Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.696
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 52, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478113

RESUMO

In this study, we reported a Gram-stain-negative, ovoid to rod-shaped, atrichous, and facultative anaerobe bacteria strain named YMD61T, which was isolated from the intertidal sediment of Yangma island, China. Growth of strain YMD61T occurred at 10.0-45.0 °C (optimum, 30.0 °C), pH 7.0-10.0 (optimum, 8.0) and with 0-3.0% (w/v) NaCl (optimum, 2.0%). Phylogenetic tree analysis based on 16 S rRNA gene or genomic sequence indicated that strain YMD61T belonged to the genus Fuscovulum and was closely related to Fuscovulum blasticum ATCC 33,485T (96.6% sequence similarity). Genomic analysis indicated that strain YMD61T contains a circular chromosome of 3,895,730 bp with DNA G + C content of 63.3%. The genomic functional analysis indicated that strain YMD61T is a novel sulfur-metabolizing bacteria, which is capable of fixing carbon through an autotrophic pathway by integrating the processes of photosynthesis and sulfur oxidation. The predominant respiratory quinone of YMD61T was ubiquinone-10 (Q-10). The polar lipids of YMD61T contained phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unidentified lipids, unidentified aminolipid and unidentified aminophospholipid. The major fatty acids of strain YMD61T contained C18:1ω7c 11-methyl and summed feature 8 (C18:1 ω 7c or/and C18:1 ω 6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD61T represents a novel species of the genus Fuscovulum, and the name Fuscovulum ytuae sp. nov. is proposed. The type strain is YMD61T (= MCCC 1K08483T = KCTC 43,537T).


Assuntos
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Filogenia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , DNA Bacteriano/genética , Ácidos Graxos/química , Rhodobacteraceae/genética , China , Enxofre , RNA Ribossômico 16S/genética
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473702

RESUMO

The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.


Assuntos
Cádmio , Plantas Tolerantes a Sal , Cádmio/farmacologia , Cloretos/farmacologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Sódio/farmacologia , Oxirredução , Enxofre/farmacologia , Bactérias
3.
Bioorg Chem ; 145: 107241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437761

RESUMO

The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Enxofre/farmacologia
4.
Anal Chim Acta ; 1297: 342361, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438238

RESUMO

BACKGROUND: The content of trypsin will change when pancreatic diseases occur, therefore developing a high-performance method for trypsin detection is of great significance for guiding patients on medication plans and improving their prognosis. Photoelectrochemical (PEC) analysis techniques have emerged as a solution to apply for bioassays. RESULTS: Herein, the Fe2O3@Bi2S3 and Nitrogen and sulfur co-doped carbon quantum dots (NSCQDs) were successfully synthesized by a hydrothermal method. Subsequently, NSCQDs/Fe2O3@Bi2S3 with a photocurrent amplification effect covered on fluorine-doped tin oxide (FTO) electrode as the substrate material and apoferritin (APO) as a bio-recognition element to quench the photocurrent of the substrate material which can be excited with light. Due to the decomposition specifically between APO and trypsin, the photocurrent response increased. The linear range for trypsin detection showed satisfied results from 2 to 1000 ng mL-1 under optimal conditions, with a detection limit of 0.42 ng mL-1 and a recovery rate of 97.41 %-103.02 %, enabling efficient quantitative analysis of trypsin. SIGNIFICANCE: In this experiment, a PEC biosensor with simple operation, low detection limit, excellent selectivity and strong stability was successfully prepared, enabling quantitative analysis of trypsin in human serum samples through the quenching-recovery mechanism. It holds great significance for diagnosis and serves as a practical method for the detection of trypsin in the future.


Assuntos
Pontos Quânticos , Humanos , Tripsina , Carbono , Nitrogênio , Enxofre
5.
J Med Case Rep ; 18(1): 134, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439039

RESUMO

BACKGROUND: This case report documents a case of malignant pheochromocytoma manifested as vision changes with lung metastasis and recurrence. CASE PRESENTATION: A 10-year-old Han Chinese girl presented with vision changes and was eventually diagnosed with pheochromocytoma by contrast-enhanced computed tomography, urine vanillylmandelic acid. After medication for hypertension and surgery, clinical symptoms disappeared. Malignant pheochromocytoma with lung metastasis was confirmed histologically using the Pheochromocytoma of the Adrenal Gland Scaled Score scoring system and genetically with succinate dehydrogenase complex iron sulfur subunit B mutation, and 3 months later, unplanned surgery was performed because of the high risks and signs of recurrence. She is asymptomatic as of the writing of this case report. Our patient's case highlights the importance of considering a diagnosis of malignant pheochromocytoma, and long-term follow-up for possible recurrence. CONCLUSION: Although there are well-recognized classic clinical manifestations associated with pheochromocytoma, atypical presentation, such as vision changes in children, should be considered. In addition, malignant pheochromocytoma children with a high Pheochromocytoma of the Adrenal Gland Scaled Score and succinate dehydrogenase complex iron sulfur subunit B mutation require a long-term follow-up or even unplanned surgery because of the higher risk of recurrence.


Assuntos
Neoplasias das Glândulas Suprarrenais , Neoplasias Pulmonares , Feocromocitoma , Feminino , Humanos , Criança , Feocromocitoma/diagnóstico , Feocromocitoma/cirurgia , Succinato Desidrogenase/genética , Enxofre , Ferro
6.
J Nucl Med Technol ; 52(1): 59-62, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443106

RESUMO

In 2009, the Society of Nuclear Medicine and Molecular Imaging published a standardized protocol guideline for gastric emptying scintigraphy that contains specific instructions on the exact meal and preparation procedure. Previous research has shown that the standardized meal and proper preparation of the meal for gastric emptying scintigraphy are not being adopted by some facilities. This research explores the differences of radiolabeling in the method of preparation of 99mTc-sulfur colloid (SC)-radiolabeled eggs. Methods: Liquid egg whites were mixed with 99mTc-SC before cooking in conjunction with the standardized protocol. A second sample set was prepared by adding the 99mTc-SC to eggs after they were cooked. Each sample set was placed in a solution of HCl and pepsin to simulate gestation. Radiolabeling efficacy was tested on each sample set at 2 and 4 h after gestating in HCl and pepsin. Results: 99mTc-SC added to the liquid egg whites before microwave cooking yielded radiolabeling efficacy of 70% 99mTc-SC after 2 and 4 h of simulated gastric fluid gestation. In contrast, radiolabeling after cooking the egg whites yielded 50% radiolabeling after simulated gestation. Conclusion: The results from this experiment showed that the method of mixing the 99mTc-SC with liquid egg whites before microwave cooking has higher binding efficacy than when adding 99mTc-SC onto already cooked egg whites. These results highlight the importance of following the standardized protocol for the meal preparation of a gastric emptying study.


Assuntos
Clara de Ovo , Pepsina A , Albuminas , Coloides , Enxofre
7.
Geobiology ; 22(2): e12591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38458993

RESUMO

Studies of the effects of volcanic activity on the Hawaiian Islands are extremely relevant due to the past and current co-eruptions at both Mauna Loa and Kilauea. The Big Island of Hawai'i is one of the most seismically monitored volcanic systems in the world, and recent investigations of the Big Island suggest a widespread subsurface connectivity between volcanoes. Volcanic activity has the potential to add mineral contaminants into groundwater ecosystems, thus affecting water quality, and making inhabitants of volcanic islands particularly vulnerable due to dependence on groundwater aquifers. As part of an interdisciplinary study on groundwater aquifers in Kona, Hawai'i, over 40 groundwater wells were sampled quarterly from August 2017 through March 2019, before and after the destructive eruption of the Kilauea East Rift Zone in May 2018. Sample sites occurred at great distance (~80 km) from Kilauea, allowing us to pose questions of how volcanic groundwater aquifers might be influenced by volcanic subsurface activity. Approximately 400 water samples were analyzed and temporally split by pre-eruption and post-eruption for biogeochemical analysis. While most geochemical constituents did not differ across quarterly sampling, microbial communities varied temporally (pre- and post-eruption). When a salinity threshold amongst samples was set, the greatest microbial community differences were observed in the freshest groundwater samples. Differential analysis indicated bacterial families with sulfur (S) metabolisms (sulfate reducers, sulfide oxidation, and disproportionation of S-intermediates) were enriched post-eruption. The diversity in S-cyclers without a corresponding change in sulfate geochemistry suggests cryptic cycling may occur in groundwater aquifers as a result of distant volcanic subsurface activity. Microbial communities, including taxa that cycle S, may be superior tracers to changes in groundwater quality, especially from direct inputs of subsurface volcanic activity.


Assuntos
Água Subterrânea , Microbiota , Humanos , Água Subterrânea/análise , Bactérias/metabolismo , Enxofre/metabolismo , Sulfatos/metabolismo
8.
Sci Total Environ ; 922: 171328, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428600

RESUMO

The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.


Assuntos
Antibacterianos , Águas Residuárias , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Esgotos/microbiologia , Norfloxacino , Nitratos/metabolismo , Desnitrificação , Bactérias/genética , Bactérias/metabolismo , Enxofre/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo
9.
Microbiol Res ; 282: 127669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442455

RESUMO

Body size is an important life-history trait that affects organism niche occupancy and ecological interactions. However, it is still unclear to what extent the assembly process of organisms with different body sizes affects soil biogeochemical cycling processes at the aggregate level. Here, we examined the diversity and community assembly of soil microorganisms (bacteria, fungi, and protists) and microfauna (nematodes) with varying body sizes. The microbial functional potential associated with carbon, nitrogen, phosphorus, and sulfur metabolism within three soil aggregate sizes (large macroaggregates, > 2 mm; small macroaggregates, 0.25-2 mm; and microaggregates, < 0.25 mm) were determined by metagenomics. We found that the smallest microbes (bacteria) had higher α-diversity and lower ß-diversity and were mostly structured by stochastic processes, while all larger organisms (fungi, protists, and nematodes) had lower α-diversity and were relatively more influenced by deterministic processes. Structural equation modeling indicated that the microbial functional potential associated with carbon, nitrogen, phosphorus, and sulfur metabolism was mainly influenced by the bacterial and protist diversity in microaggregates. In contrast, the microbial functional potential was primarily mediated by the assembly processes of four organism groups, especially the nematode community in macroaggregates. This study reveals the important roles of soil organisms with different body sizes in the functional potential related to nutrient cycling, and provides new insights into the ecological processes structuring the diversity and community assembly of organisms of different body sizes at the soil aggregate level, with implications for soil nutrient cycling dynamics.


Assuntos
Nematoides , Solo , Animais , Solo/química , Microbiologia do Solo , Fungos , Tamanho Corporal , Carbono , Nitrogênio , Fósforo , Enxofre
10.
Biosens Bioelectron ; 253: 116162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437748

RESUMO

An electrochemiluminescence (ECL) biosensor with a pair of new ECL emitters and a novel sensing mechanism was designed for the high-sensitivity detection of microRNA-141 (miRNA-141). Sulfur-doped boron nitrogen quantum dots (S-BN QDs) were initially employed to modify the cathode of the bipolar electrode (BPE), while the anode reservoir was [Ir(dfppy)2(bpy)]PF6/TPrA system. The next step involved attaching H1-bound ultra-small WO3-x nanodots (WO3-x NDs) to the S-BN QDs-modified BPE cathode via DNA hybridization. A strong surface plasmon coupling (SPC) effect was observed between S-BN QDs and WO3-x NDs, which allowed for the enhancement of the red and visible ECL emission from S-BN QDs. After target-induced cyclic amplification to produce abundant Zn2+ and Au NPs-DNA3-Au NPs (Au NPs-S3-Au NPs), Zn2+ could cleave DNA at a nucleotide sequence-specific recognition site to release the WO3-x NDs, resulting in the first diminution of cathode ECL signal and the first enhancement of anode ECL signal. Moreover, the ECL signal at cathode decreased for the second time and the emission of [Ir(dfppy)2(bpy)]PF6 was continuously enhanced after the introduction of Au nanoparticles-S3-Au nanoparticles on the cathode surface. Our sensing mode with a dual "on-off" signal conversion strategy shows a good detection capability for miRNAs ranging from 10-17 to 10-10 M, with a limit of detection (LOD) as low as 10-17 M, which has great application potential in biomedical research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Ouro , Boro , Transferência de Energia , Nitrogênio , Enxofre , DNA
11.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503758

RESUMO

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Assuntos
Sulfeto de Hidrogênio , Piranos , Compostos de Sulfidrila , Sulfeto de Hidrogênio/metabolismo , Tionas , Sulfetos/metabolismo , Enxofre/metabolismo , Oxirredução , Proteínas/metabolismo
12.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
13.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
14.
Bioengineered ; 15(1): 2325721, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465722

RESUMO

This research work aimed to isolate and culture the bacterium Bacillus paramycoides for biogenic fabrication of zinc oxide nanoparticles, specifically ZnO and ZnO-ME nanoparticles (nanoparticles fabricated from bacterial extracts only - ZnO, and from bacterial cell mass including extract - ZnO-ME). SEM investigation revealed the spherical-shaped NPs with 22.33 and 39 nm in size for ZnO and ZnO-ME, respectively. The Brunauer, Emmett, and Teller (BET) studies revealed mesoporous structure with pore diameters of 13.839 and 13.88 nm and surface area of 7.617 and 33.635 m2/gm for ZnO and ZnO-ME, respectively. Various parameters for the adsorption of sulfur black dye onto both ZnO and ZnO-ME were screened and optimized using Plackett-Burman Design (PBD), Full Factorial Design (FFD) and Central Composite Design (CCD). The results of the optimization modeling study revealed that FFD yielded the most predictable and best-fitting results among all the models studied, with R2 values of 0.998 for ZnO and 0.993 for ZnO-ME. Notably, ZnO-ME exhibited a greater dye removal efficiency 80% than ZnO i.e., 71%, it may be due to the presence of amorphous carbon on the surface of ZnO-ME. Among the various isothermal models, the Freundlich model displayed the strongest correlation with the dye removal data, confirming the multilayer adsorption of dye on both nanoparticles and supporting physisorption. Therefore, ZnO and ZnO-ME nanoparticles have been proven as potential tools for mitigating environmental impacts associated with dye-containing wastewater.


Assuntos
Nanopartículas , Óxido de Zinco , Águas Residuárias , Óxido de Zinco/química , Corantes/química , Nanopartículas/química , Enxofre
15.
Environ Sci Technol ; 58(10): 4606-4616, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427797

RESUMO

Transforming hazardous species into active sites by ingenious material design was a promising and positive strategy to improve catalytic reactions in industrial applications. To synergistically address the issue of sluggish CO2 desorption kinetics and SO2-poisoning solvent of amine scrubbing, we propose a novel method for preparing a high-performance core-shell C@Mn3O4 catalyst for heterogeneous sulfur migration and in situ reconstruction to active -SO3H groups, and thus inducing an enhanced proton-coupled electron transfer (PCET) effect for CO2 desorption. As anticipated, the rate of CO2 desorption increases significantly, by 255%, when SO2 is introduced. On a bench scale, dynamic CO2 capture experiments reveal that the catalytic regeneration heat duty of SO2-poisoned solvent experiences a 32% reduction compared to the blank case, while the durability of the catalyst is confirmed. Thus, the enhanced PCET of C@Mn3O4, facilitated by sulfur migration and simultaneous transformation, effectively improves the SO2 resistance and regeneration efficiency of amine solvents, providing a novel route for pursuing cost-effective CO2 capture with an amine solvent.


Assuntos
Dióxido de Carbono , Prótons , Elétrons , Solventes , Aminas , Enxofre
16.
World J Microbiol Biotechnol ; 40(3): 103, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372854

RESUMO

Certain factors hinder the commercialization of biodesulfurization process, including low substrate-specificity of the currently reported desulfurizing bacteria and restricted mass transfer of organic-sulfur compounds in biphasic systems. These obstacles must be addressed to clean organic-sulfur rich petro-fuels that pose serious environmental and health challenges. In current study, a dibenzothiophene desulfurizing strain, Gordonia rubripertincta W3S5 (source: oil contaminated soil) was systematically evaluated for its potential to remove sulfur from individual compounds and mixture of organic-sulfur compounds. Metabolic and genetic analyses confirmed that strain W3S5 desulfurized dibenzothiophene to 2-hydroxybiphenyl, suggesting that it follows the sulfur specific 4 S pathway. Furthermore, this strain demonstrated the ability to produce trehalose biosurfactants (with an EI24 of 53%) in the presence of dibenzothiophene, as confirmed by TLC and FTIR analyses. Various genome annotation tools, such as ClassicRAST, BlastKOALA, BV-BRC, and NCBI-PGAP, predicted the presence of otsA, otsB, treY, treZ, treP, and Trehalose-monomycolate lipid synthesis genes in the genomic pool of strain W3S5, confirming the existence of the OtsAB, TreYZ, and TreP pathways. Overall, these results underscore the potential of strain W3S5 as a valuable candidate for enhancing desulfurization efficiency and addressing the mass transfer challenges essential for achieving a scaled-up scenario.


Assuntos
Petróleo , Trealose , Solo , Tiofenos , Enxofre
17.
J Hazard Mater ; 467: 133618, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335612

RESUMO

Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.


Assuntos
Desulfovibrio , Enxofre , Humanos , Compostos de Enxofre , Corrosão , Esgotos
18.
Bioresour Technol ; 396: 130418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325611

RESUMO

A sulfur-based biofilter enhanced by phosphate modified activated carbon as particle electrodes was constructed to simultaneously remove total nitrogen (TN) and estrogen from low carbon-to-nitrogen ratio (C/N) wastewater containing 1 mg/L 17-alpha-ethinylestradiol (EE2). Results showed that the enhanced biofilter achieved outstanding performance in EE2 removal (93.2 %) and TN reduction (effluent < 5 mg/L), demonstrating robustness against C/N fluctuations. It was noteworthy that it successfully reduced both acute toxicity (59.5 %) and estrogenic activity (88.6 %). Comprehensive characterization investigations and microbial community structure analysis revealed that enhanced electron transfer and increased microbial abundance likely contributed to improved biofilter performance. Core microorganisms, such as Pseudomonas and Chryseobacterium were identified as key contributors to synergistic estrogen degradation and denitrification. This study presented a feasible and promising strategy of combined process with three-dimensional electrodes and sulfur-based biofilter, highlighting substantial potential for advanced purification and safe reuse of wastewater.


Assuntos
Desnitrificação , Águas Residuárias , Nitrogênio , Reatores Biológicos , Enxofre/química , Eletrólise , Nitratos
19.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300326

RESUMO

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Assuntos
Aminoácidos Essenciais , Proteômica , Animais , Humanos , Transporte Biológico , Proteínas de Armazenamento de Sementes , Enxofre , Sulfatos
20.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314873

RESUMO

The thermal ecology of ectotherm animals has gained considerable attention in the face of human-induced climate change. Particularly in aquatic species, the experimental assessment of critical thermal limits (CTmin and CTmax) may help to predict possible effects of global warming on habitat suitability and ultimately species survival. Here we present data on the thermal limits of two endemic and endangered extremophile fish species, inhabiting a geothermally heated and sulfur-rich spring system in southern Mexico: The sulfur molly (Poecilia sulphuraria) and the widemouth gambusia (Gambusia eurystoma). Besides physiological challenges induced by toxic hydrogen sulfide and related severe hypoxia during the day, water temperatures have been previously reported to exceed those of nearby clearwater streams. We now present temperature data for various locations and years in the sulfur spring complex and conducted laboratory thermal tolerance tests (CTmin and CTmax) both under normoxic and severe hypoxic conditions in both species. Average CTmax limits did not differ between species when dissolved oxygen was present. However, critical temperature (CTmax=43.2°C) in P. sulphuraria did not change when tested under hypoxic conditions, while G. eurystoma on average had a lower CTmax when oxygen was absent. Based on this data we calculated both species' thermal safety margins and used a TDT (thermal death time) model framework to relate our experimental data to observed temperatures in the natural habitat. Our findings suggest that both species live near their thermal limits during the annual dry season and are locally already exposed to temperatures above their critical thermal limits. We discuss these findings in the light of possible physiological adaptions of the sulfur-adapted fish species and the anthropogenic threats for this unique system.


Assuntos
Extremófilos , Animais , Humanos , México , Temperatura , Peixes , Hipóxia , Oxigênio , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...