Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.308
Filtrar
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611805

RESUMO

Cobalt-nitrogen co-doped carbon nanotubes (Co3@NCNT-800) were synthesized via a facile and economical approach to investigate the efficient degradation of organic pollutants in aqueous environments. This material demonstrated high catalytic efficiency in the degradation of carbamazepine (CBZ) in the presence of peroxymonosulfate (PMS). The experimental data revealed that at a neutral pH of 7 and an initial CBZ concentration of 20 mg/L, the application of Co3@NCNT-800 at 0.2 g/L facilitated a degradation rate of 64.7% within 60 min. Mechanistic investigations indicated that the presence of pyridinic nitrogen and cobalt species enhanced the generation of reactive oxygen species. Radical scavenging assays and electron spin resonance spectroscopy confirmed that radical and nonradical pathways contributed to CBZ degradation, with the nonradical mechanism being predominant. This research presents the development of a novel PMS catalyst, synthesized through an efficient and stable method, which provides a cost-effective solution for the remediation of organic contaminants in water.


Assuntos
Nanotubos de Carbono , Peróxidos , Benzodiazepinas , Carbamazepina , Cobalto , Nitrogênio , Água
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612811

RESUMO

In most cases, the unused by-products of venison, including deer tallow, are disposed of in rendering plants. Deer tallow contains essential fatty acids and can be used to prepare products for everyday food and advanced applications. This work aimed to process deer tallow into hydrolyzed products using microbial lipases. A Taguchi design with three process factors at three levels was used to optimize the processing: amount of water (8, 16, 24%), amount of enzyme (2, 4, 6%), and reaction time (2, 4, 6 h). The conversion of the tallow to hydrolyzed products was expressed by the degree of hydrolysis. The oxidative stability of the prepared products was determined by the peroxide value and the free fatty acids by the acid value; further, color change, textural properties (hardness, spreadability, stickiness, and adhesiveness), and changes at the molecular level were observed by Fourier transform infrared spectroscopy (FTIR). The degree of hydrolysis was 11.8-49.6%; the peroxide value ranged from 12.3 to 29.5 µval/g, and the color change of the samples expressed by the change in the total color difference (∆E*) was 1.9-13.5. The conditions of enzymatic hydrolysis strongly influenced the textural properties: hardness 25-50 N, spreadability 20-40 N/s, and stickiness < 0.06 N. FTIR showed that there are changes at the molecular level manifested by a decrease in ester bonds. Enzymatically hydrolyzed deer tallow is suitable for preparing cosmetics and pharmaceutical matrices.


Assuntos
Cervos , Gorduras , Animais , Hidrólise , Carne , Peróxidos
3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474614

RESUMO

The Selçuk district of Izmir is one of the most essential regions in terms of olive oil production. In this study, 60 olive oil samples were obtained from five different locations (ES: Eski Sirince Yolu, KK: Kinali Köprü, AU: Abu Hayat Üst, AA: Abu Hayat Alt, and DB: Degirmen Bogazi) in the Selçuk region of Izmir during two (2019-2020 and 2020-2021) consecutive cropping seasons. Quality indices (free acidity, peroxide value, p-Anisidine value, TOTOX, and spectral absorption at 232 and 270 nm) and the fatty acid, phenolic, and sterol profiles of the samples were determined to analyze the changes in the composition of Selcuk olive oils according to their growing areas. When the quality criteria were analyzed, it was observed that KK had the lowest FFA (0.11% oleic acid, PV (6.66 meq O2/kg), p-ANV (11.95 mmol/kg), TOTOX (25.28), and K232 (1.99) values and K270 had the highest value. During the assessment of phenolic profiles, the ES group exhibited the highest concentration of the phenolic compound p-HPEA-EDA (oleocanthal), with a content of 93.58 mg/kg, equivalent to tyrosol. Upon analyzing the fatty acid and sterol composition, it was noted that AU displayed the highest concentration of oleic acid (71.98%) and ß-sitosterol (87.65%). PCA analysis illustrated the distinct separation of the samples, revealing significant variations in both sterol and fatty acid methyl ester distributions among oils from different regions. Consequently, it was determined that VOOs originating from the Selçuk region exhibit distinct characteristics based on their geographical locations. Hence, this study holds great promise for the region to realize geographically labeled VOOs.


Assuntos
Olea , Ácido Oleico , Azeite de Oliva/análise , Ácidos Graxos , Peróxidos , Esteróis , Óleos de Plantas
4.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474682

RESUMO

Nowadays, antibiotics are widely used, increasing the risk of contamination of the water body and further threatening human health. The traditional water treatment process is less efficient in degrading antibiotics, and the advanced oxidation process (AOPs) is cleaner and more efficient than the traditional biochemical degradation process. The combined ozone/peroxymonosulfate (PMS) advanced oxidation process (O3/PMS) based on sulfate radical (SO4•-) and hydroxyl radical (•OH) has developed rapidly in recent years. The O3/PMS process has become one of the most effective ways to treat antibiotic wastewater. The reaction mechanism of O3/PMS was reviewed in this paper, and the research and application progress of the O3/PMS process in the degradation of antibiotics in drinking water and wastewater effluent were evaluated. The operation characteristics and current application range of the process were summarized, which has a certain reference value for further research on O3/PMS process.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Antibacterianos , Poluentes Químicos da Água/análise , Peróxidos , Oxirredução
5.
Anal Chem ; 96(10): 4213-4223, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427460

RESUMO

The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Cobre , Peróxidos , Peróxido de Hidrogênio , Colorimetria
6.
Clin Oral Investig ; 28(3): 189, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430338

RESUMO

OBJECTIVES: To assess color change efficacy and the adverse effects of varied over-the-counter (OTC) bleaching protocols. METHODOLOGY: The study included randomized clinical trials evaluating color changes from OTC bleaching agents. Nine databases were searched, including the partial capture of the grey literature. The RoB2 tool analyzed the individual risk of bias in the studies. Frequentist network meta-analyses compared treatments through common comparators (∆Eab* and ∆SGU color changes, and tooth sensitivity), integrating direct and indirect estimates and using the mean and risk differences as effect measures with respective 95% confidence intervals. The GRADE approach assessed the certainty of the evidence. RESULTS: Overall, 37 remaining studies constituted the qualitative analysis, and ten composed the meta-analyses. The total sample included 1,932 individuals. ∆Eab* was significantly higher in groups 6% hydrogen peroxide (HP) strips (≥ 14 h). ∆SGU was significantly higher in groups at-home 10% carbamide peroxide (CP) (≥ 14 h), followed by 6% HP strips (≥ 14 h) and 3% HP strips (≥ 14 h). At-home 10% CP (7-13 h) and placebo showed lower risks of tooth sensitivity without significant differences between these treatments. CONCLUSION: Considering the low level of evidence, OTC products presented satisfactory short-term effects on tooth bleaching compared to the placebo, with little to no impact on dentin hypersensitivity and gingival irritation. CLINICAL RELEVANCE: OTC products are proving to be practical alternatives for tooth whitening. However, patients should be advised about the possible risks of carrying out such procedures without professional supervision.


Assuntos
Sensibilidade da Dentina , Clareadores Dentários , Clareamento Dental , Humanos , Peróxido de Carbamida , Cor , Sensibilidade da Dentina/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Hipocloroso , Metanálise em Rede , Medicamentos sem Prescrição/efeitos adversos , Peróxidos , Clareamento Dental/efeitos adversos , Clareamento Dental/métodos , Clareadores Dentários/efeitos adversos , Clareadores Dentários/farmacologia , Ureia
7.
Environ Sci Technol ; 58(14): 6444-6454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551318

RESUMO

Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.


Assuntos
Carcinoma Hepatocelular , Poluentes Ambientais , Neoplasias Hepáticas , Humanos , Cobalto/química , Cianetos , Peróxidos/química , Catálise
8.
J Colloid Interface Sci ; 663: 909-918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447405

RESUMO

Peroxymonosulfate (PMS) is widely employed to generate oxygen-containing reactive species for ciprofloxacin (CIP) degradation. Herein, cobalt oxyhydroxide @activated carbon (CoOOH@AC) was synthesized via a wet chemical sedimentation method to activate PMS for degradation of CIP. The result suggested AC can support the vertical growth of CoOOH nanosheets to expose high-activity Co-contained edges, possessing efficient PMS activation and degradation activity and catalytic stability. In the presence of 3.0 mg of optimal CoOOH@AC and 2 mM PMS, 96.8 % of CIP was degraded within 10 min, approximately 11.6 and 9.97 times greater than those of CoOOH/PMS and AC/PMS systems. Notably, it was disclosed that the optimal CoOOH@AC/PMS system still exhibited efficient catalytic performance in a wide pH range, different organics and common co-existing ions. Quenching experiments and electron paramagnetic resonance indicated that both radical and non-radical processes contributed to the degradation of CIP, with 1O2 and direct electron transfer accounting for the non-radical pathway and SO4•- and •OH serving as the main radical active species. Finally, possible CIP degradation pathways were proposed based on high-performance liquid chromatography-mass spectrometry. This study provided an alternate method for wastewater treatment based on PMS catalyzed by cobalt-based hydroxide.


Assuntos
Carvão Vegetal , Ciprofloxacina , Hidróxidos , Óxidos , Ciprofloxacina/química , Peróxidos/química , Cobalto/química , Espécies Reativas de Oxigênio
9.
J Dent ; 143: 104902, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432352

RESUMO

OBJECTIVE: To investigate the effect of tooth whitening on biomechanical properties of vacuum-formed retainers (VFRs). METHODS: Using a split-mouth, randomised controlled trial design, thirty participants were randomly allocated to receive whitening on either the upper or the lower arch, using 10 % carbamide peroxide for two weeks. Biomechanical properties such as hardness, tensile strength, and surface roughness were assessed two weeks after whitening was completed. RESULTS: Tensile strength of the whitening arch (mean ± SD: 40.93 ± 3.96 MPa) was significantly lower than that of the control (47.40 ± 5.03 MPa) (difference 6.47 MPa, 95 % CI 4.51 - 8.42, p < 0.001). Hardness and internal roughness of the whitening arch (VHN = 14.63 ± 2.29 N/mm2 and Ra = 1.33 ± 0.35 µm, respectively) were significantly greater than those of the control (12.22 ± 1.86 N/mm2 and 0.96 ± 0.29 µm, respectively) (differences 2.41 N/mm2, 95 % CI 1.56 - 3.25, p < 0.001 and 0.37 µm, 95 % CI 0.23 - 0.51, p < 0.001, respectively). The whitening arch showed greater tooth colour change (ΔE = 6.00 ± 3.32) than the control (ΔE = 2.50 ± 1.70) (difference = 3.50, 95 % CI 2.43 - 4.56, p < 0.001). CONCLUSIONS: Based on this short-term study, marked tooth colour change was achieved by whitening with VFRs as the whitening trays, but this changed the VFRs' biomechanical properties, including a decrease in tensile strength and an increase in hardness and internal roughness. CLINICAL SIGNIFICANCE: The application of carbamide peroxide in VFRs may compromise their mechanical properties.


Assuntos
Clareadores Dentários , Clareamento Dental , Dente , Humanos , Peróxido de Carbamida , Vácuo , Clareadores Dentários/farmacologia , Ureia , Peróxidos/farmacologia , Peróxido de Hidrogênio/farmacologia , Combinação de Medicamentos
10.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542762

RESUMO

The parenteral nutrition (PN) received by premature newborns is contaminated with peroxides that induce global DNA hypermethylation via oxidative stress. Exposure to peroxides could be an important factor in the induction of chronic diseases such as those observed in adults who were born preterm. As endogenous H2O2 is a major regulator of glucose-lipid metabolism, our hypothesis was that early exposure to PN induces permanent epigenetic changes in H2O2 metabolism. Three-day-old guinea pigs were fed orally (ON), PN or glutathione-enriched PN (PN+GSSG). GSSG promotes endogenous peroxide detoxification. After 4 days, half the animals were sacrificed, and the other half were fed ON until 16 weeks of age. The liver was harvested. DNA methylation and mRNA levels were determined for the SOD2, GPx1, GCLC, GSase, Nrf2 and Keap1 genes. PN induced GPx1 hypermethylation and decreased GPx1, GCLC and GSase mRNA. These findings were not observed in PN+GSSG. PN+GSSG induced Nrf2 hypomethylation and increased Nrf2 and SOD2 mRNA. These observations were independent of age. In conclusion, in neonatal guinea pigs, PN induces epigenetic changes, affecting the expression of H2O2 metabolism genes. These changes persist for at least 15 weeks after PN. This disruption may signify a permanent reduction in the capacity to detoxify peroxides.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Cobaias , Peróxido de Hidrogênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais Recém-Nascidos , Nutrição Parenteral/efeitos adversos , Glutationa/metabolismo , Peróxidos/metabolismo , Suplementos Nutricionais , Epigênese Genética , RNA Mensageiro/genética
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493515

RESUMO

In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of ß-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into ß-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.


Assuntos
Eritrócitos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Peróxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipídeos , Estresse Oxidativo
12.
Chemosphere ; 353: 141586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452980

RESUMO

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Assuntos
Óxido de Alumínio , Cobalto , Compostos Férricos , Óxido de Magnésio , Nanocompostos , Sulfametoxazol , Peróxidos
13.
Chemosphere ; 354: 141704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490612

RESUMO

The harmless disposal, resource recovery, and synergistic efficiency reduction of municipal sludge have been the research focuses for the last few years. Calcium peroxide (CaO2) is a multifunctional and safe peroxide that produces an alkaline oxidation environment to promote the fermentation of municipal sludge to produce hydrogen (H2) and volatile fatty acids (VFAs), thus realizing sludge resource recovery. This review outlines the research achievements of CaO2 in sludge resource recovery, improvement of sludge dewaterability, and removal of pollutants from sludge in recent years. Meanwhile, the mechanism of CaO2 and its influencing factors have also been comprehensively summarized. Finally, the future development direction of the application of CaO2 in municipal sludge is prospected. This review would provide theoretical reference for the potential engineering applications of CaO2 in improving sludge treatment in the future.


Assuntos
Peróxidos , Esgotos , Fermentação , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
14.
Chemosphere ; 354: 141720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493999

RESUMO

The release of organic dyes, such as Rhodamine B (RhB), into industrial wastewater has led to significant issues with color pollution in aquatic environments. Herein, we prepared a cobalt nanoparticles (NPs)-based catalyst with the nitrogen-doped carbon-support (Co@N-C) for effective PMS activation. The Co@N-C/PMS system demonstrated the excellent catalytic activity of Co@N-C for activating PMS, achieving nearly 100% degradation of RhB. Singlet oxygen (1O2) and sulfate radicals (SO4•-) were dominant reactive oxygen species for RhB degradation. Density functional theory (DFT) calculations substantiated that the production of 1O2 commenced with the initial generation of *OH through hydrogen abstraction from PMS, culminating in the direct release of oxygen to form 1O2 (PMS→*OH→O*→1O2). The generation of SO4•- was attributed to electron transfer to PMS from the surface of Co NPs (Co0→Co2+→Co3+) and the C-N shell (Co2+→Co3+). The research findings provided new insights into the development of Co-based heterogeneous catalysis for advanced oxidation of refractory organic pollutants in wastewater treatment.


Assuntos
Nanopartículas , Peróxidos , Espécies Reativas de Oxigênio , Carbono , Oxigênio
15.
Chemosphere ; 354: 141587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494002

RESUMO

Electron transfer played key role in peroxymonosulfate (PMS) activation for heterogeneous Fenton-like catalysts (HFCs). However, the relationship between electron exchange capacity (EEC) and catalytic activity of HFCs has not been elucidated. Herein, thirteen HFCs reported in our previous studies were selected to measure their EEC via electrochemical methods and to investigate the correlation between EEC and catalytic activity for PMS. The results show that nitrogen-doped graphene oxide had much higher EEC (5.299 mM(e) g-1), followed by reduced graphene oxide (3.23 mM(e) g-1), nitrogen-doped biochar-700 (2.032 mM(e) g-1), graphene oxdie (1.789 mM(e) g-1), nitrogen-doped biochar-300 (1.15 mM(e) g-1), g-C3N4 (0.752 mM(e) g-1) and biochar (0.351 mM(e) g-1). For carbon materials, their catalytic activity was not determined by electron donor capacity (EDC), electron acceptor capacity (EAC) and EEC (EDC + EAC), but was linear correlation with |EDC-EAC| that can characterize the extent of HFCs reacting with PMS. The higher the |EDC-EAC| is, the higher the catalytic activity of HFCs is. For carbonaceous materials, their catalytic activity was not proportional to EAC, but had good linear correlation with EDC and |EDC-EAC|. The discrepancy between carbon materials and carbonaceous materials could be due to the different activation mechanisms. Further analysis found that there was no correlation between EEC and the reactive species derived from PMS, indicating that the produced reactive species was not only controlled by EEC. This study firstly elucidated the correlation between EEC and catalytic activity of HFCs, and |EDC-EAC| could be used as an index for evaluating the catalytic activity of HFCs.


Assuntos
Carvão Vegetal , Elétrons , Grafite , Peróxidos , Peróxidos/química , Carbono/química , Oxidantes , Nitrogênio/química
16.
Food Chem ; 447: 138934, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461714

RESUMO

To overcome the disadvantages of severe emulsification and difficulty in obtaining free oil during aqueous extraction of peanut oil, the effect of roasting assisted aqueous ethanol extraction on free oil recovery was investigated. When peanut kernels were roasted at 180 °C for 10 min, free oil recovery increased from 57% to 96%, and the acid and peroxide values of the peanut oil met the requirements of good quality. The degree of hydration swelling of proteins in the extract increased, and soluble solids were easier to aggregate, resulting in reduced emulsification and significantly higher free oil recovery. The roasting conditions selected were found to significantly promote protein hydrophilicity, aggregation and fusion of oil bodies, as well as cell rupture, which facilitated the release of free oil but with a lower degree of protein denaturation. This study may promote the practical application of aqueous extraction technology for peanut oil.


Assuntos
Proteínas , Água , Óleo de Amendoim , Peróxidos , Arachis
17.
Clin Oral Investig ; 28(4): 224, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509406

RESUMO

OBJECTIVES: To evaluate the bleaching efficacy and permeability of hydrogen peroxide (HP) in the pulp chamber of human teeth bleached with lower concentrations of carbamide peroxide gel (4%, 5% and 7% CP). MATERIALS AND METHODS: Bleaching gels with lower concentrations were formulated and a commercial standard gel, 10% CP, was used as a reference. Fifty-six human premolars were randomly divided into four groups. Applications of the bleaching gel were made for 3 h for 21 days. The bleaching efficacy was evaluated by digital spectrophotometry on 1, 7, 14 and 21 days, with analysis in the ∆Eab, ∆E00 and WID color spaces. The concentration of HP in the pulp chamber was measured in the same periods by UV-Vis spectrophotometry (µg/mL). Two-way repeated analysis of variance (ANOVA) examined bleaching efficacy and HP permeability, followed by Tukey's post-hoc test (α = 0.05). RESULTS: All groups showed significant color changes, with no statistical differences after the second and third week of bleaching (p > 0.05). The 'time' factor was statistically different (p < 0.05), increasing the bleaching efficacy throughout the treatment. The 4% CP group had lower HP levels in the pulp chamber (p < 0.05). CONCLUSIONS: The results seem promising, revealing that low concentration gels are as effective as 10% CP with the benefit of reducing the amount of HP in the pulp chamber. CLINICAL RELEVANCE: Low concentration 4% PC and 5% PC maintains bleaching efficacy, reduces the penetration of HP peroxide into the pulp chamber, and may reduce tooth sensitivity.


Assuntos
Clareadores Dentários , Clareamento Dental , Humanos , Peróxido de Carbamida , Cavidade Pulpar , Clareadores Dentários/farmacologia , Peróxido de Hidrogênio , Clareamento Dental/métodos , Ácido Hipocloroso , Géis , Ureia/farmacologia , Peróxidos/farmacologia
18.
Environ Pollut ; 347: 123687, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458515

RESUMO

The antibiotic resistance dissemination in water has become a globally concerned issue, and the wastewater discharge, especially medical wastewater, is considered as one of the most important sources for antibiotic resistance genes (ARGs). However, the effectiveness of current disinfection techniques in the ARGs reduction still remains controversial. In this study, a novel aeration-driven piezoelectric peroxymonosulfate (PMS) activation system using oxygen-vacancy engineered BaTiO3 (BTO) was developed to effectively eliminate antibiotic resistant bacteria (ARB) and ARGs from water. The ARB can be completely inactivated and ∼3.0 logs of ARGs can be removed by the PMS/BTO/aeration system within 1 h, and the spent BTO nanoparticles can be facilely reused after simple rinsing. The aeration can not only provide the driving force for the piezocatalytic process but also more dissolved oxygen in water that played an important role in the generation of free radicals. The radical quenching experiments and electron spin-resonance (ESR) confirmed that all the free radicals, including singlet oxygen (1O2), hydroxyl radical (OH•), sulfate radical (SO4•-) and superoxide radical (•O2-), contributed to the ARGs reduction and 1O2 radicals were identified as the dominant active species. This work provides a high-efficiency and energy saving approach for the mitigation of ARGs from water as the universal use of aeration in water treatment processes and the good reusability of BTO nanoparticles.


Assuntos
Antagonistas de Receptores de Angiotensina , Águas Residuárias , Inibidores da Enzima Conversora de Angiotensina , Peróxidos , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
19.
Water Res ; 254: 121417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461597

RESUMO

Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments.


Assuntos
Carbono , Poluentes Ambientais , Peróxidos , Oxirredução , Transporte de Elétrons , Eletrônica , Água
20.
Chemosphere ; 354: 141656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467197

RESUMO

The rampant upsurge of organic pollutants in aqueous media has become one of the major concerns nowadays. Finding non-specific catalysts that can target a wide range of organic pollutants is a key challenge. Eco-friendly oxidative radicals, such as promoted by peroxymonosulfate (PMS), are necessary for efficient water decontamination. We propose a multicomponent composite catalyst for activating PMS using a dual strategy of sonophotocatalysis. The composite integrates cobalt ferrite and Cu- or Ce-doped SnO2, with the at. % of doping metal and the mixture ratio carefully balanced. The top-performing architectures were able to decompose rhodamine B (20 ppm), a representative pollutant, in under 3 min and achieve over 70% mineralization in just 5 min. The synthesized nanocomposites demonstrated exceptional sonophotocatalytic performance, even when treating complex and diverse multipollutant solutions (80 ppm), achieving over 75% mineralization after 150 min. Considering their high stability and reusability, the proposed CoFe2O4/Cu- and Ce-doped SnO2 materials are among the state-of-the-art heterogeneous catalysts for mineralizing organic pollutants through PMS activation.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Peróxidos , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...