Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.573
Filtrar
1.
BMC Pediatr ; 24(1): 244, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580952

RESUMO

BACKGROUND: ß-Thalassemia major (BTM) is one of the most common hereditary anemias worldwide. Patients suffer from iron overload that results from repeated blood transfusion This in turn leads to multiple organ damage and endocrinopathies. This study aims to assess the prevalence of growth retardation, hypothyroidism, and diabetes mellitus in children and adolescents with BTM treated at Dubai Thalassemia Centre. METHODS: A total of 105 children and adolescents were included in this retrospective observational study. RESULTS: 39 children and 66 adolescents' data were analyzed. Females composed 51.3% (n = 20) of children and 53.0% (n = 35) of adolescents. Pretransfusion hemoglobin below 9 gm/dl was observed in 10.8% (n = 4) and 10.6% (n = 7) in children and adolescents, respectively. The mean age of menarche was 13.5 years. Among all study participants, 22.6% (n = 14) had normal height velocity whereas 37.1% (n = 23) had reduced height velocity in one year and 40.3% (n = 25) had reduced height velocity in two consecutive years. The proportion of children and adolescents showing reduced height velocity was significantly higher in females compared to the males (90.6% versus 63.3%, respectively, Chi-square = 6.597, p-value = 0.010). Although none of the study participants had diabetes mellitus, 26.1% (n = 12/46) had pre-diabetes. Elevated TSH was observed in 14.7% (n = 5) children and 8.1% (n = 5) adolescents while low FT4 was reported in one child and one adolescent. CONCLUSION: Of all endocrinopathies seen among children and adolescents with BTM, growth delay remains the main concern for this group of patients. Effective treatment is key to further reducing endocrinopathies. Although the sample size is limited, we postulate that the low percentage of endocrinopathies among children with BTM treated at Dubai thalassemia center and the low level of pretransfusion anemia reflect the effective transfusion and chelation at the center.


Assuntos
Diabetes Mellitus , Hipotireoidismo , Sobrecarga de Ferro , Talassemia beta , Masculino , Criança , Feminino , Adolescente , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Quelantes de Ferro/efeitos adversos , Hipotireoidismo/epidemiologia , Hipotireoidismo/etiologia
2.
Ann Med ; 56(1): 2338246, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38604224

RESUMO

BACKGROUND: Thalassemia is the most prevalent hereditary anaemia worldwide. Severe forms of thalassemia can lead to reduced life expectancy due to disease-related complications. OBJECTIVES: To investigate the survival of thalassemia patients across varying disease severity, causes of death and related clinical factors. PATIENTS AND METHODS: We conducted a retrospective review of thalassemia patients who received medical care at Chiang Mai University Hospital. The analysis focused on survival outcomes, and potential associations between clinical factors and patient survival. RESULTS: A total of 789 patients were included in our study cohort. Among them, 38.1% had Hb H disease, 35.4% had Hb E/beta-thalassemia and 26.5% had beta-thalassemia major. Half of the patients (50.1%) required regular transfusions. Sixty-five patients (8.2%) had deceased. The predominant causes of mortality were infection-related (36.9%) and cardiac complications (27.7%). Transfusion-dependent thalassemia (TDT) (adjusted HR 3.68, 95% CI 1.39-9.72, p = 0.008) and a mean serum ferritin level ≥3000 ng/mL (adjusted HR 4.18, 95% CI 2.20-7.92, p < 0.001) were independently associated with poorer survival. CONCLUSIONS: Our study highlights the primary contributors to mortality in patients with thalassemia as infection-related issues and cardiac complications. It also underscores the significant impact of TDT and elevated serum ferritin levels on the survival of thalassemia patients.


Assuntos
Cardiopatias , Sobrecarga de Ferro , Talassemia , Talassemia beta , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Tailândia/epidemiologia , Causas de Morte , Talassemia/complicações , Fatores de Risco , Sobrecarga de Ferro/etiologia
3.
Part Fibre Toxicol ; 21(1): 17, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561847

RESUMO

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Assuntos
Ferroptose , Sobrecarga de Ferro , MicroRNAs , Nanopartículas , Humanos , Miócitos Cardíacos , Dióxido de Silício/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Ferro/farmacologia , MicroRNAs/metabolismo , Nanopartículas/toxicidade
4.
Int J Biol Macromol ; 265(Pt 1): 130897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490376

RESUMO

Although iron in meat is an important trace element for human diet, its presence also induces postprandial oxidative stress and aggravates the condition of patients with iron overload. To overcome this situation, a type of new tunable Fe-absorption bioactive materials was constructed in this study. First, four phenolic acids (Caffeic acid, Gallic acid, Protocatechuic acid, Chlorogenic acid) were grafted onto chitosan. Then, the copolymers were prepared into micron-level microspheres by emulsification method, which were characterized in adsorption isotherms (Langmuir model), swelling behavior and digestion characteristics. In order to verify the practical application effect of microspheres, Protocatechuic acid grafted chitosan microspheres as the representative were used in sirloin powder to observe their effects in vitro digestion and rat experiment. In the present study, microspheres were innovatively applied in meat consumption, which significantly inhibited the oxidation of meat in the process of digestion and effectively controlled the iron absorption. These results are expected to play an important role in promoting the healthy consumption of meat around the world, improving gastrointestinal redox status through dietary assistance, and treating diseases related to iron overload.


Assuntos
Quitosana , Hidroxibenzoatos , Sobrecarga de Ferro , Humanos , Ratos , Animais , Microesferas , Oxirredução , Carne , Ferro , Digestão
5.
J Biochem Mol Toxicol ; 38(4): e23683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483099

RESUMO

Cellular senescence and iron accumulation were separately observed in diabetic nephropathy (DN). Limited evidence supports that iron was significantly accumulated in senescent cells. We aimed to explore whether iron is involved in the pathogenesis role of senescence in DN. Renal cells were treated with high glucose (HG, 35 mM) for 10 or 15 days, and DN mice were induced by high-fat diet and streptozotocin. Gene ontology enrichment, gene set enrichment analysis analysis, ß-galactosidase staining, 5-ethynyl-2-deoxyuridine staining, and western blot depicted the upregulated senescence pathway in vitro and in vivo of DN. Lactate dehydrogenase (LDH) release was increased by HG and reversed by p16/p21 knockdown, and the supernatant of HG-treated cells caused increased LDH release from normal cells. Iron metabolism-related protein expression was disordered after HG exposure concomitant with senescence. Ferric ammonium citrate (50 µM) upregulated gamma-H2A.X variant histone and increased the senescence markers in HG-treated cells. The treatment of deferoxamine (0.5 µM) had the opposite effect. Compared to the non-DN individual, increased ferritin and senescence markers were verified in DN mice and patients, and the co-localization of ferritin and senescence markers was observed by immunofluorescence. These results suggested that accumulated iron was correlated with aggravated DNA damage and accelerated senescence, and revealed the role of iron in the cellular senescence of diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sobrecarga de Ferro , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Ferro/farmacologia , Ferritinas , Glucose/farmacologia , Senescência Celular
6.
Artigo em Inglês | MEDLINE | ID: mdl-38505909

RESUMO

This study aimed to investigate the underlying molecular mechanisms of transferrin receptor (TFR1) in non-small cell lung cancer (NSCLC). Histological analysis was performed using hematoxylin-eosin (HE) staining. The number of CD8+ T cell were determined by flow cytometry and immunofluorescence assays. mRNA levels were analyzed by qRT-PCR. Protein expression was detected by western blot. Ferroptosis was detected by using propidium iodide (PI) staining. Xenograft experiment was applied for determining tumor growth. The results showed that interferon (IFN)-γ plus iron dextran (FeDx) induced iron overload and the ferroptosis of NSCLC cells. Moreover, IFN-γ-mediated upregulation of TFR1 promoted ferritinophagy and tumor cell ferroptosis via blocking via blocking ferritin heavy chain 1 (FTH1)/ ferritin light chain (FTL) signaling. However, TFR1 knockout suppressed the ferroptosis of tumor cells. Furthermore, FeDx-mediated iron overload promoted the sensitivity of anti-programmed death ligand 1 (PD-L1) therapies. Clinically, TFR1 was downregulated in NSCLC patients. Low levels of TFR1 predicted decreased CD8+ T cells. Taken together, IFN-γ combined with iron metabolism therapies may provide a novel alternative for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Sobrecarga de Ferro , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ferro/metabolismo
7.
Medicine (Baltimore) ; 103(11): e37421, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489713

RESUMO

BACKGROUND: Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS: Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS: We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION: In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.


Assuntos
Endometriose , Ferroptose , Sobrecarga de Ferro , Feminino , Humanos , Endometriose/patologia , Estresse Oxidativo/fisiologia , Sobrecarga de Ferro/complicações , Hormônios
8.
J Diabetes Res ; 2024: 9990304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523631

RESUMO

Background: Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. Purpose: The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. Materials and Methods: We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. Results: The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. Conclusion: JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Inflamação , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico
9.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504107

RESUMO

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Assuntos
Ferroptose , Sobrecarga de Ferro , Neoplasias , Humanos , Poliaminas/metabolismo , Ferroptose/genética , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Arginina , Neoplasias/genética
10.
J Int Med Res ; 52(3): 3000605241232920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38518199

RESUMO

OBJECTIVE: This study was performed to examine the possible association of iron overload with infectious complications and survival among liver transplant recipients. METHODS: We conducted a systematic review and meta-analysis of studies published in the PubMed, Embase, Web of Science, and Cochrane Library databases up to September 2022. Hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted to estimate the association of iron overload with infectious outcomes and overall survival after liver transplantation. RESULTS: Eight studies involving 2817 recipients met the inclusion criteria. Iron overload was strongly associated with an increased risk of infection after liver transplantation (HR, 1.66; 95% CI, 1.03-2.68). An increase in the serum ferritin level was associated with an increased risk of infection after liver transplantation (HR, 1.44; 95% CI, 1.09-1.91). Iron overload was a significant predictor of worse overall survival (HR, 1.35; 95% CI, 1.11-1.64). In addition, a high serum ferritin level was significantly associated with an increased risk of death (HR, 1.34; 95% CI, 1.10-1.64). CONCLUSION: Iron overload may be associated with a higher risk of infectious complications and a worse prognosis among liver transplant recipients.


Assuntos
Sobrecarga de Ferro , Transplante de Fígado , Humanos , Ferro/metabolismo , Transplante de Fígado/efeitos adversos , Sobrecarga de Ferro/complicações , Prognóstico , Ferritinas
11.
Int Immunopharmacol ; 131: 111848, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479156

RESUMO

BACKGROUNDS: Joint iron overload in hemochromatosis induces M1 polarization in synovial macrophages, releasing pro-inflammatory factors and leading to osteoarthritis development. However, the mechanism by which iron overload regulates M1 polarization remains unclear. This study aims to elucidate the mechanism by which synovial iron overload promotes macrophage M1 polarization. METHODS: In vitro, RAW264.7 macrophages were treated with iron and divided into five groups based on the concentration of the iron chelator, desferrioxamine (DFO): Ctrl, Fe, DFO1, DFO2, and DFO3. In vivo, rats were categorized into five groups based on iron overload and intra-articular DFO injection: A-Ctrl, A-Fe, A-DFO1, A-DFO2, and A-DFO3. Osteoarthritis was induced by transecting the left knee anterior cruciate ligament. Macrophage morphology was observed; Prussian Blue staining quantified iron deposition in macrophages, synovium, and liver; serum iron concentration was measured using the ferrozine method; cartilage damage was assessed using H&E and Safranin O-Fast Green staining; qPCR detected iNOS and Arg-1 expression; Western Blot analyzed the protein expression of iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K; ELISA measured TNF-α and IL-6 concentrations in supernatants; and immunohistochemistry examined the protein expression of F4/80, iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K in the synovium. RESULTS: In vitro, iron-treated macrophages exhibited Prussian Blue staining indicative of iron overload and morphological changes towards M1 polarization. qPCR and Western Blot revealed increased expression of the M1 polarization markers iNOS and its protein. ELISA showed elevated TNF-α and IL-6 levels in supernatants. In vivo, ferrozine assay indicated significantly increased serum iron concentrations in all groups except A-Ctrl; Prussian Blue staining showed increased liver iron deposition in all groups except A-Ctrl. Iron deposition in rat synovium decreased in a DFO concentration-dependent manner; immunohistochemistry showed a corresponding decrease in iNOS and phosphorylated 4E-BP1 expression, and an increase in Arg-1 expression. CONCLUSION: Intracellular iron overload may exacerbate joint cartilage damage by promoting synovial macrophage M1 polarization through phosphorylation of 4E-BP1 in the mTORC1-p70S6K/4E-BP1 pathway.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Osteoartrite , Animais , Ratos , Ferrocianetos , Ferrozina , Hemocromatose/metabolismo , Hemocromatose/patologia , Interleucina-6 , Ferro , Alvo Mecanístico do Complexo 1 de Rapamicina , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Necrose Tumoral alfa
12.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460407

RESUMO

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Assuntos
Acetatos , Clormequat , Sobrecarga de Ferro , Fenóis , Espermatogênese , Animais , Masculino , Camundongos , Ratos , Clormequat/metabolismo , Clormequat/toxicidade , Sobrecarga de Ferro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sementes , Espermatogênese/efeitos dos fármacos , Testículo , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38532551

RESUMO

PM2.5 is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM2.5-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM2.5 induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity via Aß deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM2.5. Moreover, gene expression of DMT1, TfR1, IRP2 and FPN1 involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM2.5 exposure. The results demonstrated that PM2.5 triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM2.5-induced oxidative stress and ferroptosis.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Ferro , Material Particulado/toxicidade
14.
Ecotoxicol Environ Saf ; 275: 116241, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522287

RESUMO

Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.


Assuntos
Compostos Férricos , Sobrecarga de Ferro , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Sobrecarga de Ferro/patologia , Ferro/metabolismo
15.
Ann Hematol ; 103(5): 1525-1539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519604

RESUMO

INTRODUCTION: The increase in the number of patients with hemoglobinopathies in Europe in recent decades highlights the need for more detailed epidemiological information in Spain. To fulfil this need, the Spanish Society of Pediatric Hematology and Oncology (SEHOP) sponsored the creation of a national registry of hemoglobinopathies known as REHem-AR (Spanish Registry of Hemoglobinopathies and Rare Anemias). Data from the transfusion-dependent (TDT) and non-transfusion-dependent (NTDT) ß-thalassemia cohorts are described and analyzed. METHODS: We performed an observational, multicenter, and ambispective study, which included patients of any age with TDT and NTDT, registered up to December 31, 2021. RESULTS: Among the 1741 patients included, 168 cases of thalassemia were identified (103 TDT and 65 NTDT-patients). Survival at 18 years was 93% for TDT and 100% for NTDT. Regarding management, 80 patients with TDT (77.7%) and 23 patients with NTDT (35.4%) started chelation treatment during follow-up, with deferasirox being the most widely used. A total of 76 patients within the TDT cohort presented at least 1 complication (73.8%), the most frequent being hemosiderosis and osteopenia-osteoporosis. Comparison of both cohorts revealed significant differences in the diagnosis of hepatic hemosiderosis (p = 0.00024), although these were not observed in the case of cardiac iron overload (p = 0.27). DISCUSSION: Our registry enabled us to describe the management of ß thalassemia in Spain and to analyze the morbidity and mortality of the cohorts of patients with TDT and NTDT. Complications related to iron overload in TDT and NTDT account for most of the morbidity and mortality of the disease, which is associated with a considerable social, psychological, and economic impact, although cardiac, osteopathy and endocrinological complications requiring more attention. The convenience and simplicity of online registries make it possible to homogenize variables and periodically update data, thus providing valuable information on these diseases.


Assuntos
Hemossiderose , Sobrecarga de Ferro , Talassemia beta , Criança , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Transfusão de Sangue , Sobrecarga de Ferro/etiologia , Demografia
16.
Mol Nutr Food Res ; 68(6): e2300723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425278

RESUMO

SCOPE: Oxidative stress caused by iron overload tends to result in intestinal mucosal barrier dysfunction and intestinal microbiota imbalance. As a neutral and nonprotein amino acid, L-Citrulline (L-cit) has been implicated in antioxidant and mitochondrial amelioration properties. This study investigates whether L-cit can alleviate iron overload-induced intestinal injury and explores the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are intraperitoneally injected with iron dextran, then gavaged with different dose of L-cit for 2 weeks. L-cit treatment significantly alleviates intestine pathological injury, oxidative stress, ATP level, and mitochondrial respiratory chain complex activities, accompanied by ameliorating mitochondrial quality control. L-cit-mediated protection is associated with the upregulation of Glutathione Peroxidase 4 (GPX4) expression, inhibition Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, and improvement of gut microbiota. To investigate the underlying molecular mechanisms, Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2) cells are treated with L-cit or AMP-activated Protein Kinase (AMPK) inhibitor. AMPK signaling has been activated by L-cit. Notably, Compound C abolishes L-cit's protection on intestinal barrier, mitochondrial function, and antioxidative capacity in IPEC-J2 cells. CONCLUSION: L-cit may restrain ferritinophagy and ferroptosis to regulate iron metabolism, and induce AMPK pathway activation, which contributes to exert antioxidation, ameliorate iron metabolism and mitochondrial quality control, and improve intestinal microbiota. L-cit is a promising therapeutic strategy for iron overload-induced intestinal injury.


Assuntos
Sobrecarga de Ferro , Microbiota , Camundongos , Animais , Suínos , Proteínas Quinases Ativadas por AMP/metabolismo , Citrulina/metabolismo , Citrulina/farmacologia , Camundongos Endogâmicos C57BL , Intestinos , Antioxidantes/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias
17.
Magn Reson Imaging ; 109: 18-26, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430975

RESUMO

PURPOSE: To develop a fully automatic parenchyma extraction method for the T2* relaxometry of iron overload liver. METHODS: A retrospective multicenter collection of liver MR examinations from 177 transfusion-dependent patients was conducted. The proposed method extended a semiautomatic parenchyma extraction algorithm to a fully automatic approach by introducing a modified TransUNet on the R2* (1/T2*) map for liver segmentation. Axial liver slices from 129 patients at 1.5 T were allocated to training (85%) and internal test (15%) sets. Two external test sets separately included 1.5 T data from 20 patients and 3.0 T data from 28 patients. The final T2* measurement was obtained by fitting the average signal of the extracted liver parenchyma. The agreement between T2* measurements using fully and semiautomatic parenchyma extraction methods was assessed using coefficient of variation (CoV) and Bland-Altman plots. RESULTS: Dice of the deep network-based liver segmentation was 0.970 ± 0.019 on the internal dataset, 0.960 ± 0.035 on the external 1.5 T dataset, and 0.958 ± 0.014 on the external 3.0 T dataset. The mean difference bias between T2* measurements of the fully and semiautomatic methods were separately 0.12 (95% CI: -0.37, 0.61) ms, 0.04 (95% CI: -1.0, 1.1) ms, and 0.01 (95% CI: -0.25, 0.23) ms on the three test datasets. The CoVs between the two methods were 4.2%, 4.8% and 2.0% on the internal test set and two external test sets. CONCLUSIONS: The developed fully automatic parenchyma extraction approach provides an efficient and operator-independent T2* measurement for assessing hepatic iron content in clinical practice.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Sobrecarga de Ferro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
18.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460132

RESUMO

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Assuntos
Sobrecarga de Ferro , Doenças Metabólicas , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos C57BL
19.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543737

RESUMO

INTRODUCTION: Chronic hepatitis C (CHC) is a clinical and pathological syndrome with various causes and is characterized by varying degrees of hepatocellular necrosis and inflammation. It is a significant cause of liver transplantation and liver-related death worldwide. The hepatic manifestations of CHC are typically characterized by slowly progressing liver fibrosis, which is a non-specific and often disproportionate response to tissue damage. A large majority of HCV patients have extrahepatic manifestations with varying degrees of severity. HCV infection is a risk factor for cardiovascular disease and diabetes mellitus, which increases insulin resistance, oxidative stress, and iron overload and causes chronic systemic inflammation. HCV infection is treated using direct-acting antivirals (DAAs) with cure rates of over 95 percent, minimal side effects, and shorter therapeutic courses. Despite the effective elimination of the virus, it seemed pertinent to understand to what extent HCV clearance eliminates or attenuates all the systemic alterations already induced by the virus during infection and chronicity. OBJECTIVES: Our study aimed to determine whether eliminating HCV with DAAs alters the severity of liver disease (liver stiffness and liver fibrosis stage by TE) and the metabolic/cellular profile of patients with CHC. MATERIALS AND METHODS: A group of 329 CHC patients from a Gastroenterology and Hepatology outpatient department were prospectively studied. Of these, 134 were also studied with DAAs. The liver fibrosis stage was evaluated by transient elastography (TE) using a FibroScan® device, and two groups were established for the analysis of liver stiffness (LS): mild and moderate stiffness (fibrosis F1 and F2; F1/2) and severe stiffness (fibrosis and cirrhosis F3 and F4; F3/4). Metabolic/cellular parameters were evaluated before and after antiviral treatment using standard methods: alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl-transpeptidase (γ-GT), haptoglobin (Hp), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), free iron (Fe), transferrin saturation (TS), total iron binding capacity (TIBC), ferritin (Ft), glycemia, insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and platelets count. The results were statistically analyzed using SPSS 24.0 for Windows. RESULTS: Comparing the fibrosis stage before and after DAAs treatment, we verify a reduction in LS in 85.7% of patients and an improvement in liver fibrosis stage in 22.2% of them after DAAs treatment. Before DAAs treatment, patients showed a 2.410 risk for higher fibrosis stages (F3/4). Comparing metabolic/cellular parameters before and after DAAs treatment, patients showed lower ALP, AST, ALT, γGT, TG, Fe, TIBC, and Ft values and higher TC, LDL, and Hp values after treatment. As such, HCV elimination reduces iron overload and insulin resistance. On the other hand, it caused dyslipidemia, raising total cholesterol and LDL to levels outside the reference values. The improvement in the liver fibrosis stage by TE was mainly associated with higher baseline platelet count and HDL values and lower insulin resistance. CONCLUSIONS: With this study, we were able to contribute to the knowledge of the effects of HCV elimination with DAAs on liver disease and metabolic profile to improve the quality of treatment and follow-up of these patients after HCV elimination.


Assuntos
Hepatite C Crônica , Resistência à Insulina , Sobrecarga de Ferro , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Cirrose Hepática/etiologia , Inflamação/tratamento farmacológico , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Colesterol
20.
Sci Total Environ ; 923: 171378, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447712

RESUMO

Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.


Assuntos
Ferroptose , Sobrecarga de Ferro , Tricloroetileno , Animais , Camundongos , Humanos , Tricloroetileno/toxicidade , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/toxicidade , Ferro/metabolismo , Ferritinas/metabolismo , Células Epiteliais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...