Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.152
Filtrar
1.
J Agric Food Chem ; 72(15): 8749-8759, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579123

RESUMO

The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.


Assuntos
Produtos da Carne , Simbiose , Ésteres , Fermentação , Ácidos , Produtos da Carne/análise , Indóis
2.
Sci Rep ; 14(1): 7663, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561404

RESUMO

Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cobre/metabolismo , Cádmio/metabolismo , Quelantes/farmacologia , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Metais Pesados/análise , Ácidos/metabolismo , Solo/química
3.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566056

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Assuntos
Yarrowia , Fermentação , Yarrowia/metabolismo , Caproatos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos/metabolismo , Ácidos/metabolismo , Perfilação da Expressão Gênica , Carbono/metabolismo
4.
PLoS One ; 19(4): e0298266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573921

RESUMO

A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 µm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.


Assuntos
Carbono , Aço , Carbono/química , Aço/química , Corrosão , Rios , Ácidos/química
5.
J Agric Food Chem ; 72(11): 5555-5573, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442481

RESUMO

Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.


Assuntos
Ácidos Dicarboxílicos , Engenharia Metabólica , Ácidos Dicarboxílicos/metabolismo , Ácidos , Biocombustíveis , Compostos Orgânicos
6.
Bioresour Technol ; 399: 130610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508284

RESUMO

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sódio , Solventes , Etanol/química , Ácidos , Hidrólise
7.
Environ Sci Pollut Res Int ; 31(16): 24163-24179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436860

RESUMO

Coastal sedimentary systems are affected by continental and marine metal pollutant inputs associated with different hydrodynamic characteristics and geochemical processes. These include the formation of acid-volatile sulfides (AVS) within sediments, which affects metal bioavailability and associated aquatic biota toxicity risks. Physicochemical changes in these environments in the face of extreme natural or man-made environmental influences can dramatically alter metal bioavailability and toxicity through metal binding and immobilization as insoluble sulfides. Surface sediments from Guanabara Bay, river mouths, and two mangrove areas were collected, and AVS and simultaneously extracted metals Cd, Cu, Fe, Mn, Ni, Pb, and Zn and ΣSEM were determined to assess sediment quality. A severe eutrophication history favored AVS concentrations exceeding or close to the sum-SEM concentrations, demonstrating that AVS play an important role in making trace metals unavailable for assimilation by living organisms, mitigating the risks of contamination for the local biota. This eutrophication-driven sulfide accumulation may attenuate the sediment toxicity in sites heavily polluted by metals, while some fewer eutrophic sites became more exposed to metals in excess to AVS.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Ácidos , Baías , Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/análise , Metais Pesados/análise , Sulfetos/química , Poluentes Químicos da Água/análise
8.
Appl Environ Microbiol ; 90(4): e0150023, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456674

RESUMO

Plasmalogen is a specific glycerophospholipid present in both animal and bacterial organisms. It plays a crucial function in eukaryotic cellular processes and is closely related to several human diseases, including neurological disorders and cancers. Nonetheless, the precise biological role of plasmalogen in bacteria is not well understood. In this study, we identified SMU_438c as the enzyme responsible for plasmalogen production in Streptococcus mutans under anaerobic conditions. The heterologous expression of SMU_438c in a plasmalogen-negative strain, Streptococcus sanguinis, resulted in the production of plasmalogen, indicating that this enzyme is sufficient for plasmalogen production. Additionally, the plasmalogen-deficient S. mutans exhibited significantly lower acid tolerance and diminished its colonization in Drosophila flies compared to the wild-type strain and complemented strain. In summary, our data suggest that plasmalogen plays a vital role in bacterial stress tolerance and in vivo colonization. IMPORTANCE: This study sheds light on the biological role of plasmalogen, a specific glycerophospholipid, in bacteria, particularly in Streptococcus mutans. Plasmalogens are known for their significant roles in eukaryotic cells and have been linked to human diseases like neurological disorders and cancers. The enzyme SMU_438c, identified as essential for plasmalogen production under anaerobic conditions, was crucial for acid tolerance and in vivo colonization in Drosophila by S. mutans, underscoring its importance in bacterial stress response and colonization. These findings bridge the knowledge gap in bacterial physiology, highlighting plasmalogen's role in microbial survival and offering potential insights into microbial pathogenesis and host-microbe interactions.


Assuntos
Neoplasias , Doenças do Sistema Nervoso , Humanos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmalogênios/metabolismo , Streptococcus mutans/metabolismo , Ácidos/metabolismo , Drosophila , Biofilmes
9.
Int J Biol Macromol ; 264(Pt 2): 130769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467215

RESUMO

Two novel chitosan derivatives (water soluble and acid soluble) modified with thiocarbohydrazide were produced by a quick and easy technique using formaldehyde as links. The novel compounds were synthesized and then characterized by thermogravimetric analysis, elemental analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Their surface morphologies were examined using scanning electron microscopy. These chitosan derivatives could produce pH-dependent gels. The behavior of mild steel in 5 % acetic acid, including both inhibitors at various concentrations, was investigated using gravimetric and electrochemical experiments. According to the early findings, both compounds (TCFACN and TCFWCN) functioned as mixed-type metal corrosion inhibitors. Both inhibitors showed their best corrosion inhibition efficiency at 80 mg L-1. TCFACN and TCFWCN, showed approximately 92 % and 94 % corrosion inhibition, respectively, at an optimal concentration of 80 mg L-1, according to electrochemical analysis. In the corrosion test, the water contact angle of the polished MS sample at 87.90 °C was reduced to 51 °C. The water contact angles for MS inhibited by TCFACN and TCFWCN in the same electrolyte were greater, measuring 78.10 °C and 93.10 °C, respectively. The theoretical results also support the experimental findings.


Assuntos
Quitosana , Quitosana/química , Corrosão , Adsorção , Ácidos , Aço/química , Água
10.
Food Chem ; 447: 138968, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489877

RESUMO

Given the severe problem of Baijiu authenticity, it is essential to discriminate Baijiu from different origins quickly and effectively. As organic acids (OAs) are the most dominant taste-imparting substances in Baijiu, we proposed a simple, fast, and effective OAs-targeted colorimetric sensor array based on the colorimetric reaction of 4-aminophenol (AP)/4-amino-3-chlorophenol (ACP) under oxidation of Cu(NO3)2 for the rapid discrimination of origins of Baijiu with three main aroma types. Hydrogen ions ionized from OAs induced the protonation of the amino group, which blocked the colorimetric reaction, and the different levels of OAs in Baijiu enabled the array to discriminate different origins of Baijiu. The array was implemented to analyze 10 simple OAs and 16 mixed OAs and further for the discrimination of 42 Baijius with an accuracy of 98%. This method provided an efficient research strategy for a basis for rapid quality analysis of Baijiu.


Assuntos
Clorofenóis , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Colorimetria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Ácidos/análise
11.
Water Res ; 254: 121404, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442608

RESUMO

Acidic pit lakes (APLs) emerge as reservoirs of acid mine drainage in flooded open-pit mines, representing extreme ecosystems and environmental challenges worldwide. The bioremediation of these oligotrophic waters necessitates the addition of organic matter, but the biogeochemical response of APLs to exogenous organic matter remains inadequately comprehended. This study delves into the biogeochemical impacts and remediation effects of digestate-derived organic matter within an APL, employing a multi-omics approach encompassing geochemical analyses, amplicon and metagenome sequencing, and ultra-high resolution mass spectrometry. The results indicated that digestate addition first stimulated fungal proliferation, particularly Ascomycetes and Basidiomycetes, which generated organic acids through lignocellulosic hydrolysis and fermentation. These simple compounds further supported heterotrophic growth, including Acidiphilium, Acidithrix, and Clostridium, thereby facilitating nitrate, iron, and sulfate reduction linked with acidity consumption. Nutrients derived from digestate also promoted the macroscopic development of acidophilic algae. Notably, the increased sulfate reduction-related genes primarily originated from assimilatory metabolism, thus connecting sulfate decrease to organosulfur increase. Assimilatory and dissimilatory sulfate reduction collectively contributed to sulfate removal and metal fixation. These findings yield multi-omics insights into APL biogeochemical responses to organic matter addition, enhancing the understanding of carbon-centered biogeochemical cycling in extreme ecosystems and guiding organic amendment-based bioremediation in oligotrophic polluted environments.


Assuntos
Ecossistema , Lagos , Lagos/química , Biodegradação Ambiental , Multiômica , Ácidos , Sulfatos/metabolismo
12.
Bioresour Technol ; 399: 130557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460561

RESUMO

A novel cascade pyrolysis upgrading process for acid hydrolysis lignin (AHL), consisting of pyrolysis, catalytic upgrading of pyrolysis vapors, and pyrolysis char, was developed to improve the yield of value-added products (monophenolic chemicals and carbon materials). Pyrolysis of AHL at 450 °C and subsequent catalytic upgrading of pyrolysis vapors over Ni/H-ZSM-5 boosted the concentration of monophenolic chemicals in pyrolysis liquids by 58%. The carbon material prepared from pyrolysis char using KOH as activating agent exhibited a large specific surface area of 2902.5 m2/g and a large total pore volume of 1.45 cm3/g, thus affording good adsorption capacity for methylene blue (824.87 mg/g) and iodine (2333.17 mg/g). Moreover, the cascade pyrolysis upgrading of AHL achieved a yield of 68.52% desired products, which was much higher than the reported results (single production of monophenols and pyrolysis char). In summary, this work provides a potential reference for efficient utilization of lignin in large-scale applications.


Assuntos
Carbono , Lignina , Pirólise , Adsorção , Hidrólise , Gases , Ácidos
13.
J Food Sci ; 89(4): 2137-2157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465700

RESUMO

The effects of a reduced-salt substitute (composed of NaCl, sodium gluconate, KCl, L-histidine, and L-lysine) applied in the fermentation of traditional Pixian douban (PXDB) were explored in this study according to sensory quality, physicochemical characteristics, color, colony count, and the contents of free amino acids (FAAs), organic acids, and volatile flavor compounds. The results showed that the PXDB with a 15% salt substitution had the most attractive reddish-brown color, a mellow fragrance, and the lowest total colony count of the three pastes. The fermentation quality of the 15% salt substitute PXDB was superior to that of the control groups, its sensory quality was more readily accepted, and the contents of its amino acid nitrogen, FAAs and organic acids had increased by 0.1050, 0.3290, and 3.9068 mg/g, respectively. Moreover, the concentrations of the main aroma compounds in the PXDB containing the salt substitute were higher than those of the control. These included phenylethanol, 3-methylthiopropanol, isoamyl alcohol, furfural, benzaldehyde, phenylacetaldehyde, nonanal, isoamyl aldehyde, 4-ethylphenol, and, particularly, 2,6-dimethylpyrazine, which had increased as much as 100 times. Correlation analysis showed that Glu, Phe, Tyr, Gly, Leu, Val, Asp, Ile, citric acids, and succinic acids were all positively correlated with the main aroma and contributed to the generation of PXDB's characteristic flavor, and main aroma substances in turn positively influence PXDB flavor sensory attributes. Overall, these results showed the application of the 15% salt substitute during PXDB fermentation improved the quality of the paste and, thus, would benefit the development of reduced-salt PXDB.


Assuntos
Cloreto de Sódio , Paladar , Fermentação , Cloreto de Sódio na Dieta , Aminoácidos/análise , Ácidos
14.
J Biotechnol ; 385: 42-48, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479472

RESUMO

Oryzamutaic acids, possessing a nitrogen-containing heterocyclic skeleton, have been isolated and identified from a rice mutant. Although oryzamutaic acids are expected to be functional ingredients, their functionality is difficult to evaluate, because of their wide variety and presence in trace amounts. Furthermore, how oryzamutaic acid is synthesized in vivo is unclear. Therefore, we developed a simple enzymatic synthesis method for these compounds in vitro. We focused on L-lysine ε-dehydrogenase (LysDH) from Agrobacterium tumefaciens, which synthesizes α-aminoadipate-δ-semialdehyde-a precursor of oryzamutaic acids. LysDH was cloned and expressed in Escherichia coli. Analysis of activity revealed that LysDH catalyzed the synthesis of oryzamutaic acid H at neutral pH in vitro. We synthesized 1.6 mg oryzamutaic acid H from 100 mg L-lysine. The synthesized oryzamutaic acid H exhibited UVA absorption, stability of temperature, and stability at a wide pH range. To our knowledge, this study is the first to report the enzymatic synthesis of oryzamutaic acid H in vitro and provides a basis for understanding the mechanisms of oryzamutaic acid synthesis in vivo.


Assuntos
Agrobacterium tumefaciens , Aminoácido Oxirredutases , Agrobacterium tumefaciens/genética , Lisina , Ácidos
15.
Environ Microbiol ; 26(3): e16602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454738

RESUMO

Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.


Assuntos
Ecossistema , Solo , Filogenia , Ácidos , Proteobactérias , Gases , Metano , Microbiologia do Solo
16.
Chemosphere ; 355: 141759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531500

RESUMO

The presence and fate of pharmaceutically active compounds (PhACs) in agricultural fields are rarely investigated. The present study highlights that root-derived low-molecular-weight organic acids (LMWOAs) affect the mobility of PhACs in cultivated humic Arenosol. Sorption experiments are conducted using three PhACs characterised by different physicochemical properties: carbamazepine (CBZ), 17α-ethinylestradiol (EE2), and diclofenac-sodium (DFC). The results suggest that the adsorption of EE2 is more intense than the other two PhACs, whereas DFC and CBZ are primarily dominated by desorption. LMWOAs mainly provide additional low-energy adsorption sites for the PhACs, and slight pH changes do not significantly affect the sorption mechanism. During competitive adsorption, the high-energy sites of the adsorbents are initially occupied by EE2 owing to its high adsorption energy (∼15 kJ/mol). The new low-energy binding sites enhance the adsorption of DFC (from 8.5 % to 72.0 %) and CBZ (from 31.0 % to 70.0 %) during multicomponent adsorption. LMWOAs not only affect adsorption by modifying the pH but also provide additional binding sites that allow the PhACs to remain in the root environment for a longer period. As the concentration of LMWOAs temporarily changes, so does the availability of PhACs in the root zone. Environmental changes in the humic horizon enhance the mobility of the adsorbed PhACs, which renders them continuously available for uptake by plants, thus increasing the possibility of PhACs entering the human food chain.


Assuntos
Areia , Poluentes Químicos da Água , Humanos , Compostos Orgânicos , Ácidos , Adsorção , Poluentes Químicos da Água/análise
17.
Food Res Int ; 182: 114187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519195

RESUMO

The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.


Assuntos
Frutas , Piper nigrum , Frutas/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Álcoois/análise , Fermentação , Ácidos/análise
18.
Carbohydr Polym ; 333: 121981, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494233

RESUMO

In view of health and environmental concerns, together with the upcoming restrictive regulations on per- and polyfluoroalkyl substances (PFAS), less impactful materials must be explored for the hydrophobization of surfaces. Polysaccharides, and especially chitosan, are being explored for their desirable properties of film formation and ease of modification. We present a PFAS-free chitosan superhydrophobic coating for textiles deposited through a solvent-free method. By contact angle analysis and drop impact, we observe that the coating imparts hydrophobicity to the fabrics, reaching superhydrophobicty (θA = 151°, θR = 136°) with increased amount of coating (from 1.6 g/cm2). This effect is obtained by the combination of chemical water repellency of the modified chitosan and the nano- and micro-roughness, assessed by SEM analysis. We perform a comprehensive study on the durability of the coatings, showing good results especially for acidic soaking where the hydrophobicity is maintained until the 8th cycle of washing. We assess the degradation of the coating by a TGA-IR investigation to define the compounds released with thermal degradation, and we confirm the coating's biodegradability by biochemical oxygen consumption. Finally, we demonstrate its biocompatibility on keratinocytes (HaCaT cell line) and fibroblasts (HFF-1 cell line), confirming that the coating is safe for human skin cells.


Assuntos
Quitosana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Solventes , Fibroblastos , Ácidos
19.
Sci Rep ; 14(1): 5739, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459152

RESUMO

Gold (Au), as one of the most precious metal resources that is used for both industrial products and private ornaments, is a global investment target, and mining companies are making huge investments to discover new Au deposits. Here, we report in situ Au adsorption in an acidic hot spring by a unique adsorption sheet made from blue-green algae with a high preferential adsorption ability for Au. The results of in situ Au adsorption experiments conducted for various reaction times ranging from 0.2 h to 7 months showed that a maximum Au concentration of 30 ppm was adsorbed onto the blue-green algal sheet after a reaction time of 7 months. The Au concentration in the hot spring water was below the detection limit (< 1 ppt); therefore, Au was enriched by preferential adsorption onto the blue-green algal sheet by a factor of more than ~ 3 × 107. Thus, our gold recovery method has a high potential to recover Au even from an Au-poor solution such as hot spring water or mine wastewater with a low impact on the environment.


Assuntos
Ouro , Fontes Termais , Adsorção , Ácidos , Água
20.
J Agric Food Chem ; 72(12): 6593-6600, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502529

RESUMO

Furpenthiazinate is a yellow pigment formed by the Maillard reaction between cysteine and furfural under strongly acidic conditions. Here, we describe the conditions and mechanism of pigment formation in a model system and in an acid hydrolyzate of food and analyze its biological properties. A reaction solution containing 32 mM cysteine and 128 mM furfural or 64 mM cysteine and 256 mM furfural in the presence of 2-6 M hydrochloric acid that was heated to 110 °C for 1-2 h yielded approximately 3 mM furpenthiazinate. Nuclear magnetic resonance analysis of furpenthiazinate prepared using 1-13C or 5-13C d-ribose suggests that it was formed through the condensation of cysteine and two C5 chains derived from pentose with the dehydration and elimination of formic acid. Furpenthiazinate was detected in mieki, a seasoning, and some acid hydrolyzates of food, and it did not show antibacterial or mutagenic activity.


Assuntos
Furaldeído , Reação de Maillard , Tiazinas , Cisteína , Furanos , Ácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...