Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.774
Filtrar
1.
BMC Anesthesiol ; 24(1): 143, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614993

RESUMO

BACKGROUND: The Koolen-de Vries syndrome (KdVS) is a relatively new rare disease caused by micro-deletion of 17q21.31 which was first reported by Koolen in 2006. Typical phenotypes for KdVS include hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Up to now, there was only one case report about anesthesia management of patient diagnosed KdVS. It was a 2-year-old girl who experienced an MRI exam under anesthesia. CASE PRESENTATION: We described a 21-month-old boy who planned to undergo an orchidopexy under general anesthesia diagnosed with KdVS. He had an intellectual disability, characteristic facial dysmorphism, tracheo/laryngomalacia, patent foramen ovale, and cryptorchidism related to KdVS. Due to the complex condition especially the presence of tracheo/laryngomalacia, we took some special measures, including reducing the amount of long-acting opioid, keeping the spontaneous breath, performing a caudal block, and applying the laryngeal mask. But the laryngeal mask was changed to an endotracheal tube because it failed to provide adequate ventilation. The boy experienced mild laryngeal spasm and hypoxia after extubation, but lateral position and etomidate eased his breathing problem and re-intubation was avoided. It is indicated that anesthesia management for patients with orphan disease is a real challenge for all anesthesia providers. CONCLUSIONS: The Koolen-de Vries syndrome is a relatively new orphan disease involving multiple systems. Keeping spontaneous breath, evaluating airway potency to anesthetics, applying endotracheal tube, and post-extubation lateral or prone position may be helpful for airway management for patient with hypotonia and tracheo/laryngomalacia. KdVS patient needs prolonged post-anesthesia monitoring and/or medication for airway complications.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Deficiência Intelectual , Laringomalácia , Masculino , Criança , Feminino , Humanos , Lactente , Pré-Escolar , Hipotonia Muscular , Doenças Raras , Anestesia Geral , Cromossomos Humanos Par 17
2.
Psychiatr Genet ; 34(2): 68-69, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441145

RESUMO

Autism spectrum disorder is a neurodevelopmental condition that involves limitations in social communication and various stereotypical repetitive behaviors. Genetic and environmental factors both play a role in the etiology. Numerous genetic syndromes accompanying autism spectrum disorders have been reported. Hypoventilation, hypotonia, intellectual disability, epilepsy, eye abnormality (HIDEA) syndrome is a rare genetic condition consisting of a combination of features such as hypoventilation, hypotonia, intellectual disability, eye abnormalities, and epilepsy. Very few cases of HIDEA syndrome have been reported in the literature to date. To the best of our knowledge, no cases of comorbid autism spectrum disorder and HIDEA syndrome have previously been reported. This report describes two brothers with a pathogenic P4HTM gene variant and autism spectrum disorder. One was diagnosed with HIDEA syndrome, while the other was a healthy carrier.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Humanos , Masculino , Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Epilepsia/genética , Hipoventilação/complicações , Deficiência Intelectual/genética , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Irmãos , Síndrome
3.
BMC Neurol ; 24(1): 87, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438854

RESUMO

BACKGROUND: RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE). CASE PRESENTATION: Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites. CONCLUSIONS: Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.


Assuntos
Arginina-tRNA Ligase , Microcefalia , Doenças Mitocondriais , Humanos , Masculino , Criança , Microcefalia/genética , Hipotonia Muscular , Fenótipo , Doenças Mitocondriais/genética , Convulsões , Arginina-tRNA Ligase/genética
4.
Am J Hum Genet ; 111(4): 778-790, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38531365

RESUMO

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Éxons , Deficiência Intelectual/genética , Mamíferos/genética , Hipotonia Muscular/genética , Anormalidades Musculoesqueléticas/genética , Neuroblastoma/genética , Transtornos do Neurodesenvolvimento/genética , Espécies Reativas de Oxigênio
5.
Child Care Health Dev ; 50(2): e13252, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520205

RESUMO

BACKGROUND: It is thought that physical health conditions start at a young age in people with profound intellectual and multiple disabilities (PIMD). Knowledge regarding the prevalence, associations and development of these physical health conditions could be used for purposes of prevention as well as appropriate care and support but is currently lacking. OBJECTIVE: The aim of this study is to gain insight into the prevalence of physical health conditions and associations between these conditions in young children with PIMD. METHODS: The study used cross-sectional data related to the physical health conditions of children with PIMD (n = 51, aged between 12 and 61 months). Data were collected in Belgium and in the Netherlands through a checklist filled in by primary caregiver(s). Physical health conditions were classified into categories by the 10th revision of the International Classification of Diseases and Related Health Problems (ICD-10) system. The number of physical health conditions and associations between them were analysed. The analysis focused on prevalence rates and associations represented by odds ratios (p < 0.05). A graphical model was estimated to represent dependencies and conditional dependencies between physical health conditions. RESULTS: We found a mean of 3.8 (range 1-8, SD 1.9) physical health conditions per child. Most of the physical health conditions were found in the ICD-10 chapter 'Nervous System', with hypotonia as the most frequent at 70.6%. Five significant large associations were found between spasticity-contractures (OR 9.54); circulatory system-contractures (OR 7.50); scoliosis-contractures (OR 10.25); hearing impairments-skin problems (OR 58.20) and obstipation-hypotonia (OR 19.98). CONCLUSION: This study shows that at a young age, multiple physical health conditions are present in children with PIMD. In addition, we found five associations between physical health conditions.


Assuntos
Contratura , Pessoas com Deficiência , Deficiência Intelectual , Criança , Humanos , Pré-Escolar , Lactente , Prevalência , Estudos Transversais , Hipotonia Muscular , Deficiência Intelectual/epidemiologia
7.
Neurology ; 102(7): e209258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38484275

RESUMO

We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.


Assuntos
Doenças Musculares , Distrofias Musculares , Substância Branca , Feminino , Humanos , Lactente , Hipotonia Muscular/etiologia , Substância Branca/diagnóstico por imagem , Doenças Musculares/genética , Distrofias Musculares/genética , Raciocínio Clínico
8.
BMC Pediatr ; 24(1): 194, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500078

RESUMO

BACKGROUND: Pompe disease, classified as glycogen storage disease type II, arises from a deficiency in the acid alpha-glucosidase (GAA) enzyme, leading to glycogen accumulation in multiple tissues. The unique correlation between genotype and enzyme activity is a key feature. This case highlights an infantile-onset form, emphasizing genetic counseling and prenatal testing importance. CASE PRESENTATION: An 18-week-old infant with respiratory distress, cyanosis, and fever was admitted. Born healthy, her sibling died from Pompe disease. She presented with cardiomegaly, hypotonia, and absent reflexes. Diagnosis was confirmed by significantly reduced GAA activity. Despite treatment initiation, the patient succumbed to cardiac arrest. CONCLUSIONS: The case underscores genetic counseling's role, offering insights into prenatal testing advancements, antenatal diagnosis through echocardiography, and the significance of early intervention, particularly in infantile-onset Pompe disease. SYNOPSIS: Genetic risk assessment and prenatal testing are crucial for families with a history of Pompe disease to improve early diagnosis and management outcomes.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Lactente , alfa-Glucosidases/genética , Aconselhamento Genético , Genótipo , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Hipotonia Muscular
9.
BMC Psychiatry ; 24(1): 180, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439002

RESUMO

BACKGROUND: Cohen syndrome (CS) is a rare autosomal recessive inherited condition characterized by pathological changes affecting multiple systems. The extensive clinical variability associated with CS poses a significant diagnostic challenge. Additionally, there is limited documentation on the co-occurrence of CS with psychiatric symptoms. CASE REPORT: We report a case of a 30-year-old patient exhibiting characteristic physical features and psychiatric symptoms. Whole exome sequencing identified two heterozygous variants, a nonsense variation c.4336 C > T and a missense mutation c.4729G > A. Integrating clinical manifestations with genetic test results, we established the diagnosis of CS combined with psychiatric symptoms. CONCLUSIONS: This case introduces a novel missense variant as a candidate in the expanding array of VPS13B pathogenic variants. Its clinical significance remains unknown, and further investigation may broaden the spectrum of pathogenic variants associated with the VPS13B gene. Early diagnosis of CS is crucial for the prognosis of young children and holds significant importance for their families.


Assuntos
Dedos/anormalidades , Deficiência Intelectual , Microcefalia , Hipotonia Muscular , Miopia , Obesidade , Degeneração Retiniana , Criança , Humanos , Pré-Escolar , Adulto , Microcefalia/diagnóstico , Microcefalia/genética , Documentação , Deficiências do Desenvolvimento
10.
JNMA J Nepal Med Assoc ; 62(270): 155-157, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38409970

RESUMO

Zellweger syndrome is an autosomal recessive disease within the spectrum of peroxisome biogenesis disorder manifesting in the neonatal period with profound dysfunction of the central nervous system, liver and kidney. Common clinical presentations include hypotonia, seizure, hepatomegaly, craniofacial dysmorphism and early death. Mutation in one of the PEX genes coding for a peroxisome assembly protein creates a functionally incompetent organelle causing accumulation of very long chain fatty acids in various organs. Here we report the case of a 5-month-old male presented at birth with hypotonia, poor feeding, gross congenital anomalies and later during early infancy with failure to thrive, several episodes of seizures, aspiration due to feeding difficulties and recurrent severe pneumonia. A whole genomic sequencing brought us to the final diagnosis of Zellweger syndrome. Despite an absence of treatment options, prompt diagnosis of Zellweger syndrome is important for providing appropriate symptomatic care, definitive genetic testing and prenatal counselling. Keywords: case reports; mutation; neonate; Zellweger syndrome.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Recém-Nascido , Humanos , Masculino , Lactente , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Hipotonia Muscular/genética , Transtornos Peroxissômicos/genética , Testes Genéticos , Mutação
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396741

RESUMO

Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt's mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt's regulation of thermogenesis to advance the knowledge on these diseases.


Assuntos
Transtorno do Espectro Autista , Regulação da Temperatura Corporal , Transtornos Cromossômicos , Deficiências do Desenvolvimento , Facies , Hipopituitarismo , 60520 , Ocitocina , Síndrome de Prader-Willi , Humanos , Lactente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Hipotonia Muscular , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo
12.
Sleep Med ; 115: 155-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367357

RESUMO

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sono de Ondas Lentas , Humanos , Doença de Parkinson/complicações , Sono REM , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/complicações , Estudos Transversais , Polissonografia , Hipotonia Muscular , Cafeína , Progressão da Doença
13.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38345890

RESUMO

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Insuficiência Ovariana Primária , Simportadores , Masculino , Adolescente , Humanos , Feminino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Diagnóstico Tardio , Insuficiência Ovariana Primária/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocação Genética , Simportadores/genética
14.
Eur Thyroid J ; 13(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417253

RESUMO

Thyroid hormones play an important role during the development and functioning of the different sensory systems. In order to exert their actions, thyroid hormones need to access their target cells through transmembrane transporter proteins, among which the monocarboxylate transporter 8 (MCT8) stands out for its pathophysiological relevance. Mutations in the gene encoding for MCT8 lead to the Allan-Herndon-Dudley syndrome (AHDS), a rare disease characterised by severe neuromotor and cognitive impairments. The impact of MCT8 deficiency in the neurosensory capacity of AHDS patients is less clear, with only a few patients displaying visual and auditory impairments. In this review we aim to gather data from different animal models regarding thyroid hormone transport and action in the different neurosensory systems that could aid to identify potential neurosensorial alterations in MCT8-deficient patients.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Atrofia Muscular , Hormônios Tireóideos , Animais , Humanos , Hormônios Tireóideos/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Transporte Biológico , Hipotonia Muscular/genética , Transportadores de Ácidos Monocarboxílicos/genética
15.
J Inherit Metab Dis ; 47(2): 217-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326670

RESUMO

We report the case of a Syrian female refugee with late diagnosis of glutaric aciduria type 1 characterised by massive axial hypotonia and quadriplegia who only started adequate diet upon arrival in Switzerland at the age of 4 years, after a strenuous migration journey. Soon after arrival, she died from an unexpected severe upper cervical myelopathy, heralded by acute respiratory distress after a viral infection. This was likely due to repeated strains on her hypotonic neck and precipitated by an orthotopic os odontoideum who led to atlanto-axial subluxation. This case reminds us not to omit handling patients with insufficient postural control and hypotonia with great care to avoid progressive cervical myelopathy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Processo Odontoide , Doenças da Medula Espinal , Pré-Escolar , Feminino , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Glutaril-CoA Desidrogenase/deficiência , Hipotonia Muscular
16.
J Pediatr Endocrinol Metab ; 37(3): 260-270, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353291

RESUMO

OBJECTIVES: Primary Coenzyme Q10 Deficiency-7 (OMIM 616276) results from bi-allelic pathogenic variants in the COQ4 gene. Common clinical findings include hypotonia, seizures, respiratory distress, and cardiomyopathy. In this report, we present two patients diagnosed with Primary Coenzyme Q10 Deficiency-7 along with a review of previously published cases, with the aim being to provide a better understanding of the clinical and laboratory manifestations of the disease. CASE PRESENTATION: A 3-month-and-22-day-old male was admitted to our outpatient clinic due to poor feeding and restlessness. He was born following an uneventful pregnancy to a nonconsanguineous marriage. A physical examination revealed hypotonia, a dolichocephaly, periorbital edema, and long eyelashes. Blood tests revealed metabolic acidosis and elevated serum lactate levels, while the genetic analysis revealed a variant previously reported as pathogenic, c.437T>G (p.Phe146Cys), in the COQ4 gene. Genetic tests were also conducted on both mother and father, and it revealed heterozygous variant, 0.437T>G (p.Phe146Cys), in the COQ4 gene. As a result of these findings, the patient was diagnosed with neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome (Primary Coenzyme Q10 Deficiency-7). A 1-year-old male was admitted to our clinic with complaints of hypotonia, seizures, and feeding difficulties. He was born following an uneventful pregnancy to a nonconsanguineous marriage. On his first day of life, he was admitted to the neonatal intensive care unit due to poor feeding and hypotonia. A physical examination revealed microcephaly, a high palate, poor feeding, weak crying, hypotonia, bilateral horizontal nystagmus, and inability to maintain eye contact. Laboratory findings were within normal limits, while a whole exome sequencing analysis revealed a homozygous variant previously reported as pathogenic, c.458C>T (p.A153V), in the COQ4 gene. The patient was diagnosed with Primary Coenzyme Q10 Deficiency-7. CONCLUSIONS: Primary Coenzyme Q10 Deficiency-7 should be considered in the differential diagnosis of infants presenting with neurological and dysmorphic manifestations.


Assuntos
Ataxia , Cardiomiopatias , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona/deficiência , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Masculino , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Doenças Mitocondriais/patologia , Ubiquinona/genética , Convulsões/complicações , Cardiomiopatias/complicações
17.
J Med Case Rep ; 18(1): 97, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369506

RESUMO

BACKGROUND: We present two genetic causes of polyhydramnios that were challenging to diagnose due to their rarity and complexity. In view of the severe implications, we wish to highlight these rare genetic conditions when obstetricians consider differential diagnoses of polyhydramnios in the third trimester. CASE PRESENTATION: Patient 1 is a 34-year-old Asian woman who was diagnosed with polyhydramnios at 28 weeks' gestation. First trimester testing, fetal anomaly scan, and intrauterine infection screen were normal. Subsequent antenatal ultrasound scans revealed macroglossia, raising the suspicion for Beckwith-Wiedemann syndrome. Chromosomal microarray analysis revealed a female profile with no pathological copy number variants. The patient underwent amnioreduction twice in the pregnancy. The patient presented in preterm labor at 34 weeks' gestation but elected for an emergency caesarean section. Postnatally, the baby was noted to have a bell-shaped thorax, coat hanger ribs, hypotonia, abdominal distension, and facial dysmorphisms suggestive of Kagami-Ogata syndrome. Patient 2 is a 30-year-old Asian woman who was diagnosed with polyhydramnios at 30 weeks' gestation. She had a high-risk first trimester screen but declined invasive testing; non-invasive prenatal testing was low risk. Ultrasound examination revealed a macrosomic fetus with grade 1 echogenic bowels but no other abnormalities. Intrauterine infection screen was negative, and there was no sonographic evidence of fetal anemia. She had spontaneous rupture of membranes at 37 + 3 weeks but subsequently delivered by caesarean section in view of pathological cardiotocography. The baby was noted to have inspiratory stridor, hypotonia, low-set ears, and bilateral toe polysyndactyly. Further genetic testing revealed a female profile with a pathogenic variant of the GLI3 gene, confirming a diagnosis of Greig cephalopolysyndactyly syndrome. CONCLUSION: These cases illustrate the importance of considering rare genetic causes of polyhydramnios in the differential diagnosis, particularly when fetal anomalies are not apparent at the 20-week structural scan. We would like to raise awareness for these rare conditions, as a high index of suspicion enables appropriate counseling, prenatal testing, and timely referral to pediatricians and geneticists. Early identification and diagnosis allow planning of perinatal care and birth in a tertiary center managed by a multidisciplinary team.


Assuntos
Doenças Fetais , Poli-Hidrâmnios , Adulto , Feminino , Humanos , Gravidez , Cesárea , Hipotonia Muscular , Poli-Hidrâmnios/diagnóstico por imagem , Poli-Hidrâmnios/genética , Terceiro Trimestre da Gravidez , Ultrassonografia Pré-Natal
18.
Ann Anat ; 253: 152224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367951

RESUMO

BACKGROUND: 3 M syndrome is first reported in 1975,which characterized by severe pre- and postnatal growth retardation, skeletal malformation and facial dysmorphism. These three genes (CUL7, OBSL1 and CCDC8) have been identified to be respond for 3 M syndrome, of which CUL7 is accounting for approximately 70%. To date, the molecular mechanism underlying the pathogenesis of 3 M syndrome remains poorly understood. Previous studies showed that no Cul7-/- mice could survive after birth, because of growth retardation at late gestational stage and respiratory distress after birth. The establishment of the animal model of cartilage specific Cul7 knockout mice (Cul7fl/fl;Col2a1-CreERT2 mice) has confirmed that Cul7fl/fl;Col2a1-CreERT2 mice can be selective in a time- and tissue-dependent manner, which can provide an experimental basis for further research on severe genetic diseases related to growth plates. OBJECTIVE: To establish a model of Cul7fl/fl;Col2a1-CreERT2 mice based on Cre/LoxP system, and to further observe its phenotype and morphological changes in growth plate. METHODS: The Cul7fl/fl;Col2a1-CreERT2 mice were taken as the experimental group, while the genotype of Cul7fl/+;Col2a1-CreERT2 mice were used as the control group. The gross morphological features and X-ray films of limbs in the two groups were observed every week for 3-6 consecutive weeks, and the length of the mice from nose to the tail, the length of femur and tibia were recorded. In the meantime, The histological morphology of tibial growth plates was compared between the two groups. RESULTS: A preliminary model of Cul7fl/fl;Col2a1-CreERT2 mice was established. The Cul7fl/fl;Col2a1-CreERT2 mice had abnormally short and deformed limbs (P<0.05), increased thickness of growth plate, the disorderly arranged chondrocyte columns, decreased number of cells in the proliferation zone, changes in the shape from flat to round, obviously expanded extracellular matrix, and disordered arrangement, thickening and loosening of bone trabecula at the proximal metaphysis of the femur. CONCLUSIONS: The knockout of Cul7 gene may affect both the proliferation of chondrocytes and the endochondral osteogenesis, confirming that Cul7 is essential for the normal development of bone in the body.


Assuntos
Anormalidades Múltiplas , Nanismo , Lâmina de Crescimento , Deficiência Intelectual , Hipotonia Muscular , Retinite Pigmentosa , Coluna Vertebral/anormalidades , Camundongos , Animais , Camundongos Knockout , Condrócitos , Transtornos do Crescimento , Proteínas Culina/genética
19.
JCI Insight ; 9(7)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376950

RESUMO

Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retardo Mental Ligado ao Cromossomo X , Atrofia Muscular , Animais , Humanos , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/genética , Hormônios Tireóideos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...