Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.213
Filtrar
1.
Int J Nanomedicine ; 19: 2917-2938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525010

RESUMO

Introduction: Periodontitis, a chronic inflammatory disease prevalent worldwide, is primarily treated through GTR for tissue regeneration. The efficacy of GTR, however, remains uncertain due to potential infections and the intricate microenvironment of periodontal tissue. Herein, We developed a novel core-shell structure multifunctional membrane using a dual-drug-loaded coaxial electrospinning technique (Lys/ACP-CNF), contains L-lysine in the outer layer to aid in controlling biofilms after GTR regenerative surgery, and ACP in the inner layer to enhance osteogenic performance for accelerating alveolar bone repair. Methods: The biocompatibility and cell adhesion were evaluated through CCK-8 and fluorescence imaging, respectively. The antibacterial activity was assessed using a plate counting assay. ALP, ARS, and RT-qPCR were used to examine osteogenic differentiation. Additionally, an in vivo experiment was conducted on a rat model with acute periodontal defect and infection. Micro-CT and histological analysis were utilized to analyze the in vivo alveolar bone regeneration. Results: Structural and physicochemical characterization confirmed the successful construction of the core-shell fibrous structure. Additionally, the Lys/ACP-CNF showed strong antibacterial coaggregation effects and induced osteogenic differentiation of PDLSCs in vitro. The in vivo experiment confirmed that Lys/ACP-CNF promotes new bone formation. Conclusion: Lys/ACP-CNF rapidly exhibited excellent antibacterial activity, protected PDLSCs from infection, and was conducive to osteogenesis, demonstrating its potential application for clinical periodontal GTR surgery.


Assuntos
Fosfatos de Cálcio , Nanofibras , Osteogênese , Ratos , Animais , Lisina/metabolismo , Diferenciação Celular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ligamento Periodontal
2.
J Mech Behav Biomed Mater ; 153: 106500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484429

RESUMO

One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (ß-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano ß-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP could be further studied for being used to treat alveolar bone defects in vivo.


Assuntos
Gelatina , Osteogênese , Gelatina/farmacologia , Tecidos Suporte/química , Regeneração Óssea , Colágeno/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Polímeros , Engenharia Tecidual/métodos
3.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
4.
Iran Biomed J ; 28(1): 38-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477251

RESUMO

Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions. Methods: Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. Results: The µ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed. Conclusion: Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.


Assuntos
Osseointegração , Titânio , Coelhos , Animais , Titânio/farmacologia , Água , Ligas/farmacologia , Microtomografia por Raio-X , Casca de Ovo , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Proteínas de Membrana , Propriedades de Superfície
5.
J Mater Sci Mater Med ; 35(1): 17, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507150

RESUMO

3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.


Assuntos
Vidro , Tecidos Suporte , Humanos , Vidro/química , Tecidos Suporte/química , Durapatita/química , Fosfatos de Cálcio/química
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 370-380, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501423

RESUMO

OBJECTIVE: To investigate the release kinetics of Zn2+ from nZCP-loaded polylactic acid/hydroxyapatite (PLA/HA) composite scaffold (PHZ) and determine the optimal nZCP content in the scaffold. METHODS: The particle size of nZCP was measured by DLS measurement, and PXRD, FTIR, and SEM were used to characterize the scaffolds and nZCP distribution; EDS was used to analyze element composition of the scaffold. Compression strength of the scaffold was determined, and ion release profile was investigated using ICP-MS. The biocompatibility of the materials was evaluated by CCK-8 assay and dead/alive staining of rat bone marrow stem cells (BMSCs) incubated with their aqueous extracts. ALP staining, alizarin red staining, RT-qPCR, and Western blotting were used to assess the osteogenic potential of the treated cells. In a rat model of bilateral ovariectomy (OVX) with femoral condylar bone defect, PHZ-1, PHZ-2, PHZ-3 or PLA/HA scaffold was implanted into the bone defect, and bone repair was observed using a microCT scanner and histological staining at 6 and 12 weeks. RESULTS: DLS, PXRD, SEM, FTIR, and EDS confirmed successful synthesis of 10-nm ZCP and efficient nZCP loading in the scaffold. PHZ-2 and PHZ-3 had significantly greater compression strength than PLA/HA. ICP-MS showed that Zn2+ release from PHZ-1, PHZ-2 and PHZ-3 were all optimal for promoting osteogenesis. In rat BMSCs, all the 4 scaffolds showed good biocompatibility, and their extracts enhanced ALP activity and extracellular matrix mineralization and promoted expressions of ALP, RUNX2, and OCN in the cells. In the rat models, nZCP in the implants improved bone graft integration at 6 weeks, and PHZ-2 and PHZ-3 more effectively induced new bone formation at 12 weeks (P < 0.05). CONCLUSION: PHZ scaffold is capable of stable Zn2+ release to promote osteoporotic bone defect healing, and PHZ-2 and PHZ-3 scaffolds with nZCP mass fraction of 4.5%-7.5% have better osteogenic activity.


Assuntos
Fosfatos de Cálcio , Durapatita , Minerais , Osteoporose , Feminino , Ratos , Animais , Durapatita/farmacologia , Tecidos Suporte , Diferenciação Celular , Osteogênese , Poliésteres/farmacologia , Regeneração Óssea
7.
J Biomed Mater Res B Appl Biomater ; 112(4): e35402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520704

RESUMO

There is an ever-evolving need of customized, anatomic-specific grafting materials for bone regeneration. More specifically, biocompatible and osteoconductive materials, that may be configured dynamically to fit and fill defects, through the application of an external stimulus. The objective of this study was to establish a basis for the development of direct inkjet writing (DIW)-based shape memory polymer-ceramic composites for bone tissue regeneration applications and to establish material behavior under thermomechanical loading. Polymer-ceramic (polylactic acid [PLA]/ß-tricalcium phosphate [ß-TCP]) colloidal gels were prepared of different w/w ratios (90/10, 80/20, 70/30, 60/40, and 50/50) through polymer dissolution in acetone (15% w/v). Cytocompatibility was analyzed through Presto Blue assays. Rheological properties of the colloidal gels were measured to determine shear-thinning capabilities. Gels were then extruded through a custom-built DIW printer. Space filling constructs of the gels were printed and subjected to thermomechanical characterization to measure shape fixity (Rf) and shape recovery (Rr) ratios through five successive shape memory cycles. The polymer-ceramic composite gels exhibited shear-thinning capabilities for extrusion through a nozzle for DIW. A significant increase in cellular viability was observed with the addition of ß-TCP particles within the polymer matrix relative to pure PLA. Shape memory effect in the printed constructs was repeatable up to 4 cycles followed by permanent deformation. While further research on scaffold macro-/micro-geometries, and engineered porosities are warranted, this proof-of-concept study suggested suitability of this polymer-ceramic material and the DIW 3D printing workflow for the production of customized, patient specific constructs for bone tissue engineering.


Assuntos
Fosfatos de Cálcio , Poliésteres , Engenharia Tecidual , Humanos , Poliésteres/farmacologia , Polímeros , Regeneração Óssea , Géis , Tecidos Suporte , Impressão Tridimensional
8.
Poult Sci ; 103(4): 103558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442559

RESUMO

Iron is routinely supplemented in broiler feeds aiming to prevent dietary deficiencies. Limestone and phosphates are very rich in Fe; however, its contribution from these sources have not been thoroughly investigated with chickens. The present research was conducted to evaluate live performance and blood parameters of broilers when using limestone and dicalcium phosphate as sources of Fe. A total of 576 one-day-old male Cobb x Cobb 500 were allocated into a total of 72 battery cages, 6 treatments with 12 replication cages of 8 chicks at placement. Chicks were fed diets formulated with corn, soybean meal (SBM) with laboratory grade calcium carbonate and phosphoric acid (having traces of Fe). All chicks were fed a common prestarter without Fe supplementation (analyzed total 58.2 ± 2.4 mg/kg Fe) from placement to 7 d. Allocation of birds to dietary treatments was completely randomized on day 8. Treatments had increasing Fe derived from commercial limestone and dicalcium phosphate (analyzed Fe 7,218 and 4,783 mg/kg, respectively) progressively replacing calcium carbonate and phosphoric acid to provide graded increases in total Fe (analyzed Fe in the feeds were 57.6 ± 2.1, 92.0 ± 2.3, 124.1 ± 2.7, 159.3 ± 3.1, 187.2 ± 3.2, 223.7 ± 3.6 mg/kg, respectively). There were no effects of dietary Fe on live performance, hematocrit, and hemoglobin the end of the study on day 28 (P > 0.05). Increasing dietary Fe from commercial limestone and dicalcium phosphate led to a linear reduction in the percent ileal digestible Fe. However, linear increments in Fe retention, serum ferritin and liver Fe occurred when compared to feeds without Fe derived from limestone and phosphate dicalcium. It is concluded that Fe from limestone and dicalcium phosphate can be partially utilized by broiler chickens. It was estimated that the Fe retained from limestone and dicalcium phosphate is of 1.9%. Broilers fed corn-soy feeds (58.2 mg/kg Fe) do not require supplemental Fe.


Assuntos
Carbonato de Cálcio , Fosfatos de Cálcio , Galinhas , Ácidos Fosfóricos , Animais , Masculino , Ferro , Dieta/veterinária , Suplementos Nutricionais , Fosfatos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Digestão
9.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510794

RESUMO

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Assuntos
Fosfatos de Cálcio , Diabetes Mellitus , Melatonina , Nanocompostos , Humanos , Tecidos Suporte/química , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2 , Células Endoteliais , Antioxidantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Heme Oxigenase-1 , Indutores da Angiogênese/farmacologia , Estudos Prospectivos , Osteogênese , Transdução de Sinais , Regeneração Óssea
10.
Methods Mol Biol ; 2754: 551-560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512689

RESUMO

The study of Tau protein in disease-relevant neuronal cells in culture requires efficient delivery systems for transfection of exogenous Tau and also modulators and interactors of Tau. Transfection of cultivated cells using calcium phosphate precipitation is a simple and cost-effective approach, also for difficult-to-transfect and sensitive cells such as primary neurons. Because of its low cell toxicity and ease of use, the Ca2+-phosphate transfection method is one of the most widely used gene transfer procedures in neuroscience. However, Ca2+-phosphate transfection efficacy in neurons is poor, often in the range of 1-5%, limiting its use in functional investigations. Here, we outline our improved Ca2+-phosphate transfection methodology for human iPSC-derived neurons that yields a reasonable efficiency (20-30% for bright volume markers) without apparent effects on cell health. We have used it to introduce wild-type and mutant human Tau with and without co-transfection of a volume marker (used here: tdTomato). In sum, our procedure can deliver neuronal genes (e.g., MAPT) using typical eukaryotic expression vectors (e.g., using CMV promoter) and is optimized for transfection of human iPSC-derived neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Cálcio/metabolismo , Transfecção , Fosfatos de Cálcio , Fosfatos/metabolismo , Neurônios/metabolismo
11.
J Dent ; 143: 104906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428715

RESUMO

OBJECTIVE: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. METHODS: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). RESULTS: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). CONCLUSIONS: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. CLINICAL SIGNIFICANCE: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomers' elution.


Assuntos
Fluoretos , Fosfatos , Fosfatos/farmacologia , Fosfatos/química , Fluoretos/farmacologia , Fluoretos/química , Teste de Materiais , Resinas Compostas/farmacologia , Resinas Compostas/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Fluoreto de Cálcio , Antibacterianos/farmacologia
12.
J Dent ; 143: 104909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428717

RESUMO

OBJECTIVES: This in vitro study aimed to evaluate the effect of resin infiltration combined with casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) or bioactive glass (BAG) on the stability of enamel white spot lesions (WSLs) treatment. MATERIALS AND METHODS: Eighty-four enamel blocks were prepared from the buccal surfaces of sound human premolars. All enamel blocks were placed in a demineralisation solution for 3 days to establish the artificial enamel WSLs. Enamel blocks with WSLs were randomly divided into three groups (n = 28 each group): RI/B: one-off resin infiltration followed by twice daily BAG treatment; RI/C: one-off resin infiltration followed by twice daily CPP-ACPF treatment; RI: one-off resin infiltration treatment only (as control) and subjected to pH cycling for 7 days. Surface morphology, elemental analysis, crystal characteristics, surface roughness and microhardness of enamel surfaces were investigated by scanning electron microscopy and energy-dispersive spectrometry observation, X-ray diffraction (XRD), atomic force microscope and Vickers' hardness testing, respectively. RESULTS: Mean values of the surface roughness (mean±standard deviation (nm)) were 24.52±5.07, 27.39±5.87 and 34.36±4.55 for groups RI/B, RI/C and RI respectively (p = 0.003). The calcium to phosphate ratios were 1.32±0.16, 1.22±0.26 and 0.69±0.24 for groups RI/B, RI/C and RI respectively (p < 0.001). XRD revealed apatite formation in all three groups. The mean enamel surface microhardness (kg/mm2) of the groups were 353.93±28.49, 339.00±27.32 and 330.38±22.55 for groups RI/B, RI/C and RI respectively (p = 0.216). CONCLUSIONS: Resin infiltration combined with CPP-ACPF or BAG remineralisation appears to improve the surface properties of WSLs. CLINICAL SIGNIFICANCE: The combination of resin infiltration and CPP-ACPF/BAG remineralisation may be a potential treatment for the management of the WSLs.


Assuntos
Cárie Dentária , Esmalte Dentário , Humanos , Esmalte Dentário/patologia , Fluoretos/farmacologia , Fluoretos/uso terapêutico , Fluoretos/análise , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/uso terapêutico , Cárie Dentária/patologia
13.
Clin Exp Dent Res ; 10(2): e876, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506322

RESUMO

OBJECTIVES: This study evaluated the remineralization potential of calcium sodium phosphosilicate and functionalized tri-calcium phosphate (f-TCP) dentifrices in deeper incipient carious lesions (ICLs). MATERIALS AND METHODS: Artificial ICLs were created by placing premolars into demineralizing solutions. Teeth were randomly assigned into four groups: calcium sodium phosphosilicate (Group 1), f-TCP (Group 2), 1450 ppm fluoride (Group 3), and distilled water (Group 4), which were subjected to 10-day pH cycling. Mineral density (MD) was assessed using microcomputed tomography (Micro-CT), while hardness (H) and elastic modulus (EM) were assessed using nanomechanical testing. RESULTS: MD % gain was higher in Groups 1-3 than in Group 4. In addition, Groups 1 and 2 exhibited significantly higher MD % gain than Group 3. Also, Groups 1-3 showed significantly higher EM and H values than Group 4 in the outer enamel area; yet, Groups 1 and 2 displayed significantly higher EM and H values than Groups 3 and 4 in the inner enamel. CONCLUSIONS: The MD, EM, and H of ICLs significantly increased with the addition of calcium sodium phosphosilicate or f-TCP to fluoridated dentifrices compared to standard fluoride dentifrices. The added active ingredients remineralized the deeper parts of the ICLs, while remineralization at the lesion surface was similar between tested dentifrices.


Assuntos
Cárie Dentária , Dentifrícios , Compostos de Flúor , Humanos , Fluoretos , Cariostáticos , Dentifrícios/farmacologia , Cálcio , Microtomografia por Raio-X , Fosfatos de Cálcio , Minerais , Sódio
14.
Sci Rep ; 14(1): 6660, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509314

RESUMO

The aim of this preliminary study was to assess the impact of injecting recombinant human bone morphogenetic protein-2 (rhBMP-2) with ß-tricalcium phosphate (ß-TCP) carrier into the uppermost instrumented vertebra (UIV) during surgery to prevent the development of proximal junctional kyphosis (PJK) and proximal junctional failure (PJF). The 25 patients from study group had received 0.5 mg rhBMP-2 mixed with 1.5 g ß-TCP paste injection into the UIV during surgery. The control group consisted of 75 patients who underwent surgery immediately before the start of the study. The incidences of PJK and PJF were analyzed as primary outcomes. Spinopelvic parameters and patient-reported outcomes were analyzed as secondary outcomes. Hounsfield unit (HU) measurements were performed to confirm the effect of rhBMP-2 with ß-TCP on bone formation at preoperative and postoperative at computed tomography. PJK and PJF was more occurred in control group than study group (p = 0.02, 0.29, respectively). The HU of the UIV significantly increased 6 months after surgery. And the increment at the UIV was also significantly greater than that at the UIV-1 6 months after surgery. Injection of rhBMP-2 with ß-TCP into the UIV reduced PJK and PJF rates 6 months after surgery with new bone formation.


Assuntos
Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Cifose , Proteínas Recombinantes , Fusão Vertebral , Fator de Crescimento Transformador beta , Adulto , Humanos , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Cifose/etiologia , Fusão Vertebral/métodos
15.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474027

RESUMO

Candida spp. periprosthetic joint infections are rare but difficult-to-treat events, with a slow onset, unspecific symptoms or signs, and a significant relapse risk. Treatment with antifungals meets with little success, whereas prosthesis removal improves the outcome. In fact, Candida spp. adhere to orthopedic devices and grow forming biofilms that contribute to the persistence of this infection and relapse, and there is insufficient evidence that the use of antifungals has additional benefits for anti-biofilm activity. To date, studies on the direct antifungal activity of silver against Candida spp. are still scanty. Additionally, polycaprolactone (PCL), either pure or blended with calcium phosphate, could be a good candidate for the design of 3D scaffolds as engineered bone graft substitutes. Thus, the present research aimed to assess the antifungal and anti-biofilm activity of PCL-based constructs by the addition of antimicrobials, for instance, silver, against C. albicans and C. auris. The appearance of an inhibition halo around silver-functionalized PCL scaffolds for both C. albicans and C. auris was revealed, and a significant decrease in both adherent and planktonic yeasts further demonstrated the release of Ag+ from the 3D constructs. Due to the combined antifungal, osteoproliferative, and biodegradable properties, PCL-based 3D scaffolds enriched with silver showed good potential for bone tissue engineering and offer a promising strategy as an ideal anti-adhesive and anti-biofilm tool for the reduction in prosthetic joints of infections caused by Candida spp. by using antimicrobial molecule-targeted delivery.


Assuntos
Candida albicans , Candidíase , Poliésteres , Antifúngicos/farmacologia , Candida auris , Prata , Candida , Candidíase/microbiologia , Biofilmes , Fosfatos de Cálcio , Recidiva , Testes de Sensibilidade Microbiana
16.
ACS Biomater Sci Eng ; 10(3): 1435-1447, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38330203

RESUMO

Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.


Assuntos
Magnésio , Tantálio , Porosidade , Magnésio/farmacologia , Titânio , Fosfatos de Cálcio/farmacologia , Lasers
17.
ACS Biomater Sci Eng ; 10(3): 1753-1764, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38351646

RESUMO

In this study, an anatomical brushite-coated Mg-Nd-Zn-Zr alloy cage was fabricated for cervical fusion in goats. The purpose of this study was to investigate the cervical fusion effect and degradation characteristics of this cage in goats. The Mg-Nd-Zn-Zr alloy cage was fabricated based on anatomical studies, and brushite coating was prepared. Forty-five goats were divided into three groups, 15 in each group, and subjected to C2/3 anterior cervical decompression and fusion with tricortical bone graft, Mg-Nd-Zn-Zr alloy cage, or brushite-coated Mg-Nd-Zn-Zr alloy cage, respectively. Cervical radiographs and computed tomography (CT) were performed 3, 6, and 12 months postoperatively. Blood was collected for biocompatibility analysis and Mg2+ concentration tests. The cervical spine specimens were obtained at 3, 6, and 12 months postoperatively for biomechanical, micro-CT, scanning electron microscopy coupled with energy dispersive spectroscopy, laser ablation-inductively coupled plasma-time-of-flight mass spectrometry, and histological analysis. The liver and kidney tissues were obtained for hematoxylin and eosin staining 12 months after surgery for biosafety analysis. Imaging and histological analysis showed a gradual improvement in interbody fusion over time; the fusion effect of the brushite-coated Mg-Nd-Zn-Zr alloy cage was comparable to that of the tricortical bone graft, and both were superior to that of the Mg-Nd-Zn-Zr alloy cage. Biomechanical testing showed that the brushite-coated Mg-Nd-Zn-Zr alloy cage achieved better stability than the tricortical bone graft at 12 months postoperatively. Micro-CT showed that the brushite coating significantly decreases the corrosion rate of the Mg-Nd-Zn-Zr alloy cage. In vivo degradation analysis showed higher Ca and P deposition in the degradation products of the brushite-coated Mg-Nd-Zn-Zr alloy cage, and no hyperconcentration of Mg was detected. Biocompatibility analysis showed that both cages were safe for cervical fusion surgery in goats. To conclude, the anatomical brushite-coated Mg-Nd-Zn-Zr alloy cage can promote cervical fusion in goats, and the brushite-coated Mg-Nd-Zn-Zr alloy is a potential material for developing absorbable fusion cages.


Assuntos
Ligas , Vértebras Cervicais , Cabras , Animais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Vértebras Cervicais/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo
18.
Int J Implant Dent ; 10(1): 7, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329586

RESUMO

PURPOSE: Maxillary molars have low alveolar bone height diameter due to the presence of the maxillary sinus; thus, a sinus lift may be required in some cases. Changes in the volume of bone substitutes can affect the success of implant therapy. Therefore, this study aimed to compare the changes in the volume of two different bone substitutes-one based on carbonate apatite and the other on octacalcium phosphate-used in maxillary sinus floor elevation. METHODS: Nineteen patients and 20 sites requiring maxillary sinus floor elevation were included in the study. Digital Imaging and Communications in Medicine data for each patient obtained preoperatively and immediately and 6 months postoperatively were used to measure the volume of the bone grafting material using a three-dimensional image analysis software. The immediate postoperative volume of octacalcium phosphate was 95.3775 mm3 per piece of grafting material used. It was multiplied by the number of pieces used and converted to mL to determine the immediate postoperative volume. RESULTS: The mean resorption values of carbonate apatite and octacalcium phosphate were 12.7 ± 3.6% and 17.3 ± 3.9%, respectively. A significant difference in the amount of resorption of the two bone replacement materials was observed (P = 0.04). CONCLUSIONS: The results of this study indicate that both bone substitute materials tend to resorb. The two bone grafting materials that are currently medically approved in Japan have not been in the market for a long time, and their long-term prognosis has not yet been reported. Further clinical data are warranted.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Levantamento do Assoalho do Seio Maxilar , Humanos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Substitutos Ósseos/uso terapêutico , Apatitas , Carbonatos
19.
Clin Exp Dent Res ; 10(1): e817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345511

RESUMO

OBJECTIVE: This study assessed whether combining photobiomodulation therapy (PBMT) with casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) paste can effectively reduce post-home whitening tooth sensitivity (TS) without compromising shade change. METHODS: Fifty participants were selected and assigned to one of four groups: (1) PLACEBO group-received a placebo paste and PBMT simulation; (2) PBMT group-received a placebo paste + PBMT; (3) CPP-ACPF group-received CPP-ACPF paste and PBMT simulation; (4) CPP-ACPF + PBMT group-received both CPP-ACPF paste and PBMT. The participants used whitening trays containing 22% carbamide peroxide for 2 h a day for 21 days. TS was measured daily using a visual analog scale, while shade change was assessed using a spectrophotometer: before bleaching treatment (T0), after the first (T1), second (T2), and third (T3) weeks of treatment, and 30 days (T4) after completing the whitening treatment. RESULTS: Intragroup analysis revealed that the PLACEBO group had the highest increase in sensitivity during the whitening treatment. The CPP-ACPF and PBMT groups showed no significant difference tooth whitening (TW) between weeks regarding aesthetic change. The CPP-ACPF and PBMT group exhibited a significant reduction in TS between the first and third and between the second and third weeks TW, but not between the first and second. Conversely, the PLACEBO group showed a higher sensitivity than the other groups (p < .05). The CPP-ACPF and PBMT groups did not differ from each other. Furthermore, the CPP-ACPF and PBMT group showed a greater decrease in sensitivity than the PLACEBO group at T1, T2, and T3 (p < .01), and was significantly differed from CPP-ACPF and PBMT groups only at T2 and T3. All groups confirmed TW effectiveness. Student's and paired t-test did not reveal any significant difference between groups (p > .05). CONCLUSION: Therefore, PBMT associated with CPP-ACPF paste can reduce TS without compromising the efficacy of TW.


Assuntos
Fosfatos de Cálcio , Sensibilidade da Dentina , Terapia com Luz de Baixa Intensidade , Humanos , Fluoretos/uso terapêutico , Sensibilidade da Dentina/prevenção & controle , Caseínas/uso terapêutico , Fosfopeptídeos , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
ACS Biomater Sci Eng ; 10(2): 1077-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301150

RESUMO

It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 µm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The µCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.


Assuntos
Sulfato de Cálcio , Hidroxiapatitas , Osteogênese , Animais , Coelhos , Sulfato de Cálcio/farmacologia , Pós , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...