imaging (MRI) is a noninvasive imaging modality that utilizes powerful magnets and radio waves to generate detailed images of the brain, making it a valuable tool for investigating malformations of cortical development (MCD). Various MRI techniques, including 3D T1-weighted, multiplanar thin-sliced T2-weighted, and 3D fluid-attenuated inversion recovery (FLAIR) sequences, can provide high-resolution images with excellent spatial and contrast resolution, allowing for a detailed visualization of cortical anatomy and abnormalities. Almost all MCD can be detected and characterized using MRI. Advanced techniques, such as arterial spin labeling MR perfusion, diffusion tensor imaging (DTI), and functional MRI (fMRI), may be used to improve the detection rate of these malformations and to plan surgery in case of drug-resistant epilepsy. However, there are also limitations related to high cost, relatively low availability, need for sedation or anesthesia, and limited sensitivity for detecting subtle focal cortical malformations. Despite these limitations, brain MRI plays a crucial role in the investigation of MCD, providing valuable information for diagnosis, treatment planning, and patient management.


Assuntos
Anestesia , Malformações do Desenvolvimento Cortical , Humanos , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Análise de Dados , Malformações do Desenvolvimento Cortical/diagnóstico por imagem
4.
Seizure ; 116: 87-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523034

RESUMO

OBJECTIVES: The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS: Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS: Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE: This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.


Assuntos
Epilepsia , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas do Citoesqueleto/genética
5.
Epilepsy Behav ; 153: 109716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508103

RESUMO

OBJECTIVE: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS: We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE: This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Adulto , Humanos , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Serina-Treonina Quinases TOR , Epilepsias Parciais/genética , Epilepsias Parciais/diagnóstico , Convulsões , Células Germinativas/patologia , Malformações do Desenvolvimento Cortical/patologia
6.
Mol Genet Genomic Med ; 12(1): e2358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284444

RESUMO

BACKGROUND: Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations is a rare neurological disorder that is associated with typical clinical and imaging features. The syndrome is caused by pathogenic variants in the MAST1 gene, which encodes a microtubule-associated protein that is predominantly expressed in postmitotic neurons in the developing nervous system. METHODS: Fetal DNA from umbilical cord blood samples and genomic DNA from peripheral blood lymphocytes were subjected to whole-exome sequencing. The potential causative variants were verified by Sanger sequencing. RESULTS: A 26-year-old primigravid woman was referred to our prenatal center at 25 weeks of gestation due to abnormal ultrasound findings in the brain of the fetus. The brain abnormalities included wide cavum septum pellucidum, shallow and incomplete bilateral lateral fissure cistern, bilateral dilated lateral ventricles, hyperplastic corpus callosum, lissencephaly, and cortical dysplasia. No obvious abnormalities were observed in the brainstem or cerebellum hemispheres, but the cerebellum vermis was small. Whole-exome sequencing identified a de novo, heterozygous missense variant, c.695T>C(p.Leu232Pro), in the MAST1 gene and a genetic diagnosis of mega-corpus-callosum syndrome was considered. CONCLUSION: This study is the first prenatal case of MAST1-related disorder reported in the Chinese population and has expanded the mutation spectrum of the MAST1 gene.


Assuntos
Vermis Cerebelar , Leucoencefalopatias , Malformações do Desenvolvimento Cortical , Malformações do Sistema Nervoso , Gravidez , Feminino , Humanos , Adulto , Vermis Cerebelar/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Cerebelo/anormalidades , Malformações do Desenvolvimento Cortical/genética , Feto/anormalidades , DNA , Deficiências do Desenvolvimento
7.
Epilepsia ; 65(3): 687-697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279908

RESUMO

OBJECTIVE: Refractory epilepsy may have an underlying autoimmune etiology. Our aim was to assess the prevalence of neural autoantibodies in a multicenter national prospective cohort of patients with drug-resistant epilepsy undergoing epilepsy surgery utilizing comprehensive clinical, serologic, and histopathological analyses. METHODS: We prospectively recruited patients undergoing epilepsy surgery for refractory focal epilepsy not caused by a brain tumor from epilepsy surgery centers in the Czech Republic. Perioperatively, we collected cerebrospinal fluid (CSF) and/or serum samples and performed comprehensive commercial and in-house assays for neural autoantibodies. Clinical data were obtained from the patients' medical records, and histopathological analysis of resected brain tissue was performed. RESULTS: Seventy-six patients were included, mostly magnetic resonance imaging (MRI)-lesional cases (74%). Mean time from diagnosis to surgery was 21 ± 13 years. Only one patient (1.3%) had antibodies in the CSF and serum (antibodies against glutamic acid decarboxylase 65) in relevant titers; histology revealed focal cortical dysplasia (FCD) III (FCD associated with hippocampal sclerosis [HS]). Five patients' samples displayed CSF-restricted oligoclonal bands (OCBs; 6.6%): three cases with FCD (one with FCD II and two with FCD I), one with HS, and one with negative histology. Importantly, eight patients (one of them with CSF-restricted OCBs) had findings on antibody testing in individual serum and/or CSF tests that could not be confirmed by complementary tests and were thus classified as nonspecific, yet could have been considered specific without confirmatory testing. Of these, two had FCD, two gliosis, and four HS. No inflammatory changes or lymphocyte cuffing was observed histopathologically in any of the 76 patients. SIGNIFICANCE: Neural autoantibodies are a rare finding in perioperatively collected serum and CSF of our cohort of mostly MRI-lesional epilepsy surgery patients. Confirmatory testing is essential to avoid overinterpretation of autoantibody-positive findings.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Estudos Prospectivos , Autoanticorpos , Prevalência , Epilepsia/epidemiologia , Epilepsia/cirurgia , Epilepsia/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/complicações , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Estudos Retrospectivos
9.
Neuropediatrics ; 55(1): 1-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984419

RESUMO

There is insufficient evidence regarding the efficacy of epilepsy surgery in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 (dishevelled EGL-10 and pleckstrin domain-containing protein 5) pathogenic (P), likely pathogenic (LP), or variance of unknown significance (VUS) variants. To conduct a systematic review on the literature regarding the use and efficacy of epilepsy surgery as an intervention for patients with DEPDC5 variants who have pharmacoresistant epilepsy. A systematic review of the current literature published regarding the outcomes of epilepsy surgery for patients with DEPDC5 variants was conducted. Demographics and individual patient data were recorded and analyzed. Subsequent statistical analysis was performed to assess significance of the findings. A total of eight articles comprising 44 DEPDC5 patients with genetic variants undergoing surgery were included in this study. The articles primarily originated in high-income countries (5/8, 62.5%). The average age of the subjects was 10.06 ± 9.41 years old at the time of study. The most common form of epilepsy surgery was focal resection (38/44, 86.4%). Thirty-seven of the 40 patients (37/40, 92.5%) with reported seizure frequency results had improvement. Twenty-nine out of 38 patients (29/38, 78.4%) undergoing focal resection achieved Engel Score I postoperatively, and two out of four patients achieved International League Against Epilepsy I (50%). Epilepsy surgery is effective in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 P, LP, or VUS variants.


Assuntos
Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Convulsões/genética , Convulsões/cirurgia , Epilepsias Parciais/genética , Epilepsias Parciais/cirurgia , Proteínas Ativadoras de GTPase/genética
10.
Epilepsy Behav ; 150: 109565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070410

RESUMO

Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Adulto , Criança , Humanos , Fosfatidilinositol 3-Quinases , Encéfalo/patologia , Convulsões/patologia , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Estudos Retrospectivos
11.
Ann Diagn Pathol ; 68: 152224, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37976976

RESUMO

INTRODUCTION: Rasmussen's encephalitis (RE) is a rare, predominantly pediatric epilepsy disorder of unknown etiology. It classically affects one of the cerebral hemispheres and histologically shows cortical chronic inflammation, gliosis, and neuronal loss. The etiopathogenesis of RE remains unknown, with genetic, infectious, and autoimmune factors all speculated to play a role. Although the histologic findings in RE are well described, few studies have investigated a large cohort of cases looking for the coexistence of RE with focal cortical dysplasia (FCD). DESIGN: The study is a retrospective review of RE patients who underwent surgical resection of brain tissue between 1979 and 2021. Relevant patient history was retrieved, and available histologic slides were reviewed. The histologic severity of RE was described according to the Pardo criteria. In cases where FCD was present, the observed patterns of FCD (namely Ia, Ib, IIa, IIb, etc.) were described using the International League Against Epilepsy (ILAE) classification. RESULTS: Thirty-eight resection specimens from 31 patients formed the study cohort. Seventeen patients (54.8 %) were male; average age at surgery was 8 years (range: 2-28 years). Twenty-seven resection specimens (71.1 %) from 23 patients (74 %) showed evidence of coexistent FCD. Most cases with FCD resembled the ILAE type Ib (n = 23) pattern. Cases of RE that did not show FCD were either Pardo stage 1 (n = 5) or 4 (n = 6), with all Pardo stage 2 and 3 cases demonstrating FCD. CONCLUSIONS: FCD was found in most patients with RE (74 %). The most observed pattern of FCD was ILAE Ib.


Assuntos
Encefalite , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Masculino , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Feminino , Epilepsia/complicações , Epilepsia/patologia , Encefalite/complicações , Estudos Retrospectivos , Inflamação , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/cirurgia , Imageamento por Ressonância Magnética
12.
Epilepsy Behav ; 150: 109535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118233

RESUMO

AIM: To evaluate the effectiveness of the ketogenic diet treatment in a cohort of patients with drug-resistant epilepsy with a mutation in the DEPDC5 gene. MATERIALS AND METHODS: We followed four paediatric patients with drug resistant DEPDC5-related epilepsy through a ketogenic diet (KD) treatment course. We analyzed the following parameters of their clinical profiles: past medical history, clinical characteristics of seizure morphology, EEG records pre- and post-KD treatment, the results of MRI head and neurological and psychological examinations (pre-treatment and throughout treatment course). We evaluated the effectiveness of previous therapeutic approaches and the current treatment with ketogenic diet alongside results of neuroimaging studies. Effect of KD on co-morbid behavioural and psychiatric symptoms, as well as adverse effects from KD were also assessed. RESULTS: In three patients, the introduction of the ketogenic diet resulted in the cessation of seizures, while in 1 patient with co-morbid cortical dysplasia, epileptic seizures of lesser severity returned after an initial seizure-free period of several weeks. Further, 1 patient was able to transition to a KD-only treatment regimen. The remaining patients were able to reduce the number of antiseizure medicine (ASM) to a monotherapy. In all cases we observed improvements in EEG results. Our cohort included one patient whose MRI head showed cortical dysplasia. However, no patients demonstrated any neurological signs in neurological examination. Psychological examination showed normal intellectual development in all patients, although behavioral disorders and difficulties at school were observed. The introduction of KD treatment correlated with improvement in school performance and improved behavioral regulation. No clinically significant adverse events were observed. CONCLUSIONS: KD seems to be both effective and well tolerated in young patients with DEPDC5-related epilepsy, both as a monotherapy and as an adjunct to ASM. We recommend an early adoption of this therapeutic approach in this patient demographic. Our results demonstrate that the positive effects of KD treatment encompass improvements in general functioning, particularly in the context of school performance and behavior, in addition to the achievement of good seizure control.


Assuntos
Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Humanos , Dieta Cetogênica/métodos , Resultado do Tratamento , Estudos Retrospectivos , Convulsões
13.
Cortex ; 171: 423-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109835

RESUMO

The absence of speech is a clinical phenotype seen across neurodevelopmental syndromes, offering insights for neural language models. We present a case of bilateral perisylvian polymicrogyria (BPP) and complete absence of speech with considerable language comprehension and production difficulties. We extensively characterized the auditory speech perception and production circuitry by employing a multimodal neuroimaging approach. Results showed extensive cortical thickening in motor and auditory-language regions. The auditory cortex lacked sensitivity to speech stimuli despite relatively preserved thalamic projections yet had no intrinsic functional organization. Subcortical structures implicated in early stages of processing exhibited heightened sensitivity to speech. The arcuate fasciculus, a suggested marker of language in BPP, showed similar volume and integrity to a healthy control. The frontal aslant tract, linked to oromotor function, was partially reconstructed. These findings highlight the importance of assessing the auditory cortex beyond speech production structures to understand absent speech in BPP. Despite profound cortical alterations, the intrinsic motor network and motor-speech pathways remained largely intact. This case underscores the need for comprehensive phenotyping using multiple MRI modalities to uncover causes of severe disruption in language development.


Assuntos
Anormalidades Múltiplas , Córtex Auditivo , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Polimicrogiria , Percepção da Fala , Humanos , Córtex Auditivo/fisiologia , Fala/fisiologia , Percepção da Fala/fisiologia , Imageamento por Ressonância Magnética/métodos , Fenótipo
14.
Int J Biol Macromol ; 258(Pt 1): 128795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114001

RESUMO

The development of novel cellulose-based bioplastics (CBPs) is highly desirable because CBPs are green, rationally use resources, and lead to a reduction in environmental pollution compared to alternative materials. However, incorporating high transparency, water resistance, mechanical robustness, wet-adhesion, ionic conductivity and recyclability into CBP remains a challenge. In this paper, novel CBPs with supramolecular covalent networks are fabricated by introducing polymerizable hydrophobic deep eutectic solvents (HDES) into ethylcellulose (EC) networks through in situ plasticization followed by a rapid photopolymerization process. The excellent molecular interfacial compatibility enables EC to be loaded with a high content of poly(HDES), while allowing high transparency (more than 90 %) of the prepared CBPs. Multiple intermolecular interactions provide CBPs with mechanical robustness, water resistance, and underwater adhesion, and CBPs can be readily recovered by the solvent in a closed loop. Moreover, CBPs possess inherent ionic conductivities, and using them as green substrates, personalized electroluminescent devices can be successfully constructed. The method proposed in this paper provides a new strategy for the preparation of multifunctional CBPs, which will greatly enrich their applications in self-adhesive materials, green flexible electronics and other package materials.


Assuntos
Anormalidades Múltiplas , Celulose , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Água , Biopolímeros , Condutividade Elétrica
15.
Brain ; 147(2): 542-553, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100333

RESUMO

Focal cortical dysplasias are a common subtype of malformation of cortical development, which frequently presents with a spectrum of cognitive and behavioural abnormalities as well as pharmacoresistant epilepsy. Focal cortical dysplasia type II is typically caused by somatic mutations resulting in mammalian target of rapamycin (mTOR) hyperactivity, and is the commonest pathology found in children undergoing epilepsy surgery. However, surgical resection does not always result in seizure freedom, and is often precluded by proximity to eloquent brain regions. Gene therapy is a promising potential alternative treatment and may be appropriate in cases that represent an unacceptable surgical risk. Here, we evaluated a gene therapy based on overexpression of the Kv1.1 potassium channel in a mouse model of frontal lobe focal cortical dysplasia. An engineered potassium channel (EKC) transgene was placed under control of a human promoter that biases expression towards principal neurons (CAMK2A) and packaged in an adeno-associated viral vector (AAV9). We used an established focal cortical dysplasia model generated by in utero electroporation of frontal lobe neural progenitors with a constitutively active human Ras homolog enriched in brain (RHEB) plasmid, an activator of mTOR complex 1. We characterized the model by quantifying electrocorticographic and behavioural abnormalities, both in mice developing spontaneous generalized seizures and in mice only exhibiting interictal discharges. Injection of AAV9-CAMK2A-EKC in the dysplastic region resulted in a robust decrease (∼64%) in the frequency of seizures. Despite the robust anti-epileptic effect of the treatment, there was neither an improvement nor a worsening of performance in behavioural tests sensitive to frontal lobe function. AAV9-CAMK2A-EKC had no effect on interictal discharges or behaviour in mice without generalized seizures. AAV9-CAMK2A-EKC gene therapy is a promising therapy with translational potential to treat the epileptic phenotype of mTOR-related malformations of cortical development. Cognitive and behavioural co-morbidities may, however, resist an intervention aimed at reducing circuit excitability.


Assuntos
Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Camundongos , Animais , Epilepsia/terapia , Epilepsia/cirurgia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Convulsões/terapia , Terapia Genética , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/terapia , Malformações do Desenvolvimento Cortical/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
16.
Medicina (B Aires) ; 83(6): 1013-1017, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-38117725

RESUMO

Focal atonic seizures are recognized rarely as ictal phenomena, they can correspond to both generalized epilepsy and focal epilepsy. The areas of the brain involved in the management of this type of seizure are: the negative motor area and the primary motor and primary somatosensory cortices, although the neurophysiology that generates them is still unclear. We present the case of a patient with focal atonic seizures in the left upper limb, refractory to drug treatment. Neuroimaging was performed, a parietal cortical lesion was diagnosed. A scalp Video EEG and then a Stereo EEG was performed, defining the epileptogenic area and its relationship with eloquent areas. Surgical resection of the lesion was performed, achieving complete seizure control.


Las crisis atónicas focales son poco reconocidas como fenómenos ictales, pueden corresponder tanto a una epilepsia generalizada como a una epilepsia focal. Las áreas del cerebro implicadas en la gestión de este tipo de crisis son: el área motora negativa y las cortezas motora primaria y somatosensitiva primaria, aunque aún la neurofisiología que las genera no está aclarada. Presentamos el caso de un paciente con crisis atónicas focales farmacorresistentes en miembro superior izquierdo. Se realizó resonancia de cerebro con diagnóstico de displasia cortical parietal, se monitoreó con video EEG de scalp y luego a video EEG con electrodos profundos. Se definieron el área epileptógena y su relación con áreas elocuentes, se realizó resección quirúrgica de la lesión, logrando el control completo de las crisis.


Assuntos
Epilepsias Parciais , Epilepsia Generalizada , Malformações do Desenvolvimento Cortical , Humanos , Epilepsias Parciais/etiologia , Epilepsias Parciais/cirurgia , Epilepsias Parciais/diagnóstico , Convulsões/etiologia , Convulsões/cirurgia , Encéfalo , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Eletroencefalografia , Imageamento por Ressonância Magnética
17.
Acta Neuropathol Commun ; 11(1): 179, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946310

RESUMO

Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Epilepsia/genética , Serina-Treonina Quinases TOR/genética , Proteínas Ativadoras de GTPase/genética , Genótipo , Malformações do Desenvolvimento Cortical/genética
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1541-1545, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994139

RESUMO

OBJECTIVE: To explore the genetic basis for a child with multiple malformations. METHODS: A child who had presented at Shanxi Provincial Children's Hospital in February 2021 was selected as the study subject. Clinical data of the patient was collected, and whole exome sequencing (WES) was carried out to screen pathogenic variants associated with the phenotype. Candidate variant was validated by Sanger sequencing of her family members. RESULTS: The child had normal skin, but right ear defect, hemivertebral deformity, ventricular septal defect, arterial duct and patent foramen ovale, and separation of collecting system of the left kidney. Cranial MRI showed irregular enlargement of bilateral ventricles and widening of the distance between the cerebral cortex and temporal meninges. Genetic testing revealed that she has harbored a heterozygous variant of NM_178014.4: c.217A>G (p.Met73Val) in the TUBB gene, which was unreported previously and predicted to be likely pathogenic based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). The child was diagnosed with Complex cortical dysplasia with other brain malformations 6 (CDCBM6). CONCLUSION: CDCBM is a rare and serious disease with great genetic heterogeneity, and CDCBM6 caused by mutations of the TUBB gene is even rarer. Above finding has enriched the variant and phenotypic spectrum of the TUBB gene, and provided important reference for summarizing the genotype-phenotype correlation of the CDCBM6.


Assuntos
Anormalidades Múltiplas , Antígenos de Grupos Sanguíneos , Malformações do Desenvolvimento Cortical , Humanos , Criança , Feminino , Família , Malformações do Desenvolvimento Cortical/genética , Encéfalo , Mutação
19.
Eur J Paediatr Neurol ; 47: 80-87, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812946

RESUMO

OBJECTIVE: Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. METHODS: We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. RESULTS: Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. SIGNIFICANCE: Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Humanos , Estudos Prospectivos , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia/complicações , Epilepsias Parciais/complicações , Testes Genéticos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Malformações do Desenvolvimento Cortical/genética , Proteínas Ativadoras de GTPase/genética , Fatores de Crescimento de Fibroblastos/genética , Proteínas do Tecido Nervoso/genética
20.
Adv Tech Stand Neurosurg ; 48: 327-354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37770690

RESUMO

The present article describes pathophysiological and clinical aspects of congenital malformations of the cerebral tissue (cortex and white matter) that cause epilepsy and very frequently require surgical treatment. A particular emphasis is given to focal cortical dysplasias, the most common pathology among these epilepsy-related malformations. Specific radiological and surgical features are also highlighted, so a thorough overview of cortical dysplasias is provided.


Assuntos
Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Humanos , Malformações do Desenvolvimento Cortical/complicações , Epilepsia/etiologia , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...