Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.410
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38432773

RESUMO

Arsenic is potent human carcinogen which affects millions of people across the globe. Arsenic induced pre-cancerous and cancerous skin lesions are hall marks of chronic arsenic toxicity. Even then, only 15%-20% of the population manifest arsenic-induced skin lesions but the rest do not, the reason for which in not very clear. Not only that, conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress are the non-dermatological health effects which are often manifested in them in addition to the cancers of skin and other internal organs. In this work we have considered 233 arsenic exposed individuals with skin lesions and 205 arsenic exposed individuals without skin lesions from the highly arsenic affected Murshidabad district of West Bengal. We have compared arsenic exposure in the two groups through drinking water. Both the study groups have similar levels of arsenic exposure, drinking same arsenic laden water. Results show that higher amounts of arsenic were retained in the nails and hair of the skin lesion group compared to the no skin lesion group. Significant higher amounts of chromosomal aberration and micronucleus formation were found in the skin lesion group, than the no skin lesion group. Incidences of conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress were much higher in the former group compared to the later. We, thus found that one group was more susceptible than the other, even with similar levels of arsenic exposure. We have tried to identify and discuss the probable reasons for this observation with reference to our previous works in the exposed population from West Bengal, India.


Assuntos
Arsênio , Doenças do Sistema Nervoso Periférico , Síndrome do Desconforto Respiratório , Humanos , Arsênio/toxicidade , Pele , Carcinógenos
2.
Bull Environ Contam Toxicol ; 112(3): 49, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466428

RESUMO

Microbial arsenic transformations play essential roles in controlling pollution and ameliorating risk. This study combined high-throughput sequencing and PCR-based approaches targeting both the 16 S rRNA and arsenic functional genes to investigate the temporal and spatial dynamics of the soil microbiomes impacted by high arsenic contamination (9.13 to 911.88 mg/kg) and to investigate the diversity and abundance of arsenic functional genes in soils influenced by an arsenic gradient. The results showed that the soil microbiomes were relatively consistent and mainly composed of Actinobacteria (uncultured Gaiellales and an unknown_67 - 14 bacterium), Proteobacteria, Firmicutes (particularly, Bacillus), Chloroflexi, and Acidobacteria (unknown_Subgroup_6). Although a range of arsenic functional genes (e.g., arsM, arsC, arrA, and aioA) were identified by shotgun metagenomics, only the arsM gene was detected by the PCR-based method. The relative abundance of the arsM gene accounted for 0.20%-1.57% of the total microbial abundance. Combining all analyses, arsenic methylation mediated by the arsM gene was proposed to be a key process involved in the arsenic biogeochemical cycle and mitigation of arsenic toxicity. This study advances our knowledge about arsenic mechanisms over the long-term in highly contaminated soils.


Assuntos
Arsênio , Microbiota , Poluentes do Solo , Arsênio/toxicidade , Arsênio/análise , Solo , Bactérias/genética , Genes Bacterianos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466444

RESUMO

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Assuntos
Arsênio , Basidiomycota , Metais Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo
4.
Huan Jing Ke Xue ; 45(3): 1793-1802, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471890

RESUMO

A rice pot experiment was conducted to identify the effect of silica fertilizer prepared from husk ash on the soil bioavailability of cadmium (Cd) and arsenic (As), enzyme activities, microbial community structure, and heavy metal content in brown rice at different growth stages. The results showed that the application of 0.1%-1.0% silica fertilizer-husk ash increased the pH value of soil by 0.04-0.24 units and the content of soil available silicon by 44.2%-97.5%. It also decreased the content of available Cd and available As by 16.2%-21.4% and 16.0%-24.9%, respectively. With the increase in application amount, the soil enzyme activities increased at all growth stages, and the sucrase activity and the dehydrogenase activity significantly increased by 6.3%-145.7% and 6.7%-224.1%, respectively. The analysis of the soil microbial community composition structure at mature stages showed that the application of silica fertilizer-husk ash had no effect on microbial α-diversity, but it had a significant effect on microbial ß-diversity and then promoted microbial growth and maintained the stability of the community structure. With the increase in application amount, the contents of Cd in brown rice decreased by 29.3%-89.7%, and the contents of total As and inorganic As in brown rice decreased by 7.8%-42.3% and 17.2%-44.5%, respectively. Under the application of 0.5% and 1.0% silica fertilizer-husk ash, the Cd contents in brown rice were lower than 0.2 mg·kg-1, and the inorganic As contents in brown rice were lower than 0.35 mg·kg-1. In conclusion, the silica fertilizer-husk ash can improve soil quality and reduce the contents of Cd and As in brown rice, and it is eco-friendly and can be used to remedy the paddy soil contaminated with Cd and As.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Arsênio/análise , Dióxido de Silício , Solo/química , Oryza/química , Fertilizantes/análise , Poluentes do Solo/análise
5.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471892

RESUMO

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Zinco , Chumbo , Fazendas , Farinha , Poluentes do Solo/análise , Triticum , Solo , Grão Comestível/química
6.
Huan Jing Ke Xue ; 45(2): 1049-1057, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471942

RESUMO

Risk assessment is a critical part of risk management for contaminated sites. However, in the specific management practice of As-contaminated sites, it is difficult to obtain realistic health risks for contaminated sites based on the total amount of pollutants and determined values of the model, thus preventing the control requirements of later remediation to be met. An increasing number of studies have recently been conducting risk assessments by considering bioavailability, modification parameters, and combined probabilistic models. To improve the accuracy of risk assessment results, taking a large As-contaminated site as a case, 432 sampling sites were set up and collected at different depths to analyze the level and distribution characteristics of As pollution, and probabilistic risk assessment was conducted with the modification of model parameters through literature research and Monte Carlo simulation. Then, the impact of traditional methods and probabilistic methods on health risk assessment was explored in comparison. The results indicated that ω(As) in the top soil of the study area ranged from 2.70-97.0 mg·kg-1, with a spatial variation coefficient of 0.61 and weaker spatial continuity. The carcinogenic risk and hazard index obtained by the traditional risk assessment method were 2.12E-4 and 8.36, respectively, which obviously overestimated the actual risk level and were not conductive to the refined management of As-contaminated sites. Combined with modification of model parameters and probabilistic risk assessment, the non-carcinogenic risk for adults and children was found to be at an acceptable level, and the carcinogenic risk was reduced by nearly an order of magnitude compared to that in the conventional method. Considering the relative biological effectiveness (RBA) of As, the 95% quantile of the total carcinogenic risk was 1.24E-5, a reduction of up to 36.41% compared to the uncorrected corresponding risk value of 1.95E-5. The carcinogenic risk of soil As for adults and children in the study area exceeded acceptable risk levels 1E-6, with oral ingestion of soil being the primary route of exposure. In addition, the results of the sensitivity analysis of the parameters showed that As concentration, daily oral ingestion rate of soils, and exposure duration of children had relatively larger effects for health risks. This work will provide a methodological and theoretical basis for achieving accurate risk assessment of As-contaminated sites and provide concepts for refined risk management.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Arsênio/análise , Método de Monte Carlo , Medição de Risco/métodos , Poluição Ambiental/análise , Solo , Carcinógenos/análise , Poluentes do Solo/análise , Monitoramento Ambiental , China , Metais Pesados/análise
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474107

RESUMO

Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Arsênio/metabolismo , Oryza/genética , Poluentes do Solo/metabolismo , Melhoramento Vegetal , Estruturas Vegetais/metabolismo , Solo , Grão Comestível/metabolismo
8.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474527

RESUMO

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Assuntos
Arsênio , Clorofilídeos , Porfirinas , Humanos , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Espectrometria de Fluorescência , Corantes Fluorescentes/química
9.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474793

RESUMO

BACKGROUND: Arsenic (As) is a risk factor associated with glycemic alterations. However, the mechanisms of action and metabolic aspects associated with changes in glycemic profiles have not yet been completely elucidated. Therefore, in this review, we aimed to investigate the metabolic aspects of As and its mechanism of action associated with glycemic changes. METHODS: We searched the PubMed (MEDLINE) and Google Scholar databases for relevant articles published in English. A combination of free text and medical subject heading keywords and search terms was used to construct search equations. The search yielded 466 articles; however, only 50 were included in the review. RESULTS: We observed that the relationship between As exposure and glycemic alterations in humans may be associated with sex, smoking status, body mass index, age, occupation, and genetic factors. The main mechanisms of action associated with changes induced by exposure to As in the glycemic profile identified in animals are increased oxidative stress, reduced expression of glucose transporter type 4, induction of inflammatory factor expression and dysfunction of pancreatic ß cells. CONCLUSIONS: Therefore, As exposure may be associated with glycemic alterations according to inter-individual differences.


Assuntos
Arsênio , Animais , Humanos , Fatores de Risco , PubMed , Índice de Massa Corporal , Glicemia/metabolismo
10.
Int J Hyg Environ Health ; 257: 114344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430670

RESUMO

Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.


Assuntos
Arsênio , Arsenicais , Metais Pesados , Criança , Adulto , Humanos , Arsênio/análise , Exposição Ambiental/análise , Metais Pesados/análise
11.
Sci Rep ; 14(1): 5662, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454098

RESUMO

The monitoring of essential and toxic elements in patients with Opioid Use Disorder (OUD) undergoing methadone treatment (MT) is important, and there is limited previous research on the urinary levels of these elements in MT patients. Therefore, the present study aimed to analyze certain elements in the context of methadone treatment compared to a healthy group. In this study, patients with opioid use disorder undergoing MT (n = 67) were compared with a healthy group of companions (n = 62) in terms of urinary concentrations of some essential elements (selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca)) and toxic elements (lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr)). Urine samples were prepared using the acid digestion method with a mixture of nitric acid and perchloric acid and assessed using the ICP-MS method. Our results showed that the two groups had no significant differences in terms of gender, education level, occupation, and smoking status. Urinary concentrations of Se, Cu, and Fe levels were significantly lower in the MT group compared to the healthy subjects. However, the concentrations of Pb, Cd, As, Mn, Cr, and Ca in the MT group were higher than in the healthy group (p < 0.05). No significant difference was established between the levels of Zn in the two groups (p = 0.232). The results of regression analysis revealed that the differences between the concentration levels of all metals (except Zn) between two groups were still remained significant after adjusting for all variables (p < 0.05). The data obtained in the current study showed lower urinary concentrations of some essential elements and higher levels of some toxic elements in the MT group compared to the healthy subjects. These findings should be incorporated into harm-reduction interventions.


Assuntos
Arsênio , Transtornos Relacionados ao Uso de Opioides , Selênio , Oligoelementos , Humanos , Oligoelementos/análise , Cádmio/análise , Irã (Geográfico) , Chumbo/análise , Cobre/análise , Zinco/análise , Manganês/análise , Selênio/análise , Cromo/análise , Arsênio/análise , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Metadona/uso terapêutico
12.
Sci Rep ; 14(1): 5743, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459117

RESUMO

There is an increasing concern about the health effects of exposure to a mixture of pollutants. This study aimed to evaluate the associations between serum levels of heavy/essential metals ([Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Iron (Fe), and Zinc (Zn)]) and the risk of developing cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2D). Data were collected from 450 participants (150 with CVDs, 150 with T2D, and 150 healthy subjects) randomly selected from the Ravansar Non-Communicable Disease (RaNCD) cohort in Western Iran, covering the years 2018-2023. Trace element levels in the serum samples were assayed using ICP-MS. Logistic regression was performed to estimate the adjusted risk of exposure to single and multi-metals and CVD/T2D. Odds ratios were adjusted for age, sex, education, residential areas, hypertension, and BMI. The mixture effect of exposure to multi-metals and CVD/T2D was obtained using Quantile G-computation (QGC). In the logistic regression model, chromium, nickel, and zinc levels were associated with CVD, and significant trends were observed for these chemical quartiles (P < 0.001). Arsenic, chromium, and copper levels were also associated with T2D. The weight quartile sum (WQS) index was significantly associated with both CVD (OR 4.17, 95% CI 2.16-7.69) and T2D (OR 11.96, 95% CI 5.65-18.26). Cd, Pb, and Ni were the most heavily weighed chemicals in these models.The Cd had the highest weight among the metals in the CVD model (weighted at 0.78), followed by Hg weighted at 0.197. For T2D, the serum Pb (weighted at 0.32), Ni (weighted at 0.19), Cr (weighted at 0.17), and Cd (weighted at 0.14) were the most weighted in the G-computation model. The results showed the significant role of toxic and essential elements in CVDs and T2D risk. This association may be driven primarily by cadmium and mercury for CVDs and Pb, Ni, Cr, and Cd for T2D, respectively. Prospective studies with higher sample sizes are necessary to confirm or refute our preliminary results as well as to determine other important elements.


Assuntos
Arsênio , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Mercúrio , Metais Pesados , Oligoelementos , Adulto , Humanos , Oligoelementos/análise , Cádmio/análise , Cobre/análise , Arsênio/análise , Níquel/análise , Diabetes Mellitus Tipo 2/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Chumbo , Estudos Prospectivos , Metais Pesados/análise , Zinco , Mercúrio/análise , Cromo
13.
Sci Rep ; 14(1): 5716, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459150

RESUMO

Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.


Assuntos
Arsênio , Metais Pesados , Arsênio/metabolismo , Bioacumulação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ecossistema , Bactérias , Metais Pesados/análise , Biodegradação Ambiental , Genômica
14.
Front Public Health ; 12: 1336188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504684

RESUMO

Background: Individual metal levels are potential risk factors for the development of preeclampsia (PE). However, understanding of relationship between multiple metals and PE remains elusive. Purpose: The purpose of this study was to explore whether eight metals [zinc (Zn), manganese (Mn), copper (Cu), nickel (Ni), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg)] in serum had a certain relationship with PE. Methods: A study was conducted in Dongguan, China. The concentrations of metals in maternal serum were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Data on various factors were collected through a face-to-face interview and hospital electronic medical records. The unconditional logistic regression model, principal component analysis (PCA) and Bayesian Kernel Machine Regression (BKMR) were applied in our study. Results: The logistic regression model revealed that the elevated levels of Cu, Pb, and Hg were associated with an increased risk of PE. According to PCA, principal component 1 (PC1) was predominated by Hg, Pb, Mn, Ni, Cu, and As, and PC1 was associated with an increased risk of PE, while PC2 was predominated by Cd and Zn. The results of BKMR indicated a significant positive cumulative effect of serum metals on PE risk, with Ni and Cu exhibiting a significant positive effect. Moreover, BKMR results also revealed the nonlinear effects of Ni and Cd. Conclusion: The investigation suggests a potential positive cumulative impact of serum metals on the occurrence of PE, with a particular emphasis on Cu as a potential risk factor for the onset and exacerbation of PE. These findings offer valuable insights for guiding future studies on this concern.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Pré-Eclâmpsia , Feminino , Humanos , Metais Pesados/análise , Cádmio , Teorema de Bayes , Chumbo , Arsênio/análise , Zinco , Níquel , Manganês
15.
Sci Total Environ ; 922: 171409, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432367

RESUMO

Arsenic (As) is a widespread metalloid with well-known toxicity. To date, numerous studies have focused on individual level toxicity (e.g., growth and reproduction) of As to typical invertebrate springtails in soils, however, the molecular level toxicity and mechanism was poorly understood. Here, an integrated transcriptomics and metabolomics approach was used to reveal responses of Folsomia candida exposed to As(V) of 10 and 60 mg kg-1 at which the individual level endpoints were influenced. Transcriptomics identified 5349 and 4020 differentially expressed genes (DEGs) in low and high concentration groups, respectively, and the most DEGs were down-regulated. Enrichment analysis showed that low and high concentrations of As(V) significantly inhibited chromatin/chromosome-related biological processes (chromatin/chromosome organization, nucleosome assembly and organization, etc.) in springtails. At high concentration treatment, structural constituent of cuticle, chitin metabolic process and peptidase activity (serine-type peptidase activity, endopeptidase activity, etc.) were inhibited or disturbed. Moreover, the apoptosis pathway was significantly induced. Metabolomics analysis identified 271 differential changed metabolites (DCMs) in springtails exposed to high concentration of As. Steroid hormone biosynthesis was the most significantly affected pathway. Several DCMs that related to chitin metabolism could further support above transcriptomic results. These findings further extended the knowledge of As toxic mechanisms to soil fauna and offer important information for the environmental risk assessment.


Assuntos
Arsênio , Artrópodes , Poluentes do Solo , Animais , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Cromatina/metabolismo , Peptídeo Hidrolases/metabolismo , Quitina/metabolismo , Solo/química
16.
Sci Rep ; 14(1): 6176, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486015

RESUMO

Arsenic (As) is a heavy metal that is toxic to both plants and animals. Silicon nanoparticles (SiNPs) can alleviate the detrimental effects of heavy metals on plants, but the underlying mechanisms remain unclear. The study aims to synthesize SiNPs and reveal how they promote plant health in Arsenic-polluted soil. 0 and 100% v/v SiNPs were applied to soil, and Arsenic 0 and 3.2 g/ml were applied twice. Maize growth was monitored until maturity. Small, irregular, spherical, smooth, and non-agglomerated SiNPs with a peak absorbance of 400 nm were synthesized from Pycreus polystachyos. The SiNPs (100%) assisted in the development of a deep, prolific root structure that aided hydraulic conductance and gave mechanical support to the maize plant under As stress. Thus, there was a 40-50% increase in growth, tripled yield weights, and accelerated flowering, fruiting, and senescence. SiNPs caused immobilization (As(III)=SiNPs) of As in the soil and induced root exudates Phytochelatins (PCs) (desGly-PC2 and Oxidized Glutathione) which may lead to formation of SiNPs=As(III)-PCs complexes and sequestration of As in the plant biomass. Moreover, SiNPs may alleviate Arsenic stress by serving as co-enzymes that activate the antioxidant-defensive mechanisms of the shoot and root. Thus, above 70%, most reactive ROS (OH) were scavenged, which was evident in the reduced MDA content that strengthened the plasma membrane to support selective ion absorption of SiNPs in place of Arsenic. We conclude that SiNPs can alleviate As stress through sequestration with PCs, improve root hydraulic conductance, antioxidant activity, and membrane stability in maize plants, and could be a potential tool to promote heavy metal stress resilience in the field.


Assuntos
Arsênio , Metais Pesados , Nanopartículas , Animais , Arsênio/metabolismo , Silício/farmacologia , Zea mays/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Fitoquelatinas/metabolismo , Nanopartículas/química , Solo
17.
Sci Rep ; 14(1): 6904, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519574

RESUMO

Early life exposure to environmental pollutants such as arsenic (As) can increase the risk of cancers in the offspring. In an earlier study, we showed that only prenatal As exposure significantly increases epidermal stem cell proliferation and accelerates skin tumorigenesis in BALB/c mouse offspring. In the present work, we have examined the role of As-conditioned dermal fibroblasts (DFs) in creating pro-tumorigenic niches for Keratinocyte stem cells (KSCs) in the offspring. DFs isolated from prenatally exposed animals showed increased levels of activation markers (α-SMA, Fibronectin, Collagen IV), induction of ten-eleven translocation methylcytosine dioxygenase 1(TET1), and secreted high levels of niche modifying IL-6. This led to enhanced proliferation, migration, and survival of KSCs. Increased IL-6 production in As-conditioned fibroblast was driven through TET1 mediated 5-mC to 5-hmC conversion at -698/-526 and -856/-679 region on its promoter. IL-6 further acted through downstream activation of JAK2-STAT3 signaling, promoting epithelial-to-mesenchymal transition (EMT) in KSCs. Inhibition of pSTAT3 induced by IL-6 reduced the EMT process in KSCs resulting in a significant decrease in their proliferation, migration, and colony formation. Our results indicate that IL-6 produced by prenatally conditioned fibroblasts plays a major role in regulating the KSC niche and promoting skin tumor development in As-exposed offspring.


Assuntos
Arsênio , Interleucina-6 , Camundongos , Feminino , Gravidez , Animais , Queratinócitos/metabolismo , Transdução de Sinais/fisiologia , Fibroblastos/metabolismo , Proteínas de Ligação a DNA , Proteínas Proto-Oncogênicas/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(13): e2314261121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513094

RESUMO

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.


Assuntos
Arsênio , Poluentes do Solo , Oligoelementos , Arsênio/metabolismo , Oligoelementos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
19.
J Environ Manage ; 355: 120440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437740

RESUMO

The best solution to address environmental pollution caused by arsenic-containing hazardous waste is to prepare high-purity elemental arsenic from such waste. The key to this approach lies in the efficient separation of arsenic from various impurities. This paper presents a viable solution for producing high-purity elemental arsenic from arsenic-alkali slag, and the keylies in utilizing the selective precipitation of magnesium ammonium arsenate (MgNH4AsO4) to achieve efficient separation of arsenic from alkali, antimony, and other impurities. Thermodynamic analysis and hydrometallurgical condition experiments indicate that in complex alkaline arsenic-containing solutions, over 90% of arsenic components can selectively precipitate in the form of MgNH4AsO4. The content of arsenic in the resulting precipitate reaches approximately 30%, while the content of antimony is below 0.1%. This achieves efficient enrichment of arsenic and preliminary separation of impurities in complex arsenic-alkali slag. Thermodynamic analysis and pyrometallurgical condition experiments demonstrate that the precipitate of MgNH4AsO4 can be reduced to elemental arsenic with an arsenic content reaching 99.85%, and an antimony content as low as 0.05%. This achieves a profound separation of arsenic from impurities. Based on the research presented in this paper, a production line was established that enables the deep resource utilization of arsenic-alkali slag.


Assuntos
Arsênio , Arsênio/análise , Antimônio , Álcalis , Resíduos Industriais/análise
20.
Environ Monit Assess ; 196(4): 333, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430282

RESUMO

The Doce River Basin (DRB) suffers with the adverse impacts of mining activities, due to its high level of urbanization and numerous industrial operations. In this study, we present novel insights into contaminant flow dynamics, seasonal variations, and the primary factors driving concentration levels within the region. We conducted an extensive analysis using a database sourced from the literature, which contained data on the contamination of arsenic (As) and lead (Pb) in the Doce River. Our primary aim was to investigate the patterns of As and Pb flow throughout the entire basin, their response to seasonal fluctuations, and the key parameters influencing their concentration levels. The results showed significant seasonal fluctuations in As and Pb fluxes, peaking during the rainy season. The 2015 Fundão dam breach in the DRB led to notable changes, elevating elemental concentrations, particularly As and Pb, which were subsequently transported to the Atlantic Ocean. These increased concentrations were primarily associated with iron and manganese oxides, hydroxides, and sulfates, rather than precipitation, as evidenced by regressions with low R2 values for both As (R2 = 0.07) and Pb (R2 < 0.001), concerning precipitation. The PCA analysis further supports the connection between these elements and the oxides and hydroxides of Fe and Mn. The approach employed in this study has proven to be highly effective in comprehending biogeochemical phenomena by leveraging data from the literature and could be a model for optimizing resources by capitalizing on existing information to provide valuable insights for drainage basin management, particularly during crises.


Assuntos
Arsênio , Estações do Ano , Rios , Chumbo , Monitoramento Ambiental , Óxidos , Hidróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...