Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
Dalton Trans ; 53(15): 6501-6506, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511607

RESUMO

In the crystals of alkaline earth metal compounds strontium and barium with the non-steroidal anti-inflammatory drug nimesulide, the strontium cation is nine-coordinated with a distorted tricapped trigonal prismatic geometry TCTPR-9, whereas the ten-coordinated barium ion exhibits a distorted tetracapped trigonal prismatic geometry TCTPR-10.


Assuntos
Metais Alcalinoterrosos , Estrôncio , Sulfonamidas , Bário/química , Estrôncio/química , Metais Alcalinoterrosos/química , Anti-Inflamatórios não Esteroides
2.
J Environ Manage ; 356: 120735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537474

RESUMO

The co-combustion of sewage sludge (SS) and coal slime (CS) is a preferred method for their resource utilization, however, alkali and alkaline earth metals (AAEMs) in SS may affect the co-combustion process. In this work, the co-combustion behavior of AAEMs-rich SS and CS was investigated in terms of combustion characteristics, interactions, and combustion kinetics using a thermogravimetric analyzer. Further, the role of AAEMs in co-combustion was evaluated by loading Ca, K, Na, and Mg individually after pickling. The results revealed that co-combustion compensated for the limitations of the individual combustion processes, with SS reducing ignition and burnout temperatures and CS improving the comprehensive combustion characterization. Principal component analysis (PCA) showed that the effect of CS on co-combustion was more significant compared to SS. Significant synergies were observed in the weight loss phase of fixed carbon in the blends with 40%, 50%, and 60% CS ratios, where the peak temperature of fixed carbon combustion was reduced by 9.8 °C, 12.6 °C, and 13.1 °C, respectively, compared to the theoretical values. The effects of AAEMs on combustion were as follows: all AAEMs promoted the precipitation of volatiles except Ca, which showed inhibition of light volatiles; AAEMs had a significant catalytic effect on fixed carbon combustion. The improvement effect of AAEMs on the comprehensive combustion characteristics during co-combustion was Na > K > Mg > Ca. The catalytic effect of Na on fixed carbon was strongest at a loading of 5%, leading to a decrease in the apparent activation energy of fixed carbon combustion by 22.2 kJ/mol and a change in reactor order from n = 1 to n = 1.2 during co-combustion. This work provides a better understanding of the role of AAEMs in SS-CS co-combustion.


Assuntos
Carvão Mineral , Esgotos , Carvão Mineral/análise , Metais Alcalinoterrosos , Cinética , Álcalis , Carbono
3.
J Environ Manage ; 351: 119669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048710

RESUMO

To achieve the resource utilization of edible fungi residue and obtain efficient adsorbents for treating dyeing wastewater, biochars were prepared from mushroom residue (MR) with the introduction of alkaline-earth metals (AEMs) and used for methyl orange (MO) wastewater treatment. The thermal behavior of the AEM-treated MR was analyzed using thermogravimetric analysis. The physicochemical properties of the biochars obtained from AEM-treated MR (MRCs) were characterized using Fourier transform infrared spectroscopy, laser particle size analyzer, N2 adsorption/desorption, and scanning electron microscopy. The adsorption performance of MRCs on MO was also investigated. The involvement of AEMs was found to obviously move the main pyrolysis zone of MR to a low temperature region and reduce the temperature corresponding to the maximum weight loss rate and activation energy, which is highly dependent on the concentration of AEMs, the anion and cationic species of the AEMs. Moreover, the addition of AEMs resulted in a decrease in oxygen-containing functional groups (-OH, CO, or C-O), a weakening of surface negative charges, an enhancement in aromatic functional groups, and an increase in specific surface area of the MRCs. The adsorption performance of MO on MRCs was significantly improved with the introduction of AEMs as well. Among them, MR pre-treated with 5 mmol/g MgCl2 (MR-MgCl2-5) shows the lowest temperature corresponding to the maximum weight loss rate and the lowest activation energy of 278.52 °C and 4.28 kJ/mol, respectively. The biochar prepared from MR-MgCl2-5 under 400 °C (MR-MgCl2-5-400C) has the weakest surface negative charge and the highest adsorption capacity for MO. The adsorption isotherms, adsorption kinetics, and thermodynamic analysis results showed that the adsorption of MO on MR-MgCl2-5-400C was a spontaneous, chemically dominant monolayer adsorption, with a theoretical maximum adsorption capacity of 81.30 mg/g. This study suggests that AEMs treatment, especially with 5 mmol/g MgCl2, can readily transform edible fungi residue into a low-cost, high-efficient dyeing wastewater adsorbent.


Assuntos
Agaricales , Compostos Azo , Metacrilatos , Sulfonas , Poluentes Químicos da Água , Adsorção , Águas Residuárias , Metais Alcalinoterrosos , Carvão Vegetal/química , Espectroscopia de Infravermelho com Transformada de Fourier , Redução de Peso , Cinética , Poluentes Químicos da Água/química
4.
Sci Total Environ ; 892: 164462, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37263441

RESUMO

As water scarcity drives the use of more saline water sources, contaminant fate and transport models must capture the impact of high concentrations of alkaline earth metal ions (AEMs) and background electrolytes in these more complex waters. By utilizing macroscopic adsorption data from various electrolyte systems, a Charge Distribution - Multisite Complexation (CD-MUSIC) model, capable of incorporating electrolyte adsorption, was able to accurately simulate the adsorption behavior of alkaline earth metal ions onto goethite. The modeling effort was guided by previous spectroscopic and surface complexation modeling of alkaline earth metal adsorption and built on previous CD-MUSIC modeling that accounted for changes in crystal face contributions to the surface site density as a function of specific surface area. The model was constrained to consider only two dominant surface complex species for each metal ion adsorption reaction. These two species were selected from 44 possible species through objective curve fitting of single-solute macroscopic adsorption data. While most of the alkaline earth metal surface complexes formed outer-sphere complexes at the goethite surface, an inner-sphere species was utilized for Mg2+. With the surface complex species and equilibrium constants obtained from this study, the calibrated model successfully predicted alkaline earth metal ion adsorption over a wide range of solution and surface conditions; the model predictions encompassed a wide range of pH (5-11), solute/solid ratio (1.37 × 10-5- 8.33 × 10-4 mol-solute/g-solid), ionic strengths (0.01 M - 0.7 M), and background electrolytes (Na+, Cs+, Rb+, Cl-, and NO3-) using the same crystal face contribution methodology for site density, capacitance values, and surface acidity constants adopted for proton and cadmium adsorption in previous work (Han and Katz, 2019). Model simulations for a range of background water chemistries demonstrated the potential for Mg2+ to reduce Cd2+ adsorption to goethite in model seawater and oil- and gas-produced waters.


Assuntos
Compostos de Ferro , Música , Adsorção , Minerais/química , Compostos de Ferro/química , Íons , Metais Alcalinoterrosos
5.
J Mol Graph Model ; 123: 108505, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220700

RESUMO

In this study, nine new electron rich compounds are presented, and their electronic, geometrical, and nonlinear optical (NLO) characteristics have been investigated by using the Density functional theory. The basic design principle of these compounds is placing alkaline earth metal (AEM) inside and alkali metal (AM) outside the hexaammine complexant. The properties of nine newly designed compounds are contrasted with the reference molecule (Hexaammine). The effect of this doping on Hexaamine complexant is explored by different analyses such as electron density distribution map (EDDM), frontier molecular orbitals (FMOs), density of states (DOS) absorption maximum (λmax), hyperpolarizabilities, dipole moment, transition density matrix (TDM). Non-covalent interaction (NCI) study assisted with isosurfaces has been accomplished to explore the vibrational frequencies and types of synergy. The doping of hexaammine complexant with AM and AEM significantly improved its characteristics by reducing values of HOMO-LUMO energy gaps from 10.7eV to 3.15eV compared to 10.7 eV of hexaammine. The polarizability and hyperpolarizability (αo and ßo) values inquisitively increase from 72 to 919 au and 4.31 × 10-31 to 2.00 × 10-27esu respectively. The higher values of hyperpolarizability in comparison to hexaammine (taken as a reference molecule) are credited to the presence of additional electrons. The absorption profile of the newly designed molecules clearly illustrates that they are highly accompanied by higher λmax showing maximum absorbance in red and far-red regions ranging from 654.07 nm to 783.94 nm. These newly designed compounds have superior outcomes having effectiveness for using them as proficient NLO materials and have a gateway for advanced investigation of more stable and highly progressive NLO materials.


Assuntos
Álcalis , Metais Alcalinoterrosos , Modelos Moleculares , Conformação Molecular
6.
J Biomed Mater Res B Appl Biomater ; 111(7): 1447-1474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883838

RESUMO

Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.


Assuntos
Metais Alcalinoterrosos , Osteogênese , Cálcio , Osso e Ossos , Magnésio , Engenharia Tecidual , Tecidos Suporte , Regeneração Óssea , Diferenciação Celular
7.
J Mater Chem B ; 11(15): 3295-3306, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36960847

RESUMO

Metal ions widely exist in biological systems and participate in many vital biochemical processes. Monitoring and analyzing metal ions in biological systems can help reveal physiological processes and understand disease causes. There are various detection methods for metal ions, among which organic small-molecule fluorescent probes have significant advantages, such as high fluorescence quantum yield, easy modification, good biocompatibility, high sensitivity, and fast real-time detection. This review presents recent studies on fluorescent probes for alkali and alkaline earth metal ions (including Na+, K+, Ca2+, and Mg2+) in biological systems. All the candidates are organized according to their structures, and the sensing mechanisms of fluorescent probes are also highly taken into account. Finally, the challenges, trends and prospects of fluorescent probes in metal ion detection are discussed. We hope that this review can provide guidance for the development of fluorescent molecular probe-based alkali and alkaline earth metal ion detection methods in the future.


Assuntos
Álcalis , Corantes Fluorescentes , Corantes Fluorescentes/química , Metais Alcalinoterrosos/química , Íons , Metais
8.
J Mol Graph Model ; 120: 108403, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669273

RESUMO

Finding and developing effective targeted drug delivery systems has emerged as an attractive approach for treating a wide range of diseases. In the present study, the potential of alkaline earth metal functionalized porphyrin-like porous C24N24 fullerenes for delivering 5-fluorouracil (5FU) anticancer drug is assessed using density functional theory calculations. The goal is to evaluate how the addition of alkaline earth metals to C24N24 enhances the adsorption capabilities of this system towards 5FU drug. The adsorption energies and charge transfers are determined in order to evaluate the strength of the interaction between the 5FU and fullerene surfaces. According to the results, adding alkaline earth metals increases the drug's adsorption energy on the C24N24 fullerene. In all cases, the drug molecule interacts with the metal atom through its CO group. Furthermore, the adsorption strength of the 5FU increases with metal atom size (Ca > Mg > Be), which is connected to the polarizability of these atoms. The adsorption energies of 5FU are shown to be highly sensitive on solvent effects and the acidity of the environment. The adsorption strength of 5FU decreases within the solvent (water), allowing it to be released more easily. The moderate adsorption energies and short desorption times of 5FU imply that it is reversibly adsorbed on the functionalized fullerenes.


Assuntos
Antineoplásicos , Fulerenos , Porfirinas , Fulerenos/uso terapêutico , Porosidade , Antineoplásicos/uso terapêutico , Fluoruracila , Metais , Metais Alcalinoterrosos , Solventes
9.
J Am Chem Soc ; 145(1): 216-223, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541447

RESUMO

Protein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination. However, Cys and His residues favor interactions with soft and borderline metal ions, such as Au+ and Zn2+, classified by the hard and soft acids and bases concept, restricting the types of metal ions available to drive association. Here, we show the alkaline earth (AE) metal-dependent association of the recently designed artificial protein nanocage TIP60, which is composed of 60-mer fusion proteins. The introduction of a Glu (hard base) mutation to the fusion protein (K67E mutant) prevented the formation of the 60-mer but formed the expected cage structure in the presence of Ca, Sr, or Ba ions (hard acids). Cryogenic electron microscopy (cryo-EM) analysis indicated a Ba ion at the interface of the subunits. Furthermore, we demonstrated the encapsulation and release of single-stranded DNA molecules using this system. Our results provide insights into the design of AE metal-dependent association and dissociation mechanisms for proteins.


Assuntos
Metais Alcalinoterrosos , Metais , Metais Alcalinoterrosos/química , Metais/química , Íons , DNA de Cadeia Simples
10.
Water Res ; 229: 119409, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462258

RESUMO

High levels of alkali and alkaline earth metals (AAEM, including K, Na, Ca, and Mg) in sludge needs to be removed in pretreatment process for alleviating adverse effects on subsequent disposal. Theoretically, the liquid environment provided by the pretreatment technology of thermal hydrolysis (TH) is the ideal condition for the dissolution of AAEM. Therefore, this work quantified AAEM removal efficiency of TH and carbonaceous skeleton (CSkel) assisted TH that we previously proposed for sludge dewatering. Then the mechanism of AAEM dissociating from sludge was explored through the new perspective of biological structure evolution and chemical species transformation. The results showed that all of the AAEM in raw sludge was trapped in extracellular polymer substances (EPS) and cells. Only the water-soluble K/Na in EPS could be released by TH to the supernatant, the residual K/Na in EPS was organically linked with humic matters that were generated through the degradation of proteins. Water/NH4Ac-soluble K/Na in cells still stayed inside with a more stable form of HCl-soluble after TH. Fortunately, with the assistance of CSkel, this part of K/Na could be leached out due to organic acids derived from hemicellulose decomposition. In such a case, the removal efficiency of K/Na was elevated to 55.5% and 72.5%, respectively. Unlike K/Na, nearly all the Ca/Mg in EPS were transferred to cell residuals during TH. They were combined with the bio-phosphorus in cell residuals as the form of HCl-soluble Ca/Mg-P precipitates, rather than carbonates, sulfates or other compounds. This precipitation reaction was also moderately suppressed in CSkel-assisted TH with low pH, then 7.7% and 34.1% of Ca/Mg were taken away by filtrate. This means that appropriately raising the reaction temperature and adding CSkel with high hemicellulose/cellulose contents can promote the removal of AAEM in sludge during TH process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Álcalis , Hidrólise , Metais Alcalinoterrosos , Água/química
11.
Luminescence ; 38(7): 1307-1318, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36349979

RESUMO

In the present work, the physical properties of alkali-earth metal and transition metal hydroxides are comprehensively investigated using the density functional theory. Here, the alkali-earth metals Ca, Mg, and transition metals Cd, Zn are considered from the II-A and II-B groups in the periodic table of elements. The first principle electronic structure calculations show that these bulk hydroxide materials are direct band gap material. Ca(OH)2 and Mg(OH)2 exhibit an insulating behavior with a very large band gap. However, Cd(OH)2 and Zn(OH)2 are found to be wide band gap semiconductors. The dielectric and optical studies reveal that these materials have a high degree of anisotropy. Hence, the light propagation in these materials behaves differently in the direction perpendicular and parallel to the optical axis, and exhibits birefringence. Therefore, these materials may be useful for optical communication. The calculated electron energy loss suggests that these materials can also be used for unwanted signal noise suppression. The wide band gap makes them useful for high-power applications. Moreover, Ca(OH)2 and Mg(OH)2 are found to be suitable for dielectric medium.


Assuntos
Cádmio , Hidróxidos , Hidróxidos/química , Metais Alcalinoterrosos/química , Eletrônica
12.
Adv Sci (Weinh) ; 9(27): e2202811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35871554

RESUMO

Ammonia recently has gained increasing attention as a carrier for the efficient and safe usage of hydrogen to further advance the hydrogen economy. However, there is a pressing need to develop new ammonia synthesis techniques to overcome the problem of intense energy consumption associated with the widely used Haber-Bosch process. Chemical looping ammonia synthesis (CLAS) is a promising approach to tackle this problem, but the ideal redox materials to drive these chemical looping processes are yet to be discovered. Here, by mining the well-established MP database, the reaction free energies for CLAS involving 1699 bicationic inorganic redox pairs are screened to comprehensively investigate their potentials as efficient redox materials in four different CLAS schemes. A state-of-the-art machine learning strategy is further deployed to significantly widen the chemical space for discovering the promising redox materials from more than half a million candidates. Most importantly, using the three-step H2 O-CL as an example, a new metric is introduced to determine bicationic redox pairs that are "cooperatively enhanced" compared to their corresponding monocationic counterparts. It is found that bicationic compounds containing a combination of alkali/alkaline-earth metals and transition metal (TM)/post-TM/metalloid elements are compounds that are particularly promising in this respect.


Assuntos
Metaloides , Elementos de Transição , Álcalis , Amônia/química , Ensaios de Triagem em Larga Escala , Hidrogênio/química , Metais Alcalinoterrosos , Oxirredução
13.
Bioresour Technol ; 358: 127403, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35654322

RESUMO

Knowing the effect of specific alkali and alkali earth metals forms is vital for the high-efficient gasification of biomass. This work developed a two-step leaching method to pretreat cornstalk, dividing the inorganic metals into water-soluble (K+, 74 wt%), acid-soluble (Al3+, Ca2+, Fe2+, etc) and insoluble (Si4+) substances. The water-soluble K+ was mainly in KCl form, the acid-soluble metals were removed in phosphates and sulfates forms. The rapid gasification properties of raw material, water leaching residue and acid leaching residue indicated that KCl was the key factor to enhance the hydrogen yield and gasification efficiency. Apart from K+, the alkali earth metals (Ca2+, Mg2+) also had a little catalytic effect on producing hydrogen. When the feedstock was out of metal cations, the syngas was mainly composed of CO. The basic ions to acid ions ratio was linearly related to the syngas quality, which could conduct the flux additives.


Assuntos
Gases , Vapor , Álcalis , Biomassa , Hidrogênio , Metais , Metais Alcalinoterrosos , Água
14.
Phys Chem Chem Phys ; 24(20): 12121-12125, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545953

RESUMO

Microhydrated H2-tagged ion pairs (Ca2+, AcO-)(H2O)n=0-8 and (Ba2+, AcO-)(H2O)n=0-5 are investigated by IR photodissociation laser spectroscopy and DFT-D frequency calculations. The detailed picture of the first steps of ion dissociation reveals two mechanisms, where water molecules promote dissociation either directly or indirectly depending on the nature of the cation.


Assuntos
Metais Alcalinoterrosos , Água , Ácidos Carboxílicos , Cátions , Metais Alcalinoterrosos/química , Água/química
15.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335196

RESUMO

The preparation and characterization of products of the photochemical and thermochemical rearrangements of 19-membered azoxybenzocrowns with two, bulky, tert-butyl substituents in benzene rings in the para positions to oligooxyethylene fragments (meta positions to azoxy group, i.e., t-Bu-19-Azo-O have been presented. In photochemical rearrangement, two colored typical products were expected, i.e., 19-membered o-hydroxy-m,m'-di-tert-butyl-azobenzocrown (t-Bu-19-o-OH) and 19-membered p-hydroxy-m,m'-di-tert-butyl-azobenzocrown (t-Bu-19-p-OH). In experiments, two colored atypical macrocyclic derivatives, one 6-membered and one 5-membered ring, bearing an aldehyde group (t-Bu-19-al) or intramolecular ester group (t-Bu-20-ester), were obtained. Photochemical rearrangement led to one more macrocyclic product being isolated and identified: a 17-membered colorless compound, without an azo moiety, t-Bu-17-p-OH. The yield of the individual compounds was significantly influenced by the reaction conditions. Thermochemical rearrangement led to t-Bu-20-ester as the main product. The structures of the four crystalline products of the rearrangement-t-Bu-19-o-OH, t-Bu-19-p-OH, t-Bu-20-ester and t-Bu-17-p-OH-were determined by the X-ray method. Structures in solution of atypical derivatives (t-Bu-19-al and t-Bu-20-ester) and t-Bu-19-p-OH were defined using NMR spectroscopy. For the newly obtained hydroxyazobenzocrowns, the azo-phenol⇄quinone-hydrazone tautomeric equilibrium was investigated using spectroscopic methods. Complexation studies of alkali and alkaline earth metal cations were studied using UV-Vis absorption spectroscopy. 1H NMR spectroscopy was additionally used to study the cation recognition of metal cations. Cation binding studies in acetonitrile have shown high selectivity towards calcium over magnesium for t-Bu-19-o-OH.


Assuntos
Ésteres , Metais Alcalinoterrosos , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Quinonas
16.
Waste Manag ; 137: 190-199, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794037

RESUMO

A significant amount of chlorine, and alkali and alkaline earth metal (AAEM) in food waste has been a major limitation to the utilization of food waste as fuel. The present study aims to investigate the behavior of chlorine and AAEM in food waste biochar during pyrolysis, demineralization, and combustion. Food waste compost (FWC) and food waste feedstock (FWF) were selected as raw materials. Three different pyrolysis temperatures from 300 to 500 °C and two demineralization processes, water and CO2-saturated water, were employed. As the pyrolysis temperature increased, crystallized salt was removed through demineralization, which further increased the heating value. Effective removal of chlorine was demonstrated in both demineralization methods. During demineralization, re-adsorption of Ca on food waste biochar occurred, which was alleviated by CO2-water demineralization. The total amounts of volatilized Cl and AAEM after CO2-water demineralization were reduced by 74.79-99.38% for FWF and 98.34-99.9% for FWC compared to raw biochar. Furthermore, slagging and fouling potentials for all food waste biochar samples were estimated using various indices. The proposed behavior of Cl and AAEM in food waste biochar during various fabrication conditions provides insight into how food waste biochar can be applied in thermos-electric power plant for co-firing with coal.


Assuntos
Cloro , Eliminação de Resíduos , Álcalis , Carvão Vegetal , Alimentos , Metais Alcalinoterrosos
17.
Chemosphere ; 291(Pt 1): 132785, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34742758

RESUMO

Hydrothermal carbonization (HTC) can improve biomass quality in both physical and chemical aspects for energy application. This study aims to investigate the characteristics and reactivities of rape straw (RS) hydrochars. Hydrochars were prepared at 160-240 °C with residence time of 15-120 min. Mass yield, energy yield, microstructure, functional group and migration of alkali and alkaline earth metals (AAEMs) were studied to evaluate the influence of different conditions on properties of hydrochar. The results showed that O/C and H/C ratio decreased, while the higher heating value (HHV) increased with increasing temperature and residence time. The effect of increasing temperature on hydrochar properties was more significant than residence time. The structure was changed, and hydrochar possessed a more stable form after the aromatization reaction. For the gasification reactivity of hydrochar, decomposition rate curves showed that the peak of pyrolysis and gasification moved to a higher temperature region with the increasing of HTC temperature because of the developed aromatic structures in hydrochar. The pyrolysis activation energy decreased from raw RS 71.68 to 41.03 kJ/mol in 240 °C, while gasification activation energy increased from 80.42 to 251.30 kJ/mol. Moreover, it was found that HTC can reduce the content of AAEMs efficiently and the best removal condition is 200 °C. Ca content dropped to a minimum value at 200 °C and then increased at higher temperature which may be caused by well-developed pore structure in hydrochars. This study provides basic data for comprehensive utilization of rape straw and migration mechanism of AAEMs in HTC process.


Assuntos
Carbono , Calefação , Biomassa , Metais Alcalinoterrosos , Temperatura
18.
J Biomol Struct Dyn ; 40(19): 8796-8807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34029502

RESUMO

Permeation and selectivity of alkaline metal atoms and ions through normal and defected hexagonal boron nitride is explored in the presence and absence of water. The defects include one (VB and VN), two (VBN) and three atoms (VB(2N) and VN(2B)) vacancies. The barriers are obtained by scanning potential energy surface for the movement of alkaline earth metal atoms and ions through the nanosheet. The size and morphology of defects in h-BN sheet significantly affect the energy barrier. h-BN sheet with VN defect possess good Be/Be2+ selectivity. Permeation of Be atoms through VBN-h-BN, VB(2N)-h-BN and VN(2B)-h-BN is a barrierless process. Mostly, the permeation barriers are reduced in the presence of water molecule for Be, Ca and Ca2+. The effect of water molecule is more pronounced on the permeation of Ca atom and ion through normal and defected h-BN sheet as compared to smaller alkaline earth metal atoms and ions. The study can be extended to investigate the separation capability of porous hexagonal boron nitride nanosheet for other metal atoms and ions. HighlightsPermeability of pristine and vacancy defected h-BN nanosheet is studied for alkaline earth metal atoms and ions.Increase in pore size and applied electric field decrease the permeation barriers for alkaline earth metal atoms and ions.VN h-BN sheet possess good Be/Be2+ selectivity.Permeation of Be atoms through VBN-h-BN, VB(2N)-h-BN and VN(2B)-h-BN is a barrierless process.Permeation barriers are reduced in the presence of water molecule for Be, Ca and Ca2+.Communicated by Ramaswamy H. Sarma.


Assuntos
Compostos de Boro , Boro , Metais Alcalinoterrosos , Água , Metais
19.
Dalton Trans ; 50(47): 17438-17454, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34766180

RESUMO

With the steady development of metal-organic framework (MOF) materials, this peculiar class of three-dimensional materials has found application prospects in a myriad of areas. The integration of different metals with various categories of ligands engendered a full gamut of frameworks, which of course are supplemented by diversified modification methods. Amongst many metal centers utilized to design and synthesize targeted MOFs, alkali/alkaline earth metal-based MOFs are gaining significant attention because these metal centers can be regarded as human endogenous metals. Numerous studies have shown that alkali/alkaline earth metal MOFs (A/A-E MOFs) tend to have better properties than other metals. This is because A/A-E MOFs offer better biocompatibility, so it is expected to be used in a broader field of biomedicine in the near future. This review mainly introduces the application of A/A-E MOF materials in drug delivery, sensing, and some materials with unique biomedical applications, and elaborates the challenges, obstacles and development of some A/A-E MOF materials in the biomedical field.


Assuntos
Materiais Biocompatíveis/química , Pesquisa Biomédica , Estruturas Metalorgânicas/química , Metais Alcalinos/química , Metais Alcalinoterrosos/química , Sistemas de Liberação de Medicamentos , Humanos
20.
J Phys Chem B ; 125(44): 12135-12146, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34706195

RESUMO

To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.


Assuntos
Guanina , Fosfatos , Ânions , Íons , Metais Alcalinoterrosos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...