Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.686
Filtrar
1.
Int J Nanomedicine ; 19: 3315-3332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617797

RESUMO

Background: Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods: In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results: The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion: Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Animais , Ratos , Peróxido de Hidrogênio , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Carbono
2.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
3.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
4.
Sci Rep ; 14(1): 8672, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622317

RESUMO

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Assuntos
Hibiscus , Lignina , Lignina/química , Solventes Eutéticos Profundos , Biomassa , Carboidratos , Solventes/química , Carbono , Hidrólise
5.
Huan Jing Ke Xue ; 45(5): 2806-2816, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629543

RESUMO

Net ecosystem productivity (NEP) is an important index for the quantitative evaluation of carbon sources and sinks in terrestrial ecosystems. Based on MOD17A3 and meteorological data, the vegetation NEP was estimated from 2000 to 2021 in the Loess Plateau (LP) and its six ecological subregions of the LP (loess sorghum gully subregions:A1, A2; loess hilly and gully subregions:B1, B2; sandy land and agricultural irrigation subregion:C; and earth-rock mountain and river valley plain subregion:D). Combined with the terrain, remote sensing, and human activity data, Theil-Sen Median trend analysis, correlation analysis, multiple regression residual analysis, and geographic detector were used, respectively, to explore the spatio-temporal characteristics of NEP and its response mechanism to climate, terrain, and human activity. The results showed that:① On the temporal scale, from 2000 to 2021 the annual mean NEP of the LP region (in terms of C) was 104.62 g·(m2·a)-1. The annual mean NEP for both the whole LP and each of the ecological subregions showed a significant increase trend, and the NEP of the LP increased by 6.10 g·(m2·a)-1 during the study period. The highest growth rate of the NEP was 9.04 g·(m2·a)-1, occurring in the A2 subregion of the loess sorghum gully subregions. The subregion C had the lowest growth rate of 2.74 g·(m2·a)-1. Except for the C subregion, all other ecological subregions (A1, A2, B1, B2, and D) were carbon sinks. ② On the spatial scale, the spatial distribution of annual NEP on the LP was significantly different, with the higher NEP distribution in the southeast of the LP and the lower in the northwest of the LP. The high carbon sink area was mainly distributed in the southern part of the loess sorghum gully subregions, and the carbon source area was mainly distributed in the northern part of the loess sorghum gully subregions and most of the C subregion. The high growth rate was mainly distributed in the central and the southern part of the A2 subregion and the southwest part of the B2 subregion. ③ Human activities had the greatest influence on the temporal variation in NEP in the LP and all the ecological subregions, with the correlation coefficient between human activity data and NEP being above 0.80, and the relative contribution rates of human factors was greater than 50%. The spatial distribution was greatly affected by meteorological factors, among which the precipitation and solar radiation were the main factors affecting the spatial changes in the NEP of the LP. The temporal and spatial variations in the NEP in the LP were influenced by natural and human social factors. To some extent, these results can provide a reference for the terrestrial ecosystem in the LP to reduce emissions and increase sinks and to achieve the goal of double carbon.


Assuntos
Clima , Ecossistema , Humanos , Tecnologia de Sensoriamento Remoto , Areia , Carbono/análise , China , Mudança Climática
6.
Proc Natl Acad Sci U S A ; 121(15): e2318425121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557182

RESUMO

Corrugated packaging for express grew by 90 times to 16.5 Mt y-1 in China, where 81% of recent global express delivery growth occurred. However, the environmental impacts of production, usage, disposal, and recycling of corrugated boxes under the entire supply chain remain unclear. Here, we estimate the magnitudes, drivers, and mitigation potentials of cradle-to-grave life-cycle carbon footprint (CF) and three colors of water footprints (WFs) for corrugated cardboard packaging in China. Over 2007 to 2021, CF, blue and gray WFs per unit package decreased by 45%, 60%, and 84%, respectively, while green WF increased by 23% with growing imports of virgin pulp and China's waste ban. National total CF and WFs were 21 to 102 folded with the scale effects. Only a combination of the supply chain reconstruction, lighter single-piece packaging, and increased recycling rate can possibly reduce the environmental footprints by 24 to 44% by 2035.


Assuntos
Carbono , Água , Pegada de Carbono , Reciclagem , China
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612501

RESUMO

Increased evidence has documented a direct association between Ciprofloxacin (CFX) intake and significant disruption to the normal functions of connective tissues, leading to severe health conditions (such as tendonitis, tendon rupture and retinal detachment). Additionally, CFX is recognized as a potential emerging pollutant, as it seems to impact both animal and human food chains, resulting in severe health implications. Consequently, there is a compelling need for the precise, swift and selective detection of this fluoroquinolone-class antibiotic. Herein, we present a novel graphene-based electrochemical sensor designed for Ciprofloxacin (CFX) detection and discuss its practical utility. The graphene material was synthesized using a relatively straightforward and cost-effective approach involving the electrochemical exfoliation of graphite, through a pulsing current, in 0.05 M sodium sulphate (Na2SO4), 0.05 M boric acid (H3BO3) and 0.05 M sodium chloride (NaCl) solution. The resulting material underwent systematic characterization using scanning electron microscopy/energy dispersive X-ray analysis, X-ray powder diffraction and Raman spectroscopy. Subsequently, it was employed in the fabrication of modified glassy carbon surfaces (EGr/GC). Linear Sweep Voltammetry studies revealed that CFX experiences an irreversible oxidation process on the sensor surface at approximately 1.05 V. Under optimal conditions, the limit of quantification was found to be 0.33 × 10-8 M, with a corresponding limit of detection of 0.1 × 10-8 M. Additionally, the developed sensor's practical suitability was assessed using commercially available pharmaceutical products.


Assuntos
Ciprofloxacina , Grafite , Animais , Humanos , Fluoroquinolonas , Carbono , Eletrodos
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612797

RESUMO

Carbon (C) and nitrogen (N) metabolisms participate in N source-regulated secondary metabolism in medicinal plants, but the specific mechanisms involved remain to be investigated. By using nitrate (NN), ammonium (AN), urea (UN), and glycine (GN), respectively, as sole N sources, we found that N sources remarkably affected the contents of diterpenoid lactone components along with C and N metabolisms reprograming in Andrographis paniculata, as compared to NN, the other three N sources raised the levels of 14-deoxyandrographolide, andrographolide, dehydroandrographolide (except UN), and neoandrographolide (except AN) with a prominent accumulation of farnesyl pyrophosphate (FPP). These N sources also raised the photosynthetic rate and the levels of fructose and/or sucrose but reduced the activities of phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH). Conversely, phosphoenolpyruvate carboxykinase (PEPCK) and malate enzyme (ME) activities were upregulated. Simultaneously, citrate, cis-aconitate and isocitrate levels declined, and N assimilation was inhibited. These results indicated that AN, UN and GN reduced the metabolic flow of carbohydrates from glycolysis into the TCA cycle and downstream N assimilation. Furthermore, they enhanced arginine and GABA metabolism, which increased C replenishment of the TCA cycle, and increased ethylene and salicylic acid (SA) levels. Thus, we proposed that the N sources reprogrammed C and N metabolism, attenuating the competition of N assimilation for C, and promoting the synthesis and accumulation of andrographolide through plant hormone signaling. To obtain a higher production of andrographolide in A. paniculata, AN fertilizer is recommended in its N management.


Assuntos
Andrographis paniculata , Diterpenos , Extratos Vegetais , Carbono , Plântula
9.
Curr Microbiol ; 81(6): 139, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613599

RESUMO

Polyhydroxybutyrates (PHBs) are biopolymers that are good green alternative for synthetic carbon-based polymers, and are also one of the most researched members of the Polyhydroxyalkanoates (PHA) family. In this study, a gram-positive bacterial strain Bacillus megaterium LSRB 0103 was isolated from Pallikaranai Marshland, Chennai, India. Primary screening using Sudan Black dye revealed the presence of intracellular PHB granules. Minimal Davis Media (MDM) which was used or PHB production gave a yield of 0.7107 g/L. Subsequently, using response surface methodology (RSM), a central composite design (CCD) model was designed for media optimization having cornstarch, urea, and pH as independent variables. The findings of the CCD model were fitted into a second-order polynomial equation. The RSM model predicted the maximum PHB yield of 0.93 g/L, at these independent variable levels, cornstarch, 5 g/L; urea, 2.1 g/L; and pH 7.0; while the experimental PHB yield was 0.94 g/L, with a percentage error of 1.1%. This study is the first-time report of production of PHB by Bacillus megaterium using cornstarch and urea as substrate.


Assuntos
Bacillus megaterium , Amido , Ureia , Bacillus megaterium/genética , Índia , Carbono
10.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613635

RESUMO

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Assuntos
Resíduos Sólidos , Zeolitas , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Índia , Carbono , Microscopia Eletrônica de Varredura
11.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624252

RESUMO

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Assuntos
Ecossistema , Taiga , Florestas , Atmosfera , Carbono
12.
Nat Commun ; 15(1): 2872, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605003

RESUMO

Animals employ different strategies to establish mating boundaries between closely related species, with sex pheromones often playing a crucial role in identifying conspecific mates. Many of these pheromones have carbon-carbon double bonds, making them vulnerable to oxidation by certain atmospheric oxidant pollutants, including ozone. Here, we investigate whether increased ozone compromises species boundaries in drosophilid flies. We show that short-term exposure to increased levels of ozone degrades pheromones of Drosophila melanogaster, D. simulans, D. mauritiana, as well as D. sechellia, and induces hybridization between some of these species. As many of the resulting hybrids are sterile, this could result in local population declines. However, hybridization between D. simulans and D. mauritiana as well as D. simulans and D. sechellia results in fertile hybrids, of which some female hybrids are even more attractive to the males of the parental species. Our experimental findings indicate that ozone pollution could potentially induce breakdown of species boundaries in insects.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Reprodução , Drosophila simulans , Carbono , Feromônios
13.
Nat Commun ; 15(1): 3158, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605006

RESUMO

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Gana , Carbono , Ecossistema , Clima Tropical
14.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605043

RESUMO

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Assuntos
Sequestro de Carbono , Florestas , Árvores , China , Biomassa , Carbono/análise
15.
Commun Biol ; 7(1): 450, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605093

RESUMO

Antarctic silverfish Pleuragramma antarcticum is the most abundant pelagic fish in the High Antarctic shelf waters of the Southern Ocean, where it plays a pivotal role in the trophic web as the major link between lower and higher trophic levels. Despite the ecological importance of this species, knowledge about its role in the biogeochemical cycle is poor. We determine the seasonal contribution of Antarctic silverfish to carbon flux in terms of faeces and eggs, from samples collected in the Ross Sea. We find that eggs and faeces production generate a flux accounting for 41% of annual POC flux and that the variability of this flux is modulated by spawning strategy. This study shows the important role of this organism as a vector for carbon flux. Since Antarctic silverfish are strongly dependent on sea-ice, they might be especially sensitive to climatic changes. Our results suggest that a potential decrease in the biomass of this organism is likely to impact marine biogeochemical cycles, and this should be factored in when assessing Southern Ocean carbon budget.


Assuntos
Carbono , Perciformes , Animais , Lepisma , Baías , Peixes , Galinhas
16.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
17.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
18.
Physiol Plant ; 176(2): e14281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606698

RESUMO

Water deficit stress limits net photosynthetic rate (AN), but the relative sensitivities of underlying processes such as thylakoid reactions, ATP production, carbon fixation reactions, and carbon loss processes to water deficit stress in field-grown upland cotton require further exploration. Therefore, the objective of the present study was to assess (1) the diffusional and biochemical mechanisms associated with water deficit-induced declines in AN and (2) associations between water deficit-induced variation in oxidative stress and energy dissipation for field-grown cotton. Water deficit stress was imposed for three weeks during the peak bloom stage of cotton development, causing significant reductions in leaf water potential and AN. Among diffusional limitations, mesophyll conductance was the major contributor to the AN decline. Several biochemical processes were adversely impacted by water deficit. Among these, electron transport rate and RuBP regeneration were most sensitive to AN-limiting water deficit. Carbon loss processes (photorespiration and dark respiration) were less sensitive than carbon assimilation, contributing to the water deficit-induced declines in AN. Increased energy dissipation via non-photochemical quenching or maintenance of electron flux to photorespiration prevented oxidative stress. Declines in AN were not associated with water deficit-induced variation in ATP production. It was concluded that diffusional limitations followed by biochemical limitations (ETR and RuBP regeneration) contributed to declines in AN, carbon loss processes partially contributed to the decline in AN, and increased energy dissipation prevented oxidative stress under water deficit in field-grown cotton.


Assuntos
Fotossíntese , Água , Transporte de Elétrons , Folhas de Planta , Desidratação , Carbono , Trifosfato de Adenosina
19.
Sci Adv ; 10(15): eadl4800, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608026

RESUMO

An increased frequency and severity of droughts and heat waves have resulted in increased tree mortality and forest dieback across the world, but underlying mechanisms are poorly understood. We used a common garden experiment with 20 conifer tree species to quantify mortality after three consecutive hot, dry summers and tested whether mortality could be explained by putative underlying mechanisms, such as stem hydraulics and legacies affected by leaf life span and stem growth responses to previous droughts. Mortality varied from 0 to 79% across species and was not affected by hydraulic traits. Mortality increased with species' leaf life span probably because leaf damage caused crown dieback and contributed to carbon depletion and bark beetle damage. Mortality also increased with lower growth resilience, which may exacerbate the contribution of carbon depletion and bark beetle sensitivity to tree mortality. Our study highlights how ecological legacies at different time scales can explain tree mortality in response to hot, dry periods and climate change.


Assuntos
Traqueófitas , Árvores , Secas , Temperatura Alta , Carbono , Folhas de Planta
20.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609367

RESUMO

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Assuntos
Hemeproteínas , Synechocystis , Heme , Zinco , Histidina , Hemeproteínas/genética , Synechocystis/genética , Carbono , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...