Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.146
Filtrar
1.
Carbohydr Polym ; 332: 121923, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431418

RESUMO

Bacterial cellulose (BC) produced by Acetobacter xylinum has great advantages in wound dressing. However, the structural limitation under static culture, and lack of antibacterial properties restrict its application, especially for infectious wound healing. The present study reported an original wound dressing, which was composed of a Janus BC membrane with antibacterial nano-sized copper oxide (CuO) through polydopamine (PDA) conjugation to promote wound healing under infectious condition. The finished product (CuO/PDA/BC membrane) exhibited favorable air permeability, high hydrophilicity and good mechanical properties, as well as strong antibacterial effects by the sustained release of CuO and photothermal effect of CuO/PDA. Furthermore, CuO/PDA/BC membrane inhibited inflammatory response and promoted wound healing in an infectious wound model in vivo. These results suggested that our CuO/PDA/BC membrane had great potential as wound dressing for infectious wound healing.


Assuntos
Celulose , Indóis , Polímeros , Infecção dos Ferimentos , Humanos , Celulose/farmacologia , Celulose/química , Cobre/farmacologia , Cobre/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Óxidos/farmacologia
2.
ScientificWorldJournal ; 2024: 7585145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434937

RESUMO

In this study, we investigated the use of manganese oxide-biochar nanocomposites (MnOx-BNC), synthesized from coffee husk (CH) and khat leftover (KL) for the removal of methylene blue (MB) from wastewater. Pristine biochars of each biomass (CH and KL) as well as their corresponding biochar-based nanocomposites were synthesized by pyrolyzing at 300°C for 1 h. The biochar-based nanocomposites were synthesized by pretreating 25 g of each biomass with 12.5 mmol of KMnO4. To assess the MB removal efficiency, we conducted preliminary tests using 0.2 g of each adsorbent, 20 mL of 20 mg·L-1 MB, pH 7.5, and shaking the mixture at 200 rpm and for 2 h at 25°C. The results showed that the pristine biochar of CH and KL removed 39.08% and 75.26% of MB from aqueous solutions, respectively. However, the MnOx-BNCs removed 99.27% with manganese oxide-coffee husk biochar nanocomposite (MnOx-CHBNC) and 98.20% with manganese oxide-khat leftover biochar nanocomposite (MnOx-KLBNC) of the MB, which are significantly higher than their corresponding pristine biochars. The adsorption process followed the Langmuir isotherm and a pseudo-second-order model, indicating favorable monolayer adsorption. The MnOx-CHBNC and MnOx-KLBNC demonstrated satisfactory removal efficiencies even after three and six cycles of reuse, respectively, indicating their potential effectiveness for alternative use in removing MB from wastewater.


Assuntos
Carvão Vegetal , Coffea , Compostos de Manganês , Nanocompostos , Óxidos , Águas Residuárias , Catha , Azul de Metileno
3.
Sci Rep ; 14(1): 5075, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429365

RESUMO

In the present study, three process parameters optimization were assessed as controlling factors for the biogas and biomethane generation from brown algae Cystoceira myrica as the substrate using RSM for the first time. The biomass amount, Co3O4NPs dosage, and digestion time were assessed and optimized by RSM using Box-Behnken design (BBD) to determine their optimum level. BET, FTIR, TGA, XRD, SEM, XPS, and TEM were applied to illustrate the Co3O4NPs. FTIR and XRD analysis established the formation of Co3O4NPs. The kinetic investigation confirmed that the modified model of Gompertz fit the research results satisfactorily, with R2 ranging between 0.989-0.998 and 0.879-0.979 for biogas and biomethane production, respectively. The results recommended that adding Co3O4NPs at doses of 5 mg/L to C. myrica (1.5 g) significantly increases biogas yield (462 mL/g VS) compared to all other treatments. The maximum biomethane generation (96.85 mL/g VS) was obtained with C. myrica at (0 mg/L) of Co3O4NPs. The impacts of Co3O4NPs dosages on biomethane production, direct electron transfer (DIET) and reactive oxygen species (ROS) were also investigated in detail. The techno-economic study results demonstrate the financial benefits of this strategy for the biogas with the greatest net energy content, which was 2.82 kWh with a net profit of 0.60 USD/m3 of the substrate and was produced using Co3O4NPs (5 mg/L).


Assuntos
Cobalto , Nanopartículas , Óxidos , Alga Marinha , Espécies Reativas de Oxigênio , Biocombustíveis , Elétrons
4.
Huan Jing Ke Xue ; 45(2): 1098-1106, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471947

RESUMO

In order to study the safe utilization of acid cadmium (Cd) contaminated soil, light and moderate Cd-contaminated farmland in Shangluo, Shaanxi Province was taken as the research object, and lime, biochar, and calcium magnesium phosphate fertilizer were applied. Through the wheat-maize rotation experiment, the safe utilization effect of different amounts of passivator on Cd-contaminated soil was explored, and the best ratio of passivator was selected. The results showed that: ① the soil quality could be improved to varying degrees by applying the passivator. ② After the application of amendments, the grain yield of wheat and maize increased to different degrees. ③ The lime 2 340 kg·hm-2 (C3) treatment had the best effect, which increased the soil pH of wheat and corn by 1.453 and 1.717 units, respectively, and reduced the available Cd content by 34.38% and 30.20%, respectively. ④ The application of biochar 1 800 kg·hm-2 (B2) treatment had the best effect on reducing the Cd contents in wheat roots, straws, and grains, which were significantly reduced by 53.60%, 38.86%, and 52.96%, respectively, compared with that in CK. The Cd content in wheat grains was reduced to 0.09 mg·kg-1, which was lower than the limit value of wheat Cd (0.1 mg·kg-1) specified in the "National food safety standard food pollutant limit" (GB 2762-2017). The application of the biochar 1 260 kg·hm-2 (B1) treatment had the best comprehensive effect on reducing the Cd contents of maize roots, straws, and grains, which were significantly reduced by 43.74%, 53.20%, and 94.57%, respectively, compared with that in CK. The Cd content of maize grains was reduced to 0.001 9 mg·kg-1, which was far lower than the limit value of maize Cd (0.1 mg·kg-1) specified in the "National food safety standard food pollutant limit" (GB 2762-2017). Therefore, under the conditions of the field experiment, considering the influence of various indexes, biochar had the best effect on farmland soil in the wheat-maize rotation area with mild to moderate Cd pollution.


Assuntos
Compostos de Cálcio , Poluentes Ambientais , Oryza , Óxidos , Poluentes do Solo , Fazendas , Cádmio/análise , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Triticum
5.
Sci Rep ; 14(1): 6081, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480834

RESUMO

Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Nanopartículas , Cobre/química , Staphylococcus aureus , Escherichia coli , Nanopartículas/química , Óxidos/farmacologia , Óxidos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
6.
Chem Pharm Bull (Tokyo) ; 72(3): 303-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479853

RESUMO

Amine-free phosphorylation of various alcohols was developed with 4-methylpyridine N-oxide in the presence of 4 Å molecular sieves at room temperature. This mild method gave various phosphorylated products in high yield and could be applied to acid- or base-sensitive substrates. Furthermore, this method was also effective for the chemoselective phosphorylation of diols or polyols.


Assuntos
Álcoois , Óxidos , Picolinas , Aminas , Fosforilação , Catálise
7.
BMC Oral Health ; 24(1): 322, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468251

RESUMO

BACKGROUND: This animal study sought to evaluate two novel nanomaterials for pulpotomy of primary teeth and assess the short-term pulpal response and hard tissue formation in dogs. The results were compared with mineral trioxide aggregate (MTA). METHODS: This in vivo animal study on dogs evaluated 48 primary premolar teeth of 4 mongrel female dogs the age of 6-8 weeks, randomly divided into four groups (n = 12). The teeth underwent complete pulpotomy under general anesthesia. The pulp tissue was capped with MCM-48, MCM-48/Hydroxyapatite (HA), MTA (positive control), and gutta-percha (negative control), and the teeth were restored with intermediate restorative material (IRM) paste and amalgam. After 4-6 weeks, the teeth were extracted and histologically analyzed to assess the pulpal response to the pulpotomy agent. RESULTS: The data were analyzed using the Kruskal‒Wallis, Fisher's exact, Spearman's, and Mann‒Whitney tests. The four groups were not significantly different regarding the severity of inflammation (P = 0.53), extent of inflammation (P = 0.72), necrosis (P = 0.361), severity of edema (P = 0.52), extent of edema (P = 0.06), or connective tissue formation (P = 0.064). A significant correlation was noted between the severity and extent of inflammation (r = 0.954, P < 0.001). The four groups were significantly different regarding the frequency of bone formation (P = 0.012), extent of connective tissue formation (P = 0.047), severity of congestion (P = 0.02), and extent of congestion (P = 0.01). No bone formation was noted in the gutta-percha group. The type of newly formed bone was not significantly different among the three experimental groups (P = 0.320). CONCLUSION: MCM-48 and MCM-48/HA are bioactive nanomaterials that may serve as alternatives for pulpotomy of primary teeth due to their ability to induce hard tissue formation. The MCM-48 and MCM-48/HA mesoporous silica nanomaterials have the potential to induce osteogenesis and tertiary (reparative) dentin formation.


Assuntos
Capeamento da Polpa Dentária , Dentina Secundária , Animais , Cães , Feminino , Dente Pré-Molar , Polpa Dentária/patologia , Capeamento da Polpa Dentária/métodos , Dentina Secundária/patologia , Combinação de Medicamentos , Edema , Guta-Percha , Hidroxiapatitas , Inflamação/patologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Dente Decíduo
8.
J Nanobiotechnology ; 22(1): 103, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468261

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT: This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION: This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.


Assuntos
Artrite Reumatoide , Cério , Compostos de Manganês , Nanopartículas , Óxidos , Humanos , Manganês/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Artrite Reumatoide/tratamento farmacológico , Macrófagos , Inflamação , Cério/farmacologia
9.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474928

RESUMO

Electromyography (EMG) proves invaluable myoelectric manifestation in identifying neuromuscular alterations resulting from ischemic strokes, serving as a potential marker for diagnostics of gait impairments caused by ischemia. This study aims to develop an interpretable machine learning (ML) framework capable of distinguishing between the myoelectric patterns of stroke patients and those of healthy individuals through Explainable Artificial Intelligence (XAI) techniques. The research included 48 stroke patients (average age 70.6 years, 65% male) undergoing treatment at a rehabilitation center, alongside 75 healthy adults (average age 76.3 years, 32% male) as the control group. EMG signals were recorded from wearable devices positioned on the bicep femoris and lateral gastrocnemius muscles of both lower limbs during indoor ground walking in a gait laboratory. Boosting ML techniques were deployed to identify stroke-related gait impairments using EMG gait features. Furthermore, we employed XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Anchors to interpret the role of EMG variables in the stroke-prediction models. Among the ML models assessed, the GBoost model demonstrated the highest classification performance (AUROC: 0.94) during cross-validation with the training dataset, and it also overperformed (AUROC: 0.92, accuracy: 85.26%) when evaluated using the testing EMG dataset. Through SHAP and LIME analyses, the study identified that EMG spectral features contributing to distinguishing the stroke group from the control group were associated with the right bicep femoris and lateral gastrocnemius muscles. This interpretable EMG-based stroke prediction model holds promise as an objective tool for predicting post-stroke gait impairments. Its potential application could greatly assist in managing post-stroke rehabilitation by providing reliable EMG biomarkers and address potential gait impairment in individuals recovering from ischemic stroke.


Assuntos
Compostos de Cálcio , AVC Isquêmico , Óxidos , Acidente Vascular Cerebral , Adulto , Humanos , Masculino , Idoso , Feminino , Inteligência Artificial , Eletromiografia
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124083, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428214

RESUMO

Food sources are susceptible to contamination with ochratoxin A (OTA), which is a serious threat to human health. Thus, the construction of novel, simple sensing platforms for OTA monitoring is of utmost need. Manganese-doped lead halide perovskite quantum dots encapsulated with mesoporous SiO2 (Mn-CsPbBr3 QDs@SiO2) were prepared here and used as a ratiometric fluorescent probe for OTA. Mn-CsPbBr3 QDs, synthesized at room temperature, exhibit dual emission with maximum wavelengths of 440 and 570 nm and, when embedded in the SiO2 layer, produce a stable and robust photoluminescence signal. By adding OTA to the probe, emission at 440 nm increases while emission at 570 nm decreases, so a ratiometric response is obtained. Experimental variables affecting the probe signal were studied and optimized and the mechanism of sensing was discussed. This ratiometric sensor demonstrated excellent selectivity and low detection limit (4.1 ng/ml) as well as a wide linear range from 5.0 to 250 ng/ml for OTA. A simple portable smartphone-based device was also constructed and applied for the fluorescence assay. With different OTA concentrations, the multicolor transition from pink to blue under a UV lamp led to simple visual and smartphone-assisted sensing of OTA by using a color analyzing application. Satisfactory recoveries in black tea, coffee, moldy fig and flour samples confirmed the reliability of the assay. The accuracy of the probe was proved by comparison of the results with high-performance liquid chromatography (HPLC).


Assuntos
Compostos de Cálcio , Ocratoxinas , Óxidos , Pontos Quânticos , Titânio , Humanos , Pontos Quânticos/química , Dióxido de Silício/química , Smartphone , Reprodutibilidade dos Testes , Corantes Fluorescentes/química , Limite de Detecção
11.
J Sep Sci ; 47(5): e2300923, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466147

RESUMO

Regorafenib is a small-molecule tyrosine kinase inhibitor with severe hepatotoxicity. It undergoes metabolism mainly by CYP3A4 to generate active metabolites regorafenib-N-oxide (M2) and N-desmethyl-regorafenib-N-oxide (M5). Wuzhi capsule (WZC) is an herbal preparation derived from Schisandra sphenanthera and is potentially used to prevent regorafenib-induced hepatotoxicity. This study aims to explore the effect of WZC on the pharmacokinetics of regorafenib in rats. An efficient and sensitive liquid chromatography-tandem mass spectrometry method was developed to quantitatively determine regorafenib and its main metabolites in rat plasma. The proposed method was applied to the pharmacokinetic study of regorafenib in rats, with or without WZC. Coadministration of regorafenib with WZC resulted in a prolonged mean residence time (MRT) of the parent drug but had no statistically significant difference in other pharmacokinetic parameters. While for the main metabolites of regorafenib, WZC decreased the area under the curve and maximum concentration (Cmax ), delayed the time to reach Cmax , and prolonged the MRT of M2 and M5. These results indicate that WZC delayed and inhibited the metabolism of regorafenib to M2 and M5 by suppressing CYP3A4. Our study provides implications for the rational use of the WZC-regorafenib combination in clinical practice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Medicamentos de Ervas Chinesas , Compostos de Fenilureia , Piridinas , Animais , Ratos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Óxidos
12.
Environ Monit Assess ; 196(4): 344, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438568

RESUMO

In this study, the photocatalytic removal of Reactive Red 120 (RR120) dye was examined using zeolite 13X incorporated with Zn-Ce under UV irradiation. The synthesis of Zn-Ce nanoparticles incorporated with zeolite 13X was conducted through the co-precipitation method, and the features of the prepared nanocatalyst were analyzed using various techniques. The SEM and BET analyses indicated successful incorporation of ZnO-Ce oxides on the surface of zeolite 13X and a specific surface area of 359.39 m2/gm, respectively. Further, the average size of crystal grains was 28 nm. The response surface methodology (RSM) approach was employed to optimize operating parameters. The quadratic model suggested by the RSM approach, characterized by a high regression coefficient (R2 = 0.9632), indicates a high level of reliability. Moreover, under optimal conditions (catalyst loading of 4 mg, pH of 3, H2O2 amount of 0.2 mL, UV power of 25 W, and reaction time of 60 min), the highest RR120 dye removal percentage was 99.97%. Kinetic data indicated an increase in the reaction rate constant from 0.0631 to 0.1796 min-1. The zeolite 13X incorporated with Zn-Ce photocatalyst exhibited excellent stability over 5 cycles, with only a 5.50% decrease in RR120 dye removal yield. This study demonstrates the promising potential of zeolite 13X incorporated with Zn-Ce nanoparticles for the removal of RR120 dye from aqueous suspension.


Assuntos
Óxidos , Triazinas , Zeolitas , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Monitoramento Ambiental , Zinco
13.
PLoS One ; 19(3): e0299290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442106

RESUMO

Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to fresh markets and industry. These models identify superior and persistent individuals using probability theory, providing a measure of uncertainty that can aid the recommendation. The objective of our study was to evaluate the use of a Bayesian probabilistic model for the recommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests. Leveraging the Monte Carlo Hamiltonian sampling algorithm, we calculated the probability of superior performance (superior genotypic value), and the probability of superior stability (reduced variance of the genotype-by-harvests interaction) of each genotype. The probability of superior stability was compared to a measure of persistence estimated from genotypic values predicted using a frequentist model. Our results demonstrated the applicability and advantages of the Bayesian probabilistic model, yielding similar parameters to those of the frequentist model, while providing further information about the probabilities associated with genotype performance and stability. Genotypes G15, G4, G18, and G11 emerged as the most superior in performance, whereas G24, G7, G13, and G3 were identified as the most stable. This study highlights the usefulness of Bayesian probabilistic models in the fruit trees cultivars recommendation.


Assuntos
Compostos de Cálcio , Óxidos , Melhoramento Vegetal , Humanos , Teorema de Bayes , Probabilidade , Polinésia
14.
Sci Rep ; 14(1): 5752, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459176

RESUMO

Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).


Assuntos
Foeniculum , Piper nigrum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Fenol/análise , Microextração em Fase Sólida/métodos , Quimiometria , Especiarias , Monoterpenos/análise , Éteres , Óxidos , Compostos Orgânicos Voláteis/análise
15.
Sci Rep ; 14(1): 6395, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493190

RESUMO

To evaluate the success of pulpotomy in treating immature permanent teeth with irreversible pulpitis. This case series included patients with irreversible pulpitis admitted to the Department of Oral Medicine at the author's Hospital between 2015 and 2020. The pulpotomies were carried out by clinicians with > 5 years of working experience. The follow-up findings and radiographic images were reviewed by two attending dentists. This study included 49 teeth from 48 children (25 boys and 23 girls). The follow-up was 23.3 ± 6.8 months (from 12 to 40 months). The success rate of pulpotomy was 85.7% (42/49). Pulpotomy failed in seven teeth (14.3%). The treatment success rate for traumatic crown fracture was lower than for dental caries and dens evaginatus (P < 0.001). There were no significant differences in the success rate of the pulp-capping agent, tooth root developmental phase, and pulpotomy method (all P > 0.05). Pulpotomy might be successfully used to treat immature permanent teeth with irreversible pulpitis in young patients mainly caused by caries and a fractured tubercle of dens evaginatus.


Assuntos
Cárie Dentária , Fraturas Ósseas , Pulpite , Masculino , Criança , Feminino , Humanos , Pulpotomia/métodos , Pulpite/cirurgia , Compostos de Cálcio , Estudos Retrospectivos , Silicatos , Compostos de Alumínio , Óxidos , Resultado do Tratamento
16.
Luminescence ; 39(3): e4717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504447

RESUMO

Tetracyclines are currently the most commonly used class of antibiotics, and their residue issue significantly impacts public health safety. In this study, a surface modification of perovskite with cetyltrimethylammonium bromide led to the generation of stable electrochemiluminescence (ECL) emitters in aqueous systems and improved the biocompatibility of perovskite. A perovskite quantum dot-based ECL sensing strategy was developed. Utilizing the corresponding aptamer of the antibiotics, strain displacement reactions were triggered, disrupting the ECL quenching system composed of perovskite and Ag nanoclusters (Ag NCs) on the electrode surface, generating a signal to achieve quantitative detection of several common tetracycline antibiotics. The perovskite quantum dot provided a strong and stable initial signal, while the efficient catalytic activity of the silver cluster enhanced the recognition sensitivity. Tetracycline, chlortetracycline, and oxytetracycline were used as examples to demonstrate the differentiation and quantitative detection through this method. In addition, the aptasensor exhibited analytical performance with the linear range (0.1-10 µM OTC) and good recovery rates of 94.7% to 101.6% in real samples. This approach has the potential to become a sensitive and practical approach for assessing antibiotic residues.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos de Cálcio , Nanopartículas Metálicas , Óxidos , Titânio , Tetraciclina , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Antibacterianos , Tetraciclinas , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química
17.
Environ Sci Technol ; 58(11): 5153-5161, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456428

RESUMO

Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.


Assuntos
Acetona , Cobalto , Óxidos , Tolueno , Oxirredução , Catálise , Tolueno/análise , Tolueno/química
18.
Anal Chim Acta ; 1299: 342432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499419

RESUMO

Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.


Assuntos
Neoplasias , Óxidos , Compostos de Manganês , Corantes Fluorescentes , Reprodutibilidade dos Testes , Biomimética , DNA/genética , Limite de Detecção
19.
Anal Chim Acta ; 1299: 342453, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499424

RESUMO

BACKGROUND: The development of wearable detection devices that can achieve noninvasive, on-site and real-time monitoring of sweat metabolites is of great demand and practical significance for point-of-care testing and healthcare monitoring. Monitoring uric acid (UA) content in sweat provides a simple and promising way to reduce the risk of gout and hyperuricemia. Traditional bioenzyme based UA assays suffer from high cost, poor stability, inconvenience for storage and easy deactivation of bioenzymes. Wearable microfluidic colorimetric detection device for sweat UA detection has not been reported. The development of novel wearable microfluidic colorimetric detection chip with no requirement of bioenzymes for sweat UA detection is of great importance for health care monitoring. RESULTS: Firstly, Co@MnO2 nanozyme with high oxidase-like activity was synthesized and characterized. Co@MnO2 can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) directly to generate blue-green colored ox-TMB. Green colored 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical (ABTS·+) was produced by the oxidation of ABTS by potassium persulfate. UA exhibits distinct quenching effect on Co@MnO2 catalyzed TMB colorimetric reaction system and ABTS·+ based colorimetric system, leading to obvious color fading of the two colorimetric systems. Then, a flexible microfluidic colorimetric detection chip for UA detection was fabricated by assembling Co@MnO2/TMB modified paper chips and ABTS·+ modified paper chips into a polydimethylsiloxane (PDMS) microfluidic chip. The fabricated microfluidic colorimetric detection chip exhibits good linear relationship for sweat UA detection. The linear range is from 20 to 200 µmol/L with detection limit as low as 6.6 µmol/L. Good results were obtained for the detection of UA in actual sweat from three volunteers. SIGNIFICANCE: This work provides two bio-enzyme free colorimetric detection systems for UA detection. Furthermore, a simple, low-cost and selective flexible wearable microfluidic colorimetric detection chip was fabricated for noninvasive and on-site detection of sweat UA, which holds great application potential for personal health monitoring and point-of-care testing.


Assuntos
Benzidinas , Benzotiazóis , Ácidos Sulfônicos , Suor , Ácido Úrico , Humanos , Microfluídica , Colorimetria/métodos , Compostos de Manganês , Óxidos , Catálise
20.
ACS Appl Mater Interfaces ; 16(11): 13543-13562, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452225

RESUMO

We use low-molecular-weight branched polyethylenimine (PEI) to produce cytocompatible reduced graphene oxide quantum dots (rGOQD) as a photothermal agent and covalently bind it with the photosensitizer IR-820. The rGOQD/IR820 shows high photothermal conversion efficiency and produces reactive oxygen species (ROS) after irradiation with near-infrared (NIR) light for photothermal/photodynamic therapy (PTT/PDT). To improve suspension stability, rGOQD/IR820 was PEGylated by anchoring with the DSPE hydrophobic tails in DSPE-PEG-Mal, leaving the maleimide (Mal) end group for covalent binding with manganese dioxide/bovine serum albumin (MnO2/BSA) and targeting ligand cell-penetrating peptide (CPP) to synthesize rGOQD/IR820/MnO2/CPP. As MnO2 can react with intracellular hydrogen peroxide to produce oxygen for alleviating the hypoxia condition in the acidic tumor microenvironment, the efficacy of PDT could be enhanced by generating more cytotoxic ROS with NIR light. Furthermore, quercetin (Q) was loaded to rGOQD through π-π interaction, which can be released in the endosomes and act as an inhibitor of heat shock protein 70 (HSP70). This sensitizes tumor cells to thermal stress and increases the efficacy of mild-temperature PTT with NIR irradiation. By simultaneously incorporating the HSP70 inhibitor (Q) and the in situ hypoxia alleviating agent (MnO2), the rGOQD/IR820/MnO2/Q/CPP can overcome the limitation of PTT/PDT and enhance the efficacy of targeted phototherapy in vitro. From in vivo study with an orthotopic brain tumor model, rGOQD/IR820/MnO2/Q/CPP administered through tail vein injection can cross the blood-brain barrier and accumulate in the intracranial tumor, after which NIR laser light irradiation can shrink the tumor and prolong the survival times of animals by simultaneously enhancing the efficacy of PTT/PDT to treat glioblastoma.


Assuntos
Antineoplásicos , Glioblastoma , Grafite , Fotoquimioterapia , Pontos Quânticos , Animais , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Glioblastoma/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Proteínas de Choque Térmico , Espécies Reativas de Oxigênio , Hipóxia Tumoral , Óxidos/farmacologia , Óxidos/química , Fototerapia , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...