Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.145
Filtrar
1.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556991

RESUMO

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Assuntos
Neoplasias Hepáticas , Neoplasias , Terapia por Ultrassom , Humanos , Cobre , Eletrônica , Glutationa , Hidróxidos , Neoplasias Hepáticas/tratamento farmacológico , Imunidade , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Biochemistry (Mosc) ; 89(Suppl 1): S112-S126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621747

RESUMO

The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.


Assuntos
Peróxido de Hidrogênio , Radical Hidroxila , Radical Hidroxila/química , Ferro/química , Hidróxidos , Oxirredução , Proteínas de Transporte
3.
J Nanobiotechnology ; 22(1): 144, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566094

RESUMO

Improving the efficiency of antiseizure medication entering the brain is the key to reducing its peripheral toxicity. A combination of intranasal administration and nanomedicine presents a practical approach for treating epileptic seizures via bypassing the blood-brain barrier. In this study, phenytoin (PHT) loaded layered double hydroxide nanoparticles (BSA-LDHs-PHT) were fabricated via a coprecipitation - hydrothermal method for epileptic seizure control. In this study, we expound on the preparation method and characterization of BSA-LDHs-PHT. In-vitro drug release experiment shows both rapid and continuous drug release from BSA-LDHs-PHT, which is crucial for acute seizure control and chronic epilepsy therapy. In-vivo biodistribution assays after intranasal administration indicate excellent brain targeting ability of BSA-LDHs. Compared to BSA-Cyanine5.5, BSA-LDHs-Cyanine5.5 were associated with a higher brain/peripheral ratio across all tested time points. Following intranasal delivery with small doses of BSA-LDHs-PHT, the latency of seizures in the pentylenetetrazole-induced mouse models was effectively improved. Collectively, the present study successfully designed and applied BSA-LDHs-PHT as a promising strategy for treating epileptic seizures with an enhanced therapeutic effect.


Assuntos
Epilepsia , Nanopartículas , Camundongos , Animais , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Administração Intranasal , Distribuição Tecidual , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Nanopartículas/uso terapêutico , Hidróxidos/uso terapêutico
4.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501833

RESUMO

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Assuntos
Nanocompostos , Neoplasias , Humanos , Hidróxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Nanocompostos/química
5.
Biosens Bioelectron ; 255: 116256, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555772

RESUMO

Growing three-dimensional (3D) metal organic frameworks (MOFs) via heterogeneous epitaxial growth on metal hydroxide arrays are effective for constructing electrochemical sensor. However, the growth of MOFs is difficult to control, resulting in thick and irregular morphologies and even damage the metal hydroxide template. In this work, Cu3(HHTP)2 (HHTP = 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene) films with controllable thickness and morphology were successfully prepared on Cu(OH)2 nanowire arrays (NWAs) through layer-by-layer (LBL) growth method. We have discovered that the LBL cycle and the reaction solvent composition are crucial for growing homogenous MOF thin films. The Cu3(HHTP)2 based ascorbic acid (AA) sensor, fabricated in ethanol within 10 LBL cycles, generated an ultrahigh sensitivity of 821.64 µA mM-1 cm-2 in the range of 6-981.41 µM, a low detection limit of 60 nM as well as the great selectivity, stability and reproducibility. Moreover, the relative deviation for AA detection in two fruit juices were 3.22 % and 3.71 %, and the test result for human sweat fall within the normal AA concentration range, verifying the feasibility of as-prepared sensor for practical application.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanofios , Humanos , Reprodutibilidade dos Testes , Ácido Ascórbico , Hidróxidos
6.
J Vis Exp ; (205)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497623

RESUMO

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by symptoms such as dry mouth, dry eyes, and other systematic symptoms. Due to the hyposalivation experienced by pSS patients, oral dysbacteriosis often occurs. A common complication of pSS is the oral Candida infection. In this article, the authors describe systematic methods that can effectively diagnose oral Candida infection and identify the Candida strains using saliva, oral mucosal swabs, or mouthwash from pSS patients. The Sabouraud's Dextrose Agar (SDA), hyphal formation assay, potassium hydroxide (KOH) smear test, and calcofluor white (CFW) staining assay are used for the diagnosis of oral Candida infection. A Candida diagnostic agar is used for the identification of Candida strains. Finally, antifungal susceptibility testing is used to determine appropriate antifungal drug treatment. This standardized method can enhance the diagnosis, treatment, and future research of pSS-related oral Candida infections. Early diagnosis, using this method, can also prevent any complications arising due to delay in receiving appropriate treatment.


Assuntos
Antifúngicos , Candidíase , Hidróxidos , Compostos de Potássio , Humanos , Ágar , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida
7.
Water Sci Technol ; 89(5): 1401-1417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483505

RESUMO

In this study, the mesoporous material NCNT was prepared by treating carbon nanotubes (CNT) with hydrazine and subsequently loaded with Cu-Fe layered double hydroxide (CuFeLDH) to create a multiphase catalyst (CuFeLDH-NCNT). Its application as a multiphase catalyst was investigated in an ultrasound-assisted Fenton process for ciprofloxacin (CIP) degradation in aqueous solution. In addition, the impacts of catalyst dosage, ultrasonic power, H2O2 dosage, and beginning pH on CIP removal efficiency were carefully evaluated to maximize the removal efficiency of CIP. The findings indicated that the elimination rate of the initial CIP concentration of 20 mg/L surpassed 94.66% after a mere 100 min, while the TOC degradation rate was 70.4%. The high removal rate was due to the synergistic action between the nanoparticles, H2O2, and ultrasonography. The degradation intermediates of CIP were examined, and putative degradation pathways and mechanisms were postulated.


Assuntos
Peróxido de Hidrogênio , Nanotubos de Carbono , Ultrassonografia , Ciprofloxacina , Hidróxidos
8.
J Colloid Interface Sci ; 663: 909-918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447405

RESUMO

Peroxymonosulfate (PMS) is widely employed to generate oxygen-containing reactive species for ciprofloxacin (CIP) degradation. Herein, cobalt oxyhydroxide @activated carbon (CoOOH@AC) was synthesized via a wet chemical sedimentation method to activate PMS for degradation of CIP. The result suggested AC can support the vertical growth of CoOOH nanosheets to expose high-activity Co-contained edges, possessing efficient PMS activation and degradation activity and catalytic stability. In the presence of 3.0 mg of optimal CoOOH@AC and 2 mM PMS, 96.8 % of CIP was degraded within 10 min, approximately 11.6 and 9.97 times greater than those of CoOOH/PMS and AC/PMS systems. Notably, it was disclosed that the optimal CoOOH@AC/PMS system still exhibited efficient catalytic performance in a wide pH range, different organics and common co-existing ions. Quenching experiments and electron paramagnetic resonance indicated that both radical and non-radical processes contributed to the degradation of CIP, with 1O2 and direct electron transfer accounting for the non-radical pathway and SO4•- and •OH serving as the main radical active species. Finally, possible CIP degradation pathways were proposed based on high-performance liquid chromatography-mass spectrometry. This study provided an alternate method for wastewater treatment based on PMS catalyzed by cobalt-based hydroxide.


Assuntos
Carvão Vegetal , Ciprofloxacina , Hidróxidos , Óxidos , Ciprofloxacina/química , Peróxidos/química , Cobalto/química , Espécies Reativas de Oxigênio
9.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436248

RESUMO

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Assuntos
Artemisininas , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , 60547 , Alumínio , Neoplasias/tratamento farmacológico , Ferro , Hidróxidos , Imunoterapia/métodos , Microambiente Tumoral
10.
Chemosphere ; 353: 141647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460843

RESUMO

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Assuntos
Lacase , Óxidos , Óxidos/química , Óxido de Magnésio , Substâncias Húmicas/análise , Hidróxidos/química
11.
Nanotechnology ; 35(27)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38537263

RESUMO

An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340µA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Glucose/química , Estruturas Metalorgânicas/química , Cobre/química , Técnicas Biossensoriais/métodos , Hidróxidos/química , Níquel/química
12.
Environ Pollut ; 348: 123865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548162

RESUMO

Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.


Assuntos
Peróxidos , Oxigênio Singlete , Oxigênio Singlete/química , Peróxidos/química , Hidróxidos/química , Água , Oxigênio
13.
Environ Pollut ; 348: 123886, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556153

RESUMO

Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.


Assuntos
Ferro , Poluentes Químicos da Água , Temperatura , Adsorção , Pirólise , Carvão Vegetal , Tetraciclina , Antibacterianos , Água , Hidróxidos , Poluentes Químicos da Água/análise , Cinética
14.
Environ Monit Assess ; 196(4): 333, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430282

RESUMO

The Doce River Basin (DRB) suffers with the adverse impacts of mining activities, due to its high level of urbanization and numerous industrial operations. In this study, we present novel insights into contaminant flow dynamics, seasonal variations, and the primary factors driving concentration levels within the region. We conducted an extensive analysis using a database sourced from the literature, which contained data on the contamination of arsenic (As) and lead (Pb) in the Doce River. Our primary aim was to investigate the patterns of As and Pb flow throughout the entire basin, their response to seasonal fluctuations, and the key parameters influencing their concentration levels. The results showed significant seasonal fluctuations in As and Pb fluxes, peaking during the rainy season. The 2015 Fundão dam breach in the DRB led to notable changes, elevating elemental concentrations, particularly As and Pb, which were subsequently transported to the Atlantic Ocean. These increased concentrations were primarily associated with iron and manganese oxides, hydroxides, and sulfates, rather than precipitation, as evidenced by regressions with low R2 values for both As (R2 = 0.07) and Pb (R2 < 0.001), concerning precipitation. The PCA analysis further supports the connection between these elements and the oxides and hydroxides of Fe and Mn. The approach employed in this study has proven to be highly effective in comprehending biogeochemical phenomena by leveraging data from the literature and could be a model for optimizing resources by capitalizing on existing information to provide valuable insights for drainage basin management, particularly during crises.


Assuntos
Arsênio , Estações do Ano , Rios , Chumbo , Monitoramento Ambiental , Óxidos , Hidróxidos
15.
Sci Rep ; 14(1): 3990, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368467

RESUMO

Fluoxetine (FLX) is one of the most persistent pharmaceuticals found in wastewater due to increased use of antidepressant drugs in recent decades. In this study, a nanocomposite of ternary ZnCoAl layered double hydroxide supported on activated carbon (LAC) was used as an adsorbent for FLX in wastewater effluents. The nanocomposite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis (BET). The adsorption investigations showed that the maximum removal capacity was achieved at pH 10, with a 0.1 g/L adsorbent dose, 50 mL volume of solution, and at a temperature of 25 °C. The FLX adsorption process followed the Langmuir-Freundlich model with a maximum adsorption capacity of 450.92 mg/g at FLX concentration of 50 µg/mL. Density functional theory (DFT) computations were used to study the adsorption mechanism of FLX and its protonated species. The safety and toxicity of the nanocomposite formed from the adsorption of FLX onto LAC (FLX-LAC) was investigated in male albino rats. Acute toxicity was evaluated using probit analysis after 2, 6, and 24 h to determine LD50 and LD100 values in a rat model. The FLX-LAC (20 mg/kg) significantly increased and lengthened the sleep time of the rats, which is important, especially with commonly used antidepressants, compared to the pure standard FLX (7 mg/kg), regular thiopental sodium medicine (30 mg/kg), and LAC alone (9 mg/kg). This study demonstrated the safety and longer sleeping duration in insomniac patients after single-dose therapy with FLX-LAC. Selective serotonin reuptake inhibitors (SSRIs) like FLX were found to have decreased side effects and were considered the first-line mood disorder therapies.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Humanos , Masculino , Animais , Ratos , Fluoxetina , Águas Residuárias , Hidróxidos/química , Antidepressivos , Nanocompostos/química , Adsorção , Cinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
16.
Environ Monit Assess ; 196(3): 262, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351411

RESUMO

Water being the most important fluid supporting the life as well as industry is getting sparse and polluted day by day. Activated carbon (AC) can be utilized in various applications of significant environmental impact and sustainable living such as carbon dioxide sensing and capturing, air purification, and water recycling. However, in the wake of the recent corona pandemic which resulted in global lockdown and took the entire world by shock, a cost-effective and simple synthesis of such a useful material remains dire need of time. Therefore, this paper describes a simple and cost-effective synthesis of activated carbon (AC) of high porosity and surface area derived from the pruning of conocarpus and azadirachta trees. In reference to the study under consideration, alongside numerous others, a furnace was employed to synthesize activated carbon. However, our approach utilized a more conventional methodology wherein the environmental parameters were not optimized. In furnace-based procedures, factors such as temperature, pressure, and humidity are meticulously regulated, contrasting with the conventional methodologies where such parameters lack optimal control. Consequently, employing a furnace does not constitute a cost-effective approach for the physical activation of organic samples thus proving a furnace is not imperative for physical activation. The synthesis was carried out by physical activation in the form of carbonization followed by chemical activation with potassium hydroxide (KOH). The influence of activated carbon from each pruning over filtration of water containing industrial dye was investigated. Activation temperature and impregnation ratio of 600-800 °C and 1:5 were selected respectively. X-ray diffraction patterns (XRD) for all AC samples indicted the appearance of broad peaks at 2θ value of 20-30° which confirms the presence of carbon in the sample. The physical morphology arrangement by SEM analysis showed uneven arrangement of pores of conocarpus which indicated higher iodine number and hence higher adsorption capacity of 442.13 mg/g.


Assuntos
Azadirachta , Hidróxidos , Compostos de Potássio , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal/química , Monitoramento Ambiental , Poluentes Químicos da Água/química , Água , Adsorção
17.
Korean J Ophthalmol ; 38(2): 98-104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351488

RESUMO

PURPOSE: To compare the efficacy and rapidity of direct microscopic detection of fungal elements from corneal ulcers between 10% potassium hydroxide (KOH) and 1% Chicago Sky Blue 6B (CSB) in 10% KOH (CSB-KOH). METHODS: Thirty patients with clinically suspected fungal keratitis were recruited. Participants with impending corneal perforation were excluded. Two slides were smeared with corneal ulcer scrapings from the ulcer's edge and base for comparison of fungal staining solutions. One slide was infused with KOH, and the other slide was filled with CSB-KOH. Additional scraping was collected for inoculation on Sabouraud dextrose agar for fungal culture. The sensitivity, specificity and rapidity of both stainings were analyzed. RESULTS: The sensitivity of fungal culture, KOH, and CSB-KOH were 43.75% (95% confidence interval [CI], 19.75%-70.12%), 62.50% (95% CI, 35.43%-84.80%), and 87.50% (95% CI, 61.65%-98.45%), respectively. The specificity were 100% (95% CI, 69.15%-100%) of both stainings and fungal culture which analyzed from 16 fungal keratitis cases by laboratory and clinical diagnosis. Mean CSB-KOH examination time was quicker than KOH with the mean time difference of 5.6 minutes (95% CI, 3.22-7.98 minutes) and p-value < 0.001. CONCLUSIONS: CSB-KOH was more effective and faster than KOH in detecting fungal elements from corneal ulcers. Therefore, CSB-KOH may be beneficial in diagnosing fungal keratitis and preventing blindness. Moreover, to the best of our knowledge, this is the first use of CSB stain in fungal keratitis detection.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Hidróxidos , Compostos de Potássio , Azul Tripano , Humanos , Úlcera da Córnea/diagnóstico , Úlcera da Córnea/tratamento farmacológico , Úlcera da Córnea/microbiologia , Corantes , Úlcera , Córnea , Infecções Oculares Fúngicas/diagnóstico , Infecções Oculares Fúngicas/microbiologia
18.
Environ Sci Pollut Res Int ; 31(15): 22630-22644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413523

RESUMO

Groundwater environments are complex, and traditional advanced oxidation technologies mainly based on free radicals have limitations such as poor selectivity and low interference resistance, making it difficult to efficiently degrade target pollutants in groundwater. Therefore, we developed a sludge-based biochar-supported FeMg-layered double hydroxide catalyst (BC@FeMg-LDH) for the catalytic degradation of 2, 4-dichlorophenol (2, 4-DCP) using persulfate (PDS) as an oxidant. The removal efficiency of the catalyst exceeded 95%, showing high oxidation activity in a wide pH range while being almost unaffected by reducing substances and ions in the environment. Meanwhile, under neutral conditions, the leaching of metal ions from BC@FeMg-LDH was minimal, thereby eliminating the risk of secondary pollution. According to quenching experiments and electron paramagnetic resonance spectroscopy, the main active species during BC@FeMg-LDH/PDS degradation of 2, 4-DCP is 1O2, indicating a non-radical reaction mechanism dominated by 1O2. Characterization techniques, including X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed that the carbonyl (C = O) and metal hydroxyl (M-OH) groups on the material surface were the main reactive sites mediating 1O2 generation. The 1O2 generation mechanism during the reaction involved ketone-like activation of carbonyl groups on the biochar surface and complexation of hydroxyl groups on the material surface with PDS, resulting in the formation of O2·- and further generation of 1O2. 1O2 exhibited high selectivity toward electron-rich organic compounds such as 2, 4-DCP and demonstrated strong interference resistance in complex groundwater environments. Therefore, BC@FeMg-LDH holds promising applications for the remediation of organic-contaminated groundwater.


Assuntos
Água Subterrânea , Hidróxidos , Hidróxidos/química , Carvão Vegetal/química , Metais , Fenóis
19.
Waste Manag ; 178: 257-266, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417311

RESUMO

One of the technical barriers to the wider use of biochar in the composting practices is the lack of accurate quantification linking biochar properties to application outcomes. To address this issue, this paper investigates the use of ammonia nitrogen adsorption capacity by biochar as a predictor of ammonia emission during composting in the presence of biochar. With this in mind, this work investigated the use of ammonia nitrogen adsorption capacity of biochar when mixed with solid digestate, and the reduction in ammonia emissions resulting from the addition of biochar during aerobic degradation of solid digestate. A biochar synthesized at 900 °C, another synthesized at 450 °C, and two derivatives of the latter biochar, one chemically modified with nitric acid and the other with potassium hydroxide, were tested. This study concluded that the chemical characteristics of the biochar, including pH and oxygen/carbon atomic ratio, had a greater influence on the adsorption of ammonia nitrogen than physical attributes such as specific surface area. In this regard, nitric acid modification had superior performance compared to hydroxide potassium modification to increase biochar chemical attributes and reduce ammonia emissions when applied to aerobic degradation. Finally, a significant linear correlation (p-value < 0.05, r2 = 0.79) was found between biochar ammonia nitrogen adsorption capacity and ammonia emissions along composting, showing the potential of this variable as a predictive parameter. This study provides insights for future explorations aiming to develop predictive tests for biochar performance.


Assuntos
Amônia , Hidróxidos , Nitrogênio , Compostos de Potássio , Amônia/análise , Nitrogênio/análise , Ácido Nítrico , Adsorção , Solo/química , Esterco , Carvão Vegetal/química
20.
Int J Biol Macromol ; 262(Pt 2): 129979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331065

RESUMO

In this study, 1-bromohexyl-1methylpiperidinium bromide (Br-6-MPRD) ionic liquid grafted quaternized chitosan (QCS) and polyvinyl alcohol (PVA) blends were composited with glycidyl trimethyl ammonium chloride (GTMAC) quaternized silica (QSiO2) at different dosages. Glutaraldehyde (GA) crosslinked the membranes and then processed into hydroxide form with an aqueous potassium hydroxide solution. The resultant IL-QCS/PVA/QSiO2 membranes exhibit significantly improved ionic conductivity, moderate water absorption and swelling ratio compared with the pristine IL-QCS/PVA anion exchange membrane (AEM). Among them, the hydroxide ion conductivity and power density of IL-QCS/PVA/QSiO2-7 membrane can reach up to 78 mS cm-1 at 80 °C and 115 mW cm-2 at 60 °C respectively. In addition, IL-QCS/PVA/QSiO2 membranes have excellent thermal, mechanical, and chemical stabilities, which can meet the application requirements of AEM for fuel cells.


Assuntos
Compostos de Amônio , Quitosana , Hidróxidos , Líquidos Iônicos , Metacrilatos , Álcool de Polivinil , Polímeros , Ânions , Eletrólitos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...