Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.739
Filtrar
1.
Oncol Res ; 32(4): 737-752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560573

RESUMO

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sulfitos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metaloproteinase 12 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 16 da Matriz , Prognóstico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Rim/metabolismo , Rim/patologia
2.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582987

RESUMO

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Hipóxia , Regulação Bacteriana da Expressão Gênica
3.
BMC Genomics ; 25(1): 251, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448820

RESUMO

BACKGROUND: The Illumina family of Infinium Methylation BeadChip microarrays has been widely used over the last 15 years for genome-wide DNA methylation profiling, including large-scale and population-based studies, due to their ease of use and cost effectiveness. Succeeding the popular HumanMethylationEPIC BeadChip (EPICv1), the recently released Infinium MethylationEPIC v2.0 BeadChip (EPICv2) claims to extend genomic coverage to more than 935,000 CpG sites. Here, we comprehensively characterise the reproducibility, reliability and annotation of the EPICv2 array, based on bioinformatic analysis of both manifest data and new EPICv2 data from diverse biological samples. RESULTS: We find a high degree of reproducibility with EPICv1, evidenced by comparable sensitivity and precision from empirical cross-platform comparison incorporating whole genome bisulphite sequencing (WGBS), and high correlation between technical sample replicates, including between samples with DNA input levels below the manufacturer's recommendation. We provide a full assessment of probe content, evaluating genomic distribution and changes from previous array versions. We characterise EPICv2's new feature of replicated probes and provide recommendations as to the superior probes. In silico analysis of probe sequences demonstrates that probe cross-hybridisation remains a significant problem in EPICv2. By mapping the off-target sites at single nucleotide resolution and comparing with WGBS we show empirical evidence for preferential off-target binding. CONCLUSIONS: Overall, we find EPICv2 a worthy successor to the previous Infinium methylation microarrays, however some technical issues remain. To support optimal EPICv2 data analysis we provide an expanded version of the EPICv2 manifest to aid researchers in understanding probe design, data processing, choosing appropriate probes for analysis and for integration with methylation datasets from previous versions of the Infinium Methylation BeadChip.


Assuntos
Biologia Computacional , Metilação de DNA , Sulfitos , Reprodutibilidade dos Testes , Análise de Dados
4.
Mol Biol Rep ; 51(1): 475, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553662

RESUMO

BACKGROUND: Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS: Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS: There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION: The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.


Assuntos
Metilação de DNA , MicroRNAs , Sulfitos , Humanos , Masculino , Camundongos , Animais , Metilação de DNA/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , DNA/metabolismo
5.
Bioorg Chem ; 146: 107305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537335

RESUMO

Sulfite is one of the main existing forms of sulfur dioxide (SO2) in living system, which has been recognized as an endogenous mediator in inflammation. Evidence has accumulated to show that abnormal level of sulfite is associated with many inflammatory diseases, including neurological diseases and cancers. Herein, a novel fluorescent probe named QX-OA was designed and synthesized to detect sulfite. QX-OA was constructed by choosing quinolinium-xanthene as the fluorophore and levulinate as the specific and relatively steady recognition reaction. The probe showed remarkable green turn-on signal at 550 nm, together with high sensitivity (90-fold) and excellent selectivity to sulfite over other possible interfering species. In the meantime, QX-OA was successfully applied to visualize endogenous and exogenous sulfite in Hela cells. In the LPS-induced inflammation model, QX-OA could visualize the dose-dependent increase of sulfite level (0-2 mg/mL). Consequently, QX-OA was determined to be a potential method for detecting sulfite in pre-clinical diagnosis.


Assuntos
Corantes Fluorescentes , Sulfitos , Humanos , Células HeLa , Dióxido de Enxofre , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem
6.
Biosystems ; 238: 105189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479655

RESUMO

A frequently debated topic related to the origin of life centers around the question of how complex forms of life on today's Earth may have evolved over time from simpler predecessors. For example, the question of how proton concentration gradients across cellular membranes developed in ancestral protocells remains unanswered. This process, which is indispensable for the generation of chemical energy in modern organisms, is driven by energy derived from redox processes in the respiratory chain. Since it is highly unlikely that the complex machinery of the respiratory chain was available on early Earth, we provide an example of how proton gradients can be established in less complex systems. Utilizing liposomes as models of primitive cells, we were able to generate proton gradients of about two pH units across the liposome bilayers using redox reactions as the driving force. Electrons were transferred from sodium sulfite present on the outside of the liposomes to ferricyanide, which was trapped on the inside. A lipid-soluble phenazine derivative served as a shuttle that transferred both electrons and protons across the lipid bilayer. Because sulfite would have been an abundant reduced solute available to the earliest cells, we propose that it may have been a primary source of redox energy for primitive chemiosmotic energy transduction.


Assuntos
Lipossomos , Prótons , Lipossomos/química , Bicamadas Lipídicas/química , Oxirredução , Sulfitos
7.
Huan Jing Ke Xue ; 45(3): 1553-1560, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471869

RESUMO

In this study, the degradation efficiency and mechanism of carbamazepine (CBZ), a typical emerging contaminant in water, in the UV/sulfite process were investigated. The effects of different concentrations of dissolved oxygen [ρ(DO)] on the degradation of CBZ by UV-activated sulfite were investigated. Additionally, under a simulated natural water environment-controlled initial ρ(DO) of (8.0 ±0.2) mg·L-1, the effects of different process parameters (sulfite dosages and reaction pH) and water environmental factors (the presence of HCO3-, Cl-, and humic acids) on the degradation of CBZ were comprehensively analyzed. The results showed that the UV/sulfite process efficiently degraded CBZ with a degradation rate of 85.3% during the 30 min reaction time and followed the pseudo-first order kinetic model with the constant of 0.055 7 min-1. Using the electron spin resonance detection, reactive species quenching tests, and the competition kinetics, the sulfate radicals (SO4-·) and hydroxyl radicals (·OH) in the UV/sulfite process were determined to be the main reactive species and were responsible for the degradation of CBZ with contribution rates of 43.9% and 56.1%, respectively. In addition, the degradation efficiency of CBZ decreased with the increasing concentration of HCO3-, and the presence of Cl- had little effect on the degradation of CBZ, whereas the presence of humic acids significantly inhibited the degradation of CBZ. Moreover, the accumulation of sulfate during the reaction was significantly lower than the limit of the Standard for Drinking Water (GB5749-2022). Additionally, the sulfite consumption rate constant was 0.004 4 min-1, which was significantly lower than the degradation rate constant of CBZ, indicating that sulfite could be activated efficiently by UV light to degrade CBZ in water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Raios Ultravioleta , Substâncias Húmicas , Poluentes Químicos da Água/análise , Carbamazepina/análise , Cinética , Sulfitos , Sulfatos , Purificação da Água/métodos , Oxirredução
8.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38485699

RESUMO

MOTIVATION: Local alignments of query sequences in large databases represent a core part of metagenomic studies and facilitate homology search. Following the development of NCBI Blast, many applications aimed to provide faster and equally sensitive local alignment frameworks. Most applications focus on protein alignments, while only few also facilitate DNA-based searches. None of the established programs allow searching DNA sequences from bisulfite sequencing experiments commonly used for DNA methylation profiling, for which specific alignment strategies need to be implemented. RESULTS: Here, we introduce Lambda3, a new version of the local alignment application Lambda. Lambda3 is the first solution that enables the search of protein, nucleotide as well as bisulfite-converted nucleotide query sequences. Its protein mode achieves comparable performance to that of the highly optimized protein alignment application Diamond, while the nucleotide mode consistently outperforms established local nucleotide aligners. Combined, Lambda3 presents a universal local alignment framework that enables fast and sensitive homology searches for a wide range of use-cases. AVAILABILITY AND IMPLEMENTATION: Lambda3 is free and open-source software publicly available at https://github.com/seqan/lambda/.


Assuntos
Algoritmos , Software , Sulfitos , Alinhamento de Sequência , Proteínas
9.
Epigenetics ; 19(1): 2326869, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38507502

RESUMO

5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Placenta , Sulfitos , Feminino , Gravidez , Humanos , Placenta/metabolismo , 5-Metilcitosina/metabolismo , Epigênese Genética , Expressão Gênica
10.
Anal Chim Acta ; 1300: 342463, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521572

RESUMO

BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.


Assuntos
5-Metilcitosina/análogos & derivados , Técnicas Biossensoriais , Neoplasias , Sulfitos , Glicosilação , DNA/genética , 5-Metilcitosina/metabolismo
11.
BMC Bioinformatics ; 25(1): 96, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438881

RESUMO

BACKGROUND: Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. RESULTS: BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. CONCLUSIONS: BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research.


Assuntos
Metilação de DNA , Epigênese Genética , Sulfitos , Animais , Análise de Sequência de DNA , Genômica
12.
Environ Sci Technol ; 58(14): 6425-6434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554136

RESUMO

Hydrated electron (eaq-) treatment processes show great potential in remediating recalcitrant water contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, treatment efficacy depends upon many factors relating to source water composition, UV light source characteristics, and contaminant reactivity. Here, we provide critical insights into the complex roles of solution parameters on contaminant abatement through application of a UV-sulfite kinetic model that incorporates first-principles information on eaq- photogeneration and reactivity. The model accurately predicts decay profiles of short-chain perfluoroalkyl acids (PFAAs) during UV-sulfite treatment and facilitates quantitative interpretation of the effects of changing solution composition on PFAS degradation rates. Model results also confirm that the enhanced degradation of PFAAs observed under highly alkaline pH conditions results from changes in speciation of nontarget eaq- scavengers. Reverse application of the model to UV-sulfite data collected for longer chain PFAAs enabled estimation of bimolecular rate constants (k2, M-1 s-1), providing an alternative to laser flash photolysis (LFP) measurements that are not feasible due to the water solubility limitations of these compounds. The proposed model links the disparate means of investigating eaq- processes, namely, UV photolysis and LFP, and provides a framework to estimate UV-sulfite treatment efficacy of PFAS in diverse water sources.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Raios Ultravioleta , Poluentes Químicos da Água/análise , Sulfitos/química , Água/química
13.
Bioresour Technol ; 399: 130535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492653

RESUMO

For a sustainable economy, biorefineries that use second-generation feedstocks to produce biochemicals and biofuels are essential. However, the exact composition of renewable feedstocks depends on the natural raw materials used and is therefore highly variable. In this contribution, a process analytical technique (PAT) strategy for determining the sugar composition of lignocellulosic process streams in real-time to enable better control of bioprocesses is presented. An in-line mid-IR probe was used to acquire spectra of ultra-filtered spent sulfite liquor (UF-SSL). Independent partial least squares models were developed for the most abundant sugars in the UF-SSL. Up to 5 sugars were quantified simultaneously to determine the sugar concentration and composition of the UF-SSL. The lowest root mean square errors of the predicted values obtained per analyte were 1.02 g/L arabinose, 1.25 g/L galactose, 0.50 g/L glucose, 1.60 g/L mannose, and 0.85 g/L xylose. Equipped with this novel PAT tool, new bioprocessing strategies can be developed for UF-SSL.


Assuntos
Glucose , Açúcares , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Glucose/química , Xilose/química , Sulfitos
14.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
15.
Nat Commun ; 15(1): 2790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555308

RESUMO

Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing. We validate the performance with 80 pairs of deep and shallow-coverage whole-genome sequencing and whole-genome bisulfite sequencing data.


Assuntos
Ácidos Nucleicos Livres , Metilação de DNA , Metilação de DNA/genética , Sequenciamento Completo do Genoma/métodos , Sulfitos , Ácidos Nucleicos Livres/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542469

RESUMO

The use of non-invasive liquid biopsy-based cell-free DNA (cfDNA) analysis is an emerging method of cancer detection and intervention. Different analytical methodologies are used to investigate cfDNA characteristics, resulting in costly and long analysis processes needed for combining different data. This study investigates the possibility of using cfDNA data converted for methylation analysis for combining the cfDNA fragment size with copy number variation (CNV) in the context of early colorectal cancer detection. Specifically, we focused on comparing enzymatically and bisulfite-converted data for evaluating cfDNA fragments belonging to chromosome 18. Chromosome 18 is often reported to be deleted in colorectal cancer. We used counts of short and medium cfDNA fragments of chromosome 18 and trained a linear model (LDA) on a set of 2959 regions to predict early-stage (I-IIA) colorectal cancer on an independent test set. In total, 87.5% sensitivity and 92% specificity were obtained on the enzymatically converted libraries. Repeating the same workflow on bisulfite-converted data yielded lower accuracy results with 58.3% sensitivity, implying that enzymatic conversion preserves the cancer fragmentation footprint in whole genome data better than bisulfite conversion. These results could serve as a promising new avenue for the early detection of colorectal cancer using fragmentation and methylation approaches on the same datasets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Sulfitos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética
17.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488030

RESUMO

DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high­throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation­Sensitive Restriction Enzyme­droplet digital PCR (MSRE­ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high­sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE­ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE­ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.


Assuntos
Metilação de DNA , Melanoma , Sulfitos , Humanos , Metilação de DNA/genética , Melanoma/diagnóstico , Melanoma/genética , Reação em Cadeia da Polimerase/métodos , DNA/genética
18.
Water Res ; 253: 121264, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335842

RESUMO

Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.


Assuntos
Desinfetantes , Água Potável , Sulfitos , Tiossulfatos , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Cloro/análise , Desinfetantes/análise , Halogênios/análise , Desinfecção , Cloretos , Ácido Ascórbico/análise , Poluentes Químicos da Água/análise , Halogenação
19.
Nucleic Acids Res ; 52(6): e32, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412294

RESUMO

Data from both bulk and single-cell whole-genome DNA methylation experiments are under-utilized in many ways. This is attributable to inefficient mapping of methylation sequencing reads, routinely discarded genetic information, and neglected read-level epigenetic and genetic linkage information. We introduce the BISulfite-seq Command line User Interface Toolkit (BISCUIT) and its companion R/Bioconductor package, biscuiteer, for simultaneous extraction of genetic and epigenetic information from bulk and single-cell DNA methylation sequencing. BISCUIT's performance, flexibility and standards-compliant output allow large, complex experimental designs to be characterized on clinical timescales. BISCUIT is particularly suited for processing data from single-cell DNA methylation assays, with its excellent scalability, efficiency, and ability to greatly enhance mappability, a key challenge for single-cell studies. We also introduce the epiBED format for single-molecule analysis of coupled epigenetic and genetic information, facilitating the study of cellular and tissue heterogeneity from DNA methylation sequencing.


Assuntos
Metilação de DNA , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Software , Epigenômica , Análise de Sequência de DNA , Sulfitos
20.
Environ Pollut ; 346: 123557, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355082

RESUMO

Photo-catalyzing sulfite (S(IV)) for the generation of sulfate radical (SO4•-) has emerged as a novel advanced oxidation process (AOP) recently. However, both the potential of soil minerals as effective photocatalysts and the process of water acidification due to S(IV) oxidation have been overlooked. Herein, maghemite (γ-Fe2O3), a typical soil iron oxide with excellent photocatalytic reactivity like hematite and magnetic-collectible property like magnetite, was successfully used to activate S(IV) for iohexol degradation under visible light irradiation. As a result, 91.3% of iohexol was eliminated within 15 min at 0.1 g/L maghemite and 0.5 mM S(IV) under neutral conditions. The influencing factors, including initial pH, catalyst dosage, S(IV) amount, co-existing substances and water matrix, were systematically investigated. The maghemite/S(IV)/vis system exhibited superior performance in iohexol degradation at a wide pH range (3-10). It was found that the released proton via S(IV) oxidation led to severe water acidification. Interestingly, a low dose of HCO3- could evidently resist water acidification with little influence on iohexol elimination. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that SO4•-, •OH and •O2- were involved in iohexol abatement with SO4•- being the dominant reactive species. Compared with hydrogen peroxide, persulfate and peroxymonosulfate, the established maghemite/S(IV)/vis system achieved much more remarkable degradation performance. Furthermore, the reactivity of the catalyst was not obviously reduced even after 10 runs of reaction. This study expands the application of soil iron oxide mineral in S(IV) activation in water treatment and proposes an approach to regulate water acidification in S(IV)-based AOP.


Assuntos
Compostos Férricos , Iohexol , Poluentes Químicos da Água , Iohexol/química , Minerais , Oxirredução , Concentração de Íons de Hidrogênio , Sulfitos/química , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...