Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Eur J Med Genet ; 68: 104933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442846

RESUMO

OBJECTIVE: This study aimed to explore the clinical and genetic features of Chinese patients with mucopolysaccharidosis type VII (MPS VII), thereby improving early detection, disease management, and patient outcomes. METHODS: A retrospective review of medical records for five patients presenting with coarse facial features, rib protrusion, chest deformities, and scoliosis was conducted. Exome sequencing was employed to identify causative genetic mutations. RESULTS: The study comprised five patients (four males, one female) with disease onset at six months of age (range: 0-1.5 years). Common symptoms included coarse facial features, skeletal abnormalities, delayed motor and language development, and intellectual disability. Approximately 80% of the patients exhibited multiple skeletal dysplasias, enlarged adenoids or tonsils, and snoring; 60% had hernias; 40% reported hearing loss and hepatosplenomegaly. Less frequent manifestations were short stature, valvular heart disease, non-immune hydrops fetalis, and corneal opacity. All patients demonstrated elevated urine glycosaminoglycans levels and absent ß-glucuronidase activity in leukocytes. Exome sequencing identified compound heterozygous mutations in the GUSB gene in all four tested patients, uncovering seven mutations in total, three of which were novel (c.189G > A, c.869C > T, and c.1745 T > C). Furthermore, prenatal diagnosis through chorionic villus sampling in subsequent pregnancies of one patient's mother revealed both fetuses had normal ß-glucuronidase activity and no disease-causing mutations in the GUSB gene. CONCLUSION: The study's patients all presented with classic symptoms of MPS VII due to ß-glucuronidase deficiency, with three new pathogenic mutations identified in the GUSB gene. Genetic counseling and prenatal testing were highlighted as crucial for disease prevention.


Assuntos
Mucopolissacaridose VII , Masculino , Gravidez , Humanos , Feminino , Recém-Nascido , Lactente , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/patologia , Glucuronidase/genética , Facies , Mutação
2.
Mol Genet Metab ; 141(3): 108145, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301529

RESUMO

Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, ß-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridose VII , Gravidez , Feminino , Humanos , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/terapia , Glucuronidase/metabolismo , Hepatomegalia , Esplenomegalia , Glicosaminoglicanos , Doenças Raras/tratamento farmacológico
3.
Prenat Diagn ; 43(12): 1567-1569, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964423

RESUMO

Duo exome testing was performed on a fetus conceived via in vitro fertilization with an egg donor. The fetus presented with non-immune hydrops fetalis (NIHF) at 20 + 0 weeks gestation. Two variants were detected in the GUSB gene. Biallelic pathogenic variants cause mucopolysaccharidosis type VII (MPS-VII), which can present with NIHF prenatally. At the time of analysis and initial report, one variant was classified as likely pathogenic and the other as of uncertain clinical significance. Biochemical testing of the amniotic fluid supernatant showed elevated glycosaminoglycans and low ß-glucuronidase activity consistent with the diagnosis of MPS-VII. This evidence allowed the upgrade of the pathogenicity for both variants, confirming the diagnosis of MPS-VII. The infant was born at 36 + 5 weeks and enzyme replacement therapy (ERT) using vestronidase was initiated at 20 days with planning for hematopoietic stem cell transplant ongoing. The ERT therapy has been well tolerated, with decreasing quantitative urine glycosaminoglycans. Long-term follow up is required to determine whether treatment has been successful. This case demonstrates the utility of alternative testing methods to clarify the pathogenicity of variants and the clinical utility of obtaining a diagnosis antenatally in facilitating treatment in the neonatal period, and specifically highlights MPS-VII as a treatable cause of NIHF.


Assuntos
Mucopolissacaridose VII , Recém-Nascido , Gravidez , Feminino , Humanos , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/terapia , Glucuronidase/genética , Glucuronidase/uso terapêutico , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Hidropisia Fetal/terapia , Diagnóstico Pré-Natal , Líquido Amniótico , Glicosaminoglicanos
4.
J Obstet Gynaecol Res ; 49(10): 2538-2543, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37469021

RESUMO

Mucopolysaccharidosis (MPS)-VII, called Sly disease, is a lysosomal storage disorder that can cause fetal hydrops, including fetal hydrothorax (FHT). We describe two fetal cases that received thoracoamniotic shunting for FHT, which was later found to be associated with MPS-VII by exome sequencing. Bilateral FHT accompanied by skin edema and ascites was found before 20 weeks of gestation in both cases. One fetus died in utero at 35 weeks of gestation, and the other survived with preterm delivery at 30 weeks of gestation. Both cases inherited compound pathogenic variants of GUSB from parents. Comparison with previously reported primary FHT cases revealed distinct clinical features in MPS-VII-associated FHT: early gestational age at diagnosis (<26 weeks), bilateral effusion, skin edema with ascites, and poor survival. A genetic analysis would be considered for FHT cases, with consideration of shunting when they show early-onset bilateral effusions with skin edema and ascites.


Assuntos
Hidrotórax , Mucopolissacaridose VII , Gravidez , Recém-Nascido , Feminino , Humanos , Lactente , Hidrotórax/etiologia , Ascite , Hidropisia Fetal/etiologia , Cuidado Pré-Natal
5.
PLoS One ; 17(11): e0277140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355797

RESUMO

Skeletal alterations in the head and neck region, such as midfacial hypoplasia, foramen magnum stenosis and spinal canal stenosis, are commonly observed in patients with mucopolysaccharidosis (MPS). However, enzyme replacement therapy (ERT), one of the major treatment approaches for MPS, shows limited efficacy for skeletal conditions. In this study, we analysed the craniofacial morphology of mice with MPS type VII, and investigated the underlying mechanisms promoting jaw deformities in these animals. Furthermore, we investigated the effects of C-type natriuretic peptide (CNP), a potent endochondral ossification promoter, on growth impairment of the craniofacial region in MPS VII mice when administered alone or in combination with ERT. MPS VII mice exhibited midfacial hypoplasia caused by impaired endochondral ossification, and histological analysis revealed increased number of swelling cells in the resting zone of the spheno-occipital synchondrosis (SOS), an important growth centre for craniomaxillofacial skeletogenesis. We crossed MPS VII mice with transgenic mice in which CNP was expressed in the liver under the control of the human serum amyloid-P component promoter, resulting in elevated levels of circulatory CNP. The maxillofacial morphological abnormalities associated with MPS VII were ameliorated by CNP expression, and further prevented by a combination of CNP and ERT. Histological analysis showed that ERT decreased the swelling cell number, and CNP treatment increased the width of the proliferative and hypertrophic zones of the SOS. Furthermore, the foramen magnum and spinal stenoses observed in MPS VII mice were significantly alleviated by CNP and ERT combination. These results demonstrate the therapeutic potential of CNP, which can be used to enhance ERT outcome for MPS VII-associated head and neck abnormalities.


Assuntos
Mucopolissacaridose VII , Peptídeo Natriurético Tipo C , Humanos , Camundongos , Animais , Peptídeo Natriurético Tipo C/farmacologia , Constrição Patológica/complicações , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/tratamento farmacológico , Osteogênese , Camundongos Transgênicos
6.
Mol Genet Metab ; 136(1): 28-37, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331634

RESUMO

Mucopolysaccharidosis (MPS) VII is an ultra-rare, autosomal-recessive, metabolic disease caused by a deficiency of ß-glucuronidase, a lysosomal enzyme that hydrolyzes glycosaminoglycans (GAGs), including dermatan sulfate (DS), chondroitin sulfate, and heparan sulfate (HS). ß-glucuronidase deficiency leads to progressive accumulation of undegraded GAGs in lysosomes of affected tissues, which may cause hydrops fetalis, short stature, hepatosplenomegaly, and cognitive impairment. An open-label, multicenter, phase II study was conducted in 8 pediatric subjects <5 years of age with MPS VII. Subjects received the recombinant human ß-glucuronidase vestronidase alfa 4 mg/kg by intravenous infusion every other week for 48 weeks (treatment period). Those who completed the 48-week treatment were offered to continue treatment with vestronidase alfa 4 mg/kg for up to 240 weeks or until withdrawal of consent, discontinuation, or study termination (continuation period). The level of GAG excreted in urine (uGAG) above normal has been shown to correlate with disease severity and clinical outcomes in MPS diseases. Therefore, the primary efficacy endpoint of this study was to determine the mean percentage change in uGAG DS excretion from baseline to week 48. Statistically significant reductions in uGAG DS from baseline were observed at each visit (p < 0.0001), with a least square mean (standard error) percentage change of -60% (6.6) at week 4 (first post-baseline assessment) and -61% (6.41) at week 48 (final assessment during treatment period). Secondary efficacy endpoints included change from baseline to week 48 in growth and hepatosplenomegaly. Positive trends were observed toward increased standing height Z-score (mean [standard deviation] at baseline, -2.630 [1.17], n = 8; at week 48, -2.045 [0.27], n = 7) and growth velocity (mean [SD] Z-score at baseline, -2.59 [1.49], n = 4; at week 48, -0.39 [2.10], n = 4; p = 0.27). Hepatomegaly was resolved in 3 of 3 subjects assessed by ultrasound and in 5 of 6 subjects assessed by physical examination; splenomegaly was resolved in 1 of 3 subjects assessed by ultrasound and in 2 of 2 subjects assessed by physical examination. There were no new safety signals identified during this study. Mild-to-moderate infusion-associated reactions occurred in 4 (50%) subjects. In conclusion, long-term vestronidase alfa treatment demonstrated a rapid and sustained reduction in uGAGs, maintained growth, and improved hepatosplenomegaly in pediatric subjects with MPS VII <5 years of age. Trial registration: NCT02418455.


Assuntos
Mucopolissacaridose VII , Criança , Terapia de Reposição de Enzimas , Glucuronidase , Glicosaminoglicanos/urina , Hepatomegalia , Humanos , Hidrolases , Mucopolissacaridose VII/terapia , Esplenomegalia
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(7): 166399, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318126

RESUMO

Mucopolysaccharidosis type VII (MPS VII) is a recessively inherited lysosomal storage disorder caused due to ß-glucuronidase (ß-GUS) enzyme deficiency. Prominent clinical symptoms include hydrops fetalis, musculoskeletal deformities, neurodegeneration and hepatosplenomegaly leading to premature death in most cases. Apart from these, MPS VII is also characterized as adipose storage deficiency disorder although the underlying mechanism of this lean phenotype in the patients or ß-GUS-deficient mice still remains a mystery. We addressed this issue using our recently developed Drosophila model of MPS VII (the CG2135-/- fly), which also exhibited a significant loss of body fat. We report here that the lean phenotype of the CG2135-/- larvae is due to fewer number of adipocytes, smaller lipid droplets and reduced adipogenesis. Our data further revealed that there is an abnormal accumulation of autophagosomes in the CG2135-/- larvae due to autophagosome-lysosome fusion defect. Decreased lysosome-mediated turnover also led to attenuated mTOR activity in the CG2135-/- larvae. Interestingly, treatment of the CG2135-/- larvae with mTOR stimulators, 3BDO or glucose, led to the restoration of mTOR activity with simultaneous correction of the autophagy defect and adipose storage deficiency. Our finding thus established a hitherto unknown mechanistic link between autophagy dysfunction, mTOR downregulation and reduced adiposity in MPS VII.


Assuntos
Mucopolissacaridose VII , Tecido Adiposo , Animais , Autofagia , Drosophila , Humanos , Camundongos , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/terapia , Serina-Treonina Quinases TOR/genética
9.
J Formos Med Assoc ; 121(3): 712-717, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34420841

RESUMO

The present study included the first case of mucopolysaccharidosis (MPS) type VII in Taiwan. During pregnancy, the patient was diagnosed with hydrops fetalis and had ascites aspiration 4 times. In the following years, she presented gradually with chronic lung disease, developmental delay, short stature, dysmorphic features of coarse face, macroglossia and pigeon chest with scoliosis. Upon referral at age 4 years, she had corneal clouding, mild limitation of range of motion (ROM) and hepatosplenomegaly. X-ray showed paddle ribs and dysplastic vertebral bodies. MPS was suspected and urine glycosaminoglycans (GAGs) elevated were noted. The leukocyte enzymatic analyses for MPS I, MPS II, MPS IIIB, MPS IVA, and MPS VI were all normal. Afterward, the molecular analysis showed two heterozygous genetic variants of c.104C > A and c.1454C > T in trans in the GUSB gene (NM_000181.4) which were the causes for MPS VII. Then, we checked the leukocyte ß-glucuronidase activity for MPS VII and showed extremely low, therefore confirmed the diagnosis. Clinicians should increase the awareness on the early signs of MPS to have a prompt diagnosis and offer the correct treatment like enzyme replacement therapy (ERT) as early as possible.


Assuntos
Mucopolissacaridose VII , Pré-Escolar , Feminino , Humanos , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/terapia , Gravidez , Radiografia , Amplitude de Movimento Articular , Taiwan
10.
Orphanet J Rare Dis ; 16(1): 445, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686181

RESUMO

BACKGROUND: Mucopolysaccharidosis type VII (Sly syndrome) is an ultra-rare neurometabolic disorder caused by inherited deficiency of the lysosomal enzyme ß-glucuronidase. Precise data regarding its epidemiology are scarce, but birth prevalence is estimated to vary from 0.02 to 0.24 per 100,000 live births. The clinical course and disease progression are widely heterogeneous, but most patients have been reported to show signs such as skeletal deformities or cognitive delay. Additionally, detection criteria are not standardized, resulting in delayed diagnosis and treatment. METHODS: We present a cohort of 9 patients with mucopolysaccharidosis VII diagnosed in the Iberian Peninsula, either in Spain or Portugal. The diagnostic approach, genetic studies, clinical features, evolution and treatment interventions were reviewed. RESULTS: We found that skeletal deformities, hip dysplasia, hydrops fetalis, hepatosplenomegaly, hernias, coarse features, respiratory issues, and cognitive and growth delay were the most common features identified in the cohort. In general, patients with early diagnostic confirmation who received the appropriate treatment in a timely manner presented a more favorable clinical evolution. CONCLUSIONS: This case series report helps to improve understanding of this ultra-rare disease and allows to establish criteria for clinical suspicion or diagnosis, recommendations, and future directions for better management of patients with Sly syndrome.


Assuntos
Mucopolissacaridose VII , Europa (Continente) , Humanos , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/genética , Portugal , Espanha
11.
Mol Genet Metab ; 133(4): 378-385, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34154922

RESUMO

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient ß-glucuronidase activity, leading to accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans. Patients with MPS VII exhibit progressive spinal deformity, which decreases quality of life. Previously, we demonstrated that MPS VII dogs exhibit impaired initiation of secondary ossification in the vertebrae and long bones. The objective of this study was to build on these findings and comprehensively characterize how vertebral bone disease manifests progressively in MPS VII dogs throughout postnatal growth. Vertebrae were collected postmortem from MPS VII and healthy control dogs at seven ages ranging from 9 to 365 days. Microcomputed tomography and histology were used to characterize bone properties in primary and secondary ossification centers. Serum was analyzed for bone turnover biomarkers. Results demonstrated that not only was secondary ossification delayed in MPS VII vertebrae, but that it progressed aberrantly and was markedly diminished even at 365 days-of-age. Within primary ossification centers, bone volume fraction and bone mineral density were significantly lower in MPS VII at 180 and 365 days-of-age. MPS VII growth plates exhibited significantly lower proliferative and hypertrophic zone cellularity at 90 days-of-age, while serum bone-specific alkaline phosphatase (BAP) was significantly lower in MPS VII dogs at 180 days-of-age. Overall, these findings establish that vertebral bone formation is significantly diminished in MPS VII dogs in both primary and secondary ossification centers during postnatal growth.


Assuntos
Doenças Ósseas/fisiopatologia , Progressão da Doença , Mucopolissacaridose VII/complicações , Coluna Vertebral/patologia , Animais , Animais Recém-Nascidos , Doenças Ósseas/genética , Osso e Ossos/patologia , Cães , Feminino , Crescimento e Desenvolvimento , Masculino , Mucopolissacaridose VII/genética , Osteogênese
12.
Orphanet J Rare Dis ; 16(1): 238, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022924

RESUMO

BACKGROUND: Mucopolysaccharidosis type VII (MPS VII), also known as Sly syndrome, caused by deficiency of the lysosomal enzyme ß-glucuronidase, is an ultra-rare disorder with scarce epidemiological data and few publications about natural history and clinical spectrum. METHODS: We conducted a case series report which included retrospective data from all MPS VII patients diagnosed through the "MPS Brazil Network" who were known to be alive in 2020 in Brazil (N = 13). Clinical data were obtained from a review of the medical records and descriptive statistics and variables were summarized using counts and percentages of the total population. RESULTS: The majority of the patients were from the Northeast region of Brazil. Among the signs and symptoms that raised the clinical suspicion of MPS, coarse face was the most frequent; 58% of the patients had a history of non-immune hydrops fetalis. All the subjects presented short neck and trunk. The majority presented typical phenotypical signs of MPS disorders. They all presented neurodevelopmental delay and cognitive impairment. About half of this cohort had knees deformities. Dysostosis multiplex was identified in almost all patients and cardiomyopathy was less frequent than observed in other types of MPSs. The mean age at diagnosis was 5 years, ranging from 1 to 14 years. Almost all patients (12/13) were homozygous for the c.526C>T (p.Leu176Phe) mutation. A novel variant of the GUSB gene was found, the c.875T>C (p.Leu292Pro), in a compound heterozygous with the c.526C>T (p.Leu176Phe) variant. CONCLUSIONS: This case series is the biggest data collection of MPS VII patients alive in Latin America. The overall clinical picture of the MPS VII patients is very similar to other MPS disorders, including a spectrum of severity and delayed diagnosis.


Assuntos
Mucopolissacaridose VII , Brasil/epidemiologia , Humanos , Mucopolissacaridose VII/genética , Mutação , Estudos Retrospectivos
13.
Vet Clin Pathol ; 50(1): 164-169, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33719080

RESUMO

Routine blood smear findings in two of four 11-day-old mixed-breed dog littermates were suggestive of a lysosomal storage disease (LSD) that was documented to be mucopolysaccharidosis type VII (MPS VII) by molecular testing. In this condition, a functional ß-glucuronidase deficiency results in the accumulation of glycosaminoglycans (GAGs) in cells and tissues where ß-glucuronidase is important in GAG degradation. Most neutrophils and a moderate number of lymphocytes within the blood had atypical cytoplasmic magenta inclusions. The bone marrow assessment from one of the two affected pups at 24 days of age revealed similar magenta granulation in myeloid precursor cells that was most prominent in promyelocytes and myelocytes. Moreover, atypical magenta material was present within vacuoles as well as extracellularly in some osteoblasts and macrophages. Histologic bone marrow sections revealed prominent vacuolation of osteoblasts, and some osteoclasts appeared separated from the bone by layers of osteoblasts or hematopoietic cells. At 2 months of age, the second affected dog showed moderate growth retardation and had similar but more prominent hematologic findings that extended to monocytes, eosinophils, and eosinophil precursors. It had an increased number of bone marrow macrophages with many vacuoles that could be seen cytologically to contain magenta material, and there was mild nonselective phagocytosis of hemic cells. Of the hematologic cells, inclusions were most prominent in promyelocytes, myelocytes, and macrophages, cells with relatively high ß-glucuronidase activity, and GAG exposure within lysosomes or lysosome-like primary granules of granulocyte precursors.


Assuntos
Doenças do Cão , Mucopolissacaridose VII , Animais , Medula Óssea , Cães , Glucuronidase , Macrófagos , Monócitos , Mucopolissacaridose VII/veterinária
14.
Cardiovasc Pathol ; 50: 107297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33045360

RESUMO

Mucopolysaccharidosis type VII (MPS VII) is a rare autosomal recessive lysosomal storage disorder. MPS VII is caused by mutations in the GUSB gene that encodes ß-glucuronidase. Adult MPS VII patients present with musculoskeletal abnormalities, coarse features, and corneal clouding. Cardiac and valvular impairment are common; however, severe valvular disease necessitating surgery has not yet been reported. We present a 32-year-old male MPS VII patient admitted to our hospital with decompensated heart failure. We identified aortic valve disease with severe stenosis (valve area 0.69 cm2) and moderate regurgitation. Severe mitral valve stenosis (valve area 1 cm2) with moderate to severe regurgitation was also found in the patient. In addition, an occlusion of the right coronary artery (RCA) was documented. The patient underwent surgical replacement of the mitral and aortic valves with mechanical prostheses and implantation of a venous bypass graft to his RCA. The surgery led to a significant improvement of his clinical symptoms. Six months after the procedure, both mechanical valves function normally. Histopathological assessment identified chronic inflammatory infiltrates, fibrosis and calcifications in both resected valves. Foamy cytoplasmic transformation was most evident in the valvular interstitial cells. The ultrastructural vacuolar abnormality seen in these cells corresponded to storage changes observed in other MPSs. In conclusion, we describe clinical findings and valvular pathology in an MPS VII patient with the first-reported successful combined surgical valve replacement and myocardial revascularization. The histological and ultrastructural analyses revealed that the lysosomal storage predominantly affected the valvular interstitial cells.


Assuntos
Insuficiência da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Ponte de Artéria Coronária , Oclusão Coronária/cirurgia , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral/cirurgia , Estenose da Valva Mitral/cirurgia , Mucopolissacaridose VII/complicações , Adulto , Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/etiologia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/etiologia , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/etiologia , Humanos , Masculino , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/etiologia , Estenose da Valva Mitral/diagnóstico por imagem , Estenose da Valva Mitral/etiologia , Mucopolissacaridose VII/diagnóstico , Índice de Gravidade de Doença , Resultado do Tratamento
15.
J Anat ; 238(2): 416-425, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32895948

RESUMO

The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Abnormal development of the vertebrae and long bones is a hallmark of skeletal disease in several MPS subtypes; however, the underlying cellular mechanisms remain poorly understood. The objective of this study was to conduct an ultrastructural examination of how lysosomal storage differentially affects major skeletal cell types in MPS I and VII using naturally occurring canine disease models. We showed that both bone and cartilage cells from MPS I and VII dog vertebrae exhibit significantly elevated storage from early in postnatal life, with storage generally greater in MPS VII than MPS I. Storage was most striking for vertebral osteocytes, occupying more than forty percent of cell area. Secondary to storage, dilation of the rough endoplasmic reticulum (ER), a marker of ER stress, was observed most markedly in MPS I epiphyseal chondrocytes. Significantly elevated immunostaining of light chain 3B (LC3B) in MPS VII epiphyseal chondrocytes suggested impaired autophagy, while significantly elevated apoptotic cell death in both MPS I and VII chondrocytes was also evident. The results of this study provide insights into how lysosomal storage differentially effects major skeletal cell types in MPS I and VII, and suggests a potential relationship between storage, ER stress, autophagy, and cell death in the pathogenesis of MPS skeletal defects.


Assuntos
Condrócitos/ultraestrutura , Mucopolissacaridose I/patologia , Mucopolissacaridose VII/patologia , Osteócitos/ultraestrutura , Vértebras Torácicas/ultraestrutura , Animais , Animais Recém-Nascidos , Autofagia , Estudos de Casos e Controles , Modelos Animais de Doenças , Cães , Retículo Endoplasmático/ultraestrutura , Feminino , Masculino
17.
Connect Tissue Res ; 62(6): 698-708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33334202

RESUMO

Purpose: Mucopolysaccharidosis (MPS) VII is a genetic, lysosomal storage disease characterized by abnormal accumulation of glycosaminoglycans in cells and tissues. MPS VII patients exhibit multiple failures of endochondral ossification during postnatal growth, including markedly delayed cartilage-to-bone conversion in the vertebrae and long bones. Cartilage canals provide the template for vascularization at the onset of secondary ossification. The objective of this study was to investigate whether abnormal cartilage canal architecture and enzyme-mediated extracellular matrix (ECM) remodeling contribute to delayed cartilage-to-bone conversion in MPS VII.Materials and Methods: The epiphyseal cartilage canal networks of 9-day-old healthy control and MPS VII-affected dog vertebrae were characterized using high-resolution, contrast-free quantitative susceptibility mapping magnetic resonance imaging. Relative expression levels of matrix metalloproteinases (MMPs) 9, 13 and 14 were examined using immunohistochemistry, while tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were examined using in situ enzyme staining.Results: Interestingly, the density, number, connectivity and thickness of cartilage canals was not significantly different between MPS VII and control vertebrae. Immunohistochemistry revealed diminished MMP-9, but normal MMP-13 and 14 expression by epiphyseal cartilage chondrocytes, while ALP and TRAP enzyme expression by chondrocytes and chondroclasts, respectively, were both diminished in MPS VII.Conclusions: Our findings suggest that while the epiphyseal cartilage canal network in MPS VII is normal at the onset of secondary ossification, expression of enzymes required for cartilage resorption and replacement with mineralized ECM, and initiation of angiogenesis, is impaired.


Assuntos
Doenças Ósseas , Mucopolissacaridose VII , Animais , Cães , Matriz Extracelular/patologia , Lâmina de Crescimento , Humanos , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/patologia , Osteogênese
18.
Clin Chim Acta ; 513: 68-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382994

RESUMO

Non-Immune Hydrops Fetalis (NIHF) is an intrauterine condition characterized by excessive fluid accumulation in at least two fetal compartments in the absence of maternal circulating red cell antibodies. It is associated with a poor prognosis and a wide etiological spectrum. Among the metabolic causes, Mucopolysaccharidosis type VII depicts the most frequent type of lysosomal storage disorders in the cause of NIHF. Nonetheless, it remains an ultra-rare disorder, as less than 150 cases have been reported in the literature. This rarity seems to be related to misdiagnosis since the underlying etiology remains unelusive in most cases of NIHF. In this report, we describe the first Tunisian case of Mucopolysaccharidosis type VII caused by a homozygous mutation in the GUSB gene confirmed by a Next-Generation Sequencing gene panel in a patient with recurrent NIHF.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose VII , Feto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/genética
19.
Mol Genet Metab ; 131(1-2): 197-205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32739280

RESUMO

The cause of neurodegeneration in MPS mouse models is the focus of much debate and what the underlying cause of disease pathology in MPS mice is. The timing of development of pathology and when this can be reversed or impacted is the key to developing suitable therapies in MPS. This study is the first of its kind to correlate the biochemical changes with the functional outcome as assessed using non-invasive behaviour testing across multiple mucopolysaccharidosis (MPS) mouse models. In the MPS brain, the primary lysosomal enzyme dysfunction leads to accumulation of primary glycosaminoglycans (GAGs) with gangliosides (GM2 and GM3) being the major secondary storage products. With a focus on the neuropathology, a time course experiment was conducted in MPS I, MPS IIIA, MPS VII (severe and attenuated models) in order to understand the relative timing and level of GAG and ganglioside accumulation and how this correlates to behaviour deficits. Time course analysis from 1 to 6 months of age was conducted on brain samples to assess primary GAG (uronic acid), ß-hexosaminidase enzyme activity and levels of GM2 and GM3 gangliosides. This was compared to a battery of non-invasive behaviour tests including open field, inverted grid, rotarod and water cross maze were assessed to determine effects on motor function, activity and learning ability. The results show that the GAG and ganglioside accumulation begins prior to the onset of detectable changes in learning ability and behaviour. Interestingly, the highest levels of GAG and ganglioside accumulation was observed in the MPS IIIA mouse despite having 3% residual enzyme activity. Deficits in motor function were clearly observed in the severe Gusmps/mps, which were significantly delayed in the attenuated Gustm(L175F)Sly model despite their minimal increase in detectable enzyme activity. This suggests that genotype and residual enzyme activity are not indicative of severity of disease pathology in MPS disease and there exists a window when there are considerable storage products without detectable functional deficits which may allow an alteration to occur with therapy.


Assuntos
Encéfalo/metabolismo , Glucuronidase/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose I/metabolismo , Mucopolissacaridose VII/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M3)/genética , Gangliosídeo G(M3)/metabolismo , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia
20.
Mol Genet Metab ; 130(1): 65-76, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32192868

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a rare lysosomal storage disease characterized by a deficiency in the enzyme ß-glucuronidase that has previously been successfully treated in a mouse model with enzyme replacement therapy. Here, we present the generation of a novel, highly sialylated version of recombinant human ß-glucuronidase (rhGUS), vestronidase alfa, that has high uptake, resulting in an improved enzyme replacement therapy for the treatment of patients with MPS VII. In vitro, vestronidase alfa has 10-fold more sialic acid per mole of rhGUS monomer than a prior rhGUS version (referred to as GUS 43/44) and demonstrated very high affinity at ~1 nM half maximal uptake in human MPS VII fibroblasts. Vestronidase alfa has a longer enzymatic half-life after uptake into fibroblasts compared with other enzymes used as replacement therapy for MPS (40 days vs 3 to 4 days, respectively). In pharmacokinetic and tissue distribution experiments in Sprague-Dawley rats, intravenous administration of vestronidase alfa resulted in higher serum rhGUS levels and enhanced ß-glucuronidase activity distributed to target tissues. Weekly intravenous injections of vestronidase alfa (0.1 mg/kg to 20 mg/kg) in a murine model of MPS VII demonstrated efficient enzyme delivery to all tissues, including bone and brain, as well as reduced lysosomal storage of glycosaminoglycans (GAGs) in a dose-dependent manner, resulting in increased survival after 8 weeks of treatment. Vestronidase alfa was well-tolerated and demonstrated no toxicity at concentrations that reached 5-times the proposed clinical dose. In a first-in-human phase 1/2 clinical trial, a dose-dependent reduction in urine GAG levels was sustained over 38 weeks of treatment with vestronidase alfa. Together, these results support the therapeutic potential of vestronidase alfa as an enzyme replacement therapy for patients with MPS VII.


Assuntos
Terapia de Reposição de Enzimas/métodos , Glucuronidase/administração & dosagem , Glucuronidase/metabolismo , Lisossomos/enzimologia , Mucopolissacaridose VII/enzimologia , Mucopolissacaridose VII/terapia , Administração Intravenosa , Adulto , Animais , Células CHO , Criança , Cricetulus , Feminino , Fibroblastos/metabolismo , Glucuronidase/sangue , Glucuronidase/genética , Glucuronidase/farmacocinética , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/urina , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...