Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
Physiol Rep ; 11(21): e15822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923389

RESUMO

We have investigated the elimination of inert gases in the lung during the elimination of nitrous oxide (N2 O) using a two-step mathematical model that allows the contribution from net gas volume expansion, which occurs in Step 2, to be separated from other factors. When a second inert gas is used in addition to N2 O, the effect on that gas appears as an extra volume of the gas eliminated in association with the dilution produced by N2 O washout in Step 2. We first considered the effect of elimination in a single gas-exchanging unit under steady-state conditions and then extended our analysis to a lung having a log-normal distribution of ventilation and perfusion. A further increase in inert gas elimination was demonstrated with gases of low solubility in the presence of the increased ventilation-perfusion mismatch that is known to occur during anesthesia. These effects are transient because N2 O elimination depletes the input of that gas from mixed venous blood to the lung, thereby rapidly reducing the magnitude of the diluting action.


Assuntos
Gases , Troca Gasosa Pulmonar , Relação Ventilação-Perfusão , Pulmão , Gases Nobres , Modelos Biológicos
2.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887324

RESUMO

Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Humanos , Neuroproteção , Gases Nobres/farmacologia , Gases Nobres/uso terapêutico , Gases , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Neurônios
3.
Sci Rep ; 13(1): 16896, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803128

RESUMO

Recently, noble gas has become a hot spot within the medical field like respiratory organ cerebral anemia, acute urinary organ injury and transplantation. However, the shield performance in cerebral ischemia-reperfusion injury (CIRI) has not reached an accord. This study aims to evaluate existing evidence through meta-analysis to determine the effects of inert gases on the level of blood glucose, partial pressure of oxygen, and lactate levels in CIRI. We searched relevant articles within the following both Chinese and English databases: PubMed, Web of science, Embase, CNKI, Cochrane Library and Scopus. The search was conducted from the time of database establishment to the end of May 2023, and two researchers independently entered the data into Revman 5.3 and Stata 15.1. There were total 14 articles were enclosed within the search. The results showed that the amount of partial pressure of blood oxygen in the noble gas cluster was beyond that in the medicine gas cluster (P < 0.05), and the inert gas group had lower lactate acid and blood glucose levels than the medical gas group. The partial pressure of oxygen (SMD = 1.51, 95% CI 0.10 ~ 0.91 P = 0.04), the blood glucose level (SMD = - 0.59, 95% CI - 0.92 ~ - 0.27 P = 0.0004) and the lactic acid level (SMD = - 0.42, 95% CI - 0.80 ~ - 0.03 P = 0.03) (P < 0.05). These results are evaluated as medium-quality evidence. Inert gas can effectively regulate blood glucose level, partial pressure of oxygen and lactate level, and this regulatory function mainly plays a protective role in the small animal ischemia-reperfusion injury model. This finding provides an assessment and evidence of the effectiveness of inert gases for clinical practice, and provides the possibility for the application of noble gases in the treatment of CIRI. However, more operations are still needed before designing clinical trials, such as the analysis of the inhalation time, inhalation dose and efficacy of different inert gases, and the effective comparison of the effects in large-scale animal experiments.


Assuntos
Glicemia , Traumatismo por Reperfusão , Animais , Gases Nobres , Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Lactatos
4.
J Environ Radioact ; 270: 107281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651771

RESUMO

An understanding of anthropogenic sources of radioactive noble gases in the atmosphere is needed to enhance the discrimination ability of the International Monitoring System's sensors. These sources include commercial and research nuclear reactors and medical isotope production facilities. While abiding by local environmental ordinances these facilities all emit noble gas radioisotopes through normal operation. This research presents measurements and analysis of noble gas isotopes (41Ar, 135Xe, 135mXe, 137Xe, 138Xe, 87Kr, 88Kr, and 89Kr) made directly at the stack of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The Xe and Kr noble gases are concurrently observed with 41Ar, a neutron activation product, when the reactor is operational. The magnitude of the Xe and Kr noble gases released is not constant over the HFIR cycle, but they temporally match the 41Ar trend. An isotope activity ratio analysis of these shorter lived isotopes combined with the observation of the cycle's temporal trend helps understand the noble gas production mechanism at the HFIR. Isotopes with short half-lives are not useful for long-range environmental monitoring. However, these measurements could potentially be combined with atmospheric modeling to predict the background source term of the longer-lived Xe ratios at a monitoring station.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Radioisótopos de Xenônio/análise , Gases Nobres , Radioisótopos
5.
Biochemistry ; 62(11): 1659-1669, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37192381

RESUMO

Noble gases have well-established biological effects, yet their molecular mechanisms remain poorly understood. Here, we investigated, both experimentally and computationally, the molecular modes of xenon (Xe) action in bacteriophage T4 lysozyme (T4L). By combining indirect gassing methods with a colorimetric lysozyme activity assay, a reversible, Xe-specific (20 ± 3)% inhibition effect was observed. Accelerated molecular dynamic simulations revealed that Xe exerts allosteric inhibition on the protein by expanding a C-terminal hydrophobic cavity. Xe-induced cavity expansion results in global conformational changes, with long-range transduction distorting the active site where peptidoglycan binds. Interestingly, the peptide substrate binding site that enables lysozyme specificity does not change conformation. Two T4L mutants designed to reshape the C-terminal Xe cavity established a correlation between cavity expansion and enzyme inhibition. This work also highlights the use of Xe flooding simulations to identify new cryptic binding pockets. These results enrich our understanding of Xe-protein interactions at the molecular level and inspire further biochemical investigations with noble gases.


Assuntos
Muramidase , Xenônio , Xenônio/química , Xenônio/metabolismo , Muramidase/química , Gases Nobres/química , Gases Nobres/metabolismo , Sítios de Ligação , Proteínas
6.
PLoS One ; 18(4): e0282877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011053

RESUMO

We investigate the water sources for a perennial spring, "Little Black Pond," located at Expedition Fiord, Axel Heiberg Island in the Canadian High Arctic based on dissolved gases. We measured the dissolved O2 in the likely sources Phantom Lake and Astro Lake and the composition of noble gases (3He/4He, 4He, Ne,36Ar, 40Ar, Kr, Xe), N2, O2, CO2, H2S, CH4, and tritium dissolved in the outflow water and bubbles emanating from the spring. The spring is associated with gypsum-anhydrite piercement structures and occurs in a region of thick, continuous permafrost (400-600 m). The water columns in Phantom and Astro lakes are uniform and saturated with O2. The high salinity of the water emanating from the spring, about twice sea water, affects the gas solubility. Oxygen in the water and bubbles is below the detection limit. The N2/Ar ratio in the bubbles and the salty water is 89.9 and 40, respectively, and the relative ratios of the noble gases, with the exception of Neon, are consistent with air dissolved in lake water mixed with air trapped in glacier bubbles as the source of the gases. The Ne/Ar ratio is ~62% of the air value. Our results indicate that about half (0.47±0.1) of the spring water derives from the lakes and the other half from subglacial melt. The tritium and helium results indicate that the groundwater residence time is over 70 years and could be thousands of years.


Assuntos
Gases Nobres , Água , Trítio , Canadá , Hélio , Oxigênio/análise , Lagos
7.
J Magn Reson ; 348: 107387, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731353

RESUMO

Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.


Assuntos
Imageamento por Ressonância Magnética , Gases Nobres , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio , Pulmão/diagnóstico por imagem , Administração por Inalação , Previsões
8.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679728

RESUMO

The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of NO and NO2 noticeably depends on the type of inert gas; the more complex electronic configuration and the lower ionization potential of the inert gas led to increased production of NO and NO2. The formation of ozone occurs mainly due to the photolytic reaction outside the gas discharge zone. Equilibrium thermodynamic analysis showed that the formation of NO in mixtures of air with inert gases does not depend on the choice of an inert gas, while the equilibrium concentration of the NO+ ion decreases with increasing complexity of the electronic configuration of an inert gas.


Assuntos
Dióxido de Nitrogênio , Ozônio , Nitrogênio/análise , Gases Nobres/química , Análise Espectral/métodos , Lasers
9.
Med Gas Res ; 13(1): 33-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35946221

RESUMO

In a previous study, in silico screening of the binding of almost all proteins in the Protein Data Bank to each of the five noble gases xenon, krypton, argon, neon, and helium was reported. This massive and rich data set requires analysis to identify the gas-protein interactions that have the best binding strengths, those where the binding of the noble gas occurs at a site that can modulate the function of the protein, and where this modulation might generate clinically relevant effects. Here, we report a preliminary analysis of this data set using a rational, heuristic score based on binding strength and location. We report a partial prioritized list of xenon protein targets and describe how these data can be analyzed, using arginase and carbonic anhydrase as examples. Our aim is to make the scientific community aware of this massive, rich data set and how it can be analyzed to accelerate future discoveries of xenon-induced biological activity and, ultimately, the development of new "atomic" drugs.


Assuntos
Proteoma , Xenônio , Criptônio/química , Criptônio/farmacologia , Neônio/farmacologia , Gases Nobres/química , Gases Nobres/metabolismo , Xenônio/química , Xenônio/farmacologia
10.
Luminescence ; 38(7): 1087-1101, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36398418

RESUMO

Air pollution is a severe concern globally as it disturbs the health conditions of living beings and the environment because of the discharge of acetone molecules. Metal oxide semiconductor (MOS) nanomaterials are crucial for developing efficient sensors because of their outstanding chemical and physical properties, empowering the inclusive developments in gas sensor productivity. This review presents the ZnO nanostructure state of the art and notable growth, and their structural, morphological, electronic, optical, and acetone-sensing properties. The key parameters, such as response, gas detection limit, sensitivity, reproducibility, response and recovery time, selectivity, and stability of the acetone sensor, have been discussed. Furthermore, gas-sensing mechanism models based on MOS for acetone sensing are reported and discussed. Finally, future possibilities and challenges for MOS (ZnO)-based gas sensors for acetone detection have also been explored.


Assuntos
Líquidos Corporais , Nanoestruturas , Óxido de Zinco , Acetona , Reprodutibilidade dos Testes , Gases Nobres , Óxidos
11.
Biomed Res Int ; 2022: 5857979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36573196

RESUMO

The aim of the study was to assess the effect of external use of inert gases (helium and argon) on the state of free radical processes in vivo. The experiment was performed on 30 male Wistar stock rats (age-3 months, weight-200-220 g.), randomly distributed into 3 equal groups. The first group of animals was intact (n = 10). The animals of the second and third groups were treated with argon and helium streams, respectively. Our research has allowed us to establish that the studied inert gases have a modulating effect on the state of oxidative metabolism of rat blood, and the nature of this effect is directly determined by the type of gas. The results of this study allowed us to establish the potential antioxidant effect of the helium stream, mainly realized due to the activation of the catalytic properties of the enzymatic link of the antioxidant system of rat blood plasma. At the same time, the revealed features of shifts in oxidative metabolism during treatment with argon flow include not only stimulation of the antioxidant system but also the pronounced induction of free radical oxidation. Thus, the conducted studies made it possible to verify the specificity of the response of the oxidative metabolism of blood plasma to the use of inert gases, depending on their type.


Assuntos
Antioxidantes , Hélio , Masculino , Ratos , Animais , Hélio/farmacologia , Hélio/metabolismo , Argônio/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Gases Nobres/farmacologia , Radicais Livres , Estresse Oxidativo , Nitrogênio
12.
Chemphyschem ; 23(23): e202200587, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36029196

RESUMO

It is now known that the heavier noble gases (Ng=Ar-Rn) show some varying degrees of reactivity with a gradual increase in reactivity along Ar-Rn. However, because of their very small size and very high ionization potential, helium and neon are the hardest targets to crack. Although few neon complexes are isolated at very low temperatures, helium needs very extreme situations like very high pressure. Here, we find that protonated BeO, BeOH+ can bind helium and neon spontaneously at room temperature. Therefore, extreme conditions like very low temperature and/or high pressure will not be required for their experimental isolation. The Ng-Be bond strength is very high for their heavier homologs and the bond strength shows a gradual increase from He to Rn. Moreover, the Ng-Be attractive energy is almost exclusively originated from the orbital interaction which is composed of one Ng(s/pσ )→BeOH+ σ-donation and two weaker Ng(pπ )→BeOH+ π-donations, except for helium. Helium uses its low-lying vacant 2p orbitals to accept π-electron density from BeOH+ . Previously, such electron-accepting ability of helium was used to explain a somewhat stronger helium bond than neon for neutral complexes. However, the present results indicate that such π-back donations are too weak in nature to decide any energetic trend between helium and neon.


Assuntos
Hélio , Gases Nobres , Masculino , Humanos , Neônio/química , Hélio/química , Gases Nobres/química , Elétrons
13.
Nat Commun ; 13(1): 3768, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773264

RESUMO

Deep within the Precambrian basement rocks of the Earth, groundwaters can sustain subsurface microbial communities, and are targets of investigation both for geologic storage of carbon and/or nuclear waste, and for new reservoirs of rapidly depleting resources of helium. Noble gas-derived residence times have revealed deep hydrological settings where groundwaters are preserved on millions to billion-year timescales. Here we report groundwaters enriched in the highest concentrations of radiogenic products yet discovered in fluids, with an associated 86Kr excess in the free fluid, and residence times >1 billion years. This brine, from a South African gold mine 3 km below surface, demonstrates that ancient groundwaters preserved in the deep continental crust on billion-year geologic timescales may be more widespread than previously understood. The findings have implications beyond Earth, where on rocky planets such as Mars, subsurface water may persist on long timescales despite surface conditions that no longer provide a habitable zone.


Assuntos
Água Subterrânea , Microbiota , Planeta Terra , Geologia , Gases Nobres
14.
Br J Anaesth ; 129(2): 200-218, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688658

RESUMO

BACKGROUND: The noble gases argon and xenon are potential novel neuroprotective treatments for acquired brain injuries. Xenon has already undergone early-stage clinical trials in the treatment of ischaemic brain injuries, with mixed results. Argon has yet to progress to clinical trials as a treatment for brain injury. Here, we aim to synthesise the results of preclinical studies evaluating argon and xenon as neuroprotective therapies for brain injuries. METHODS: After a systematic review of the MEDLINE and Embase databases, we carried out a pairwise and stratified meta-analysis. Heterogeneity was examined by subgroup analysis, funnel plot asymmetry, and Egger's regression. RESULTS: A total of 32 studies were identified, 14 for argon and 18 for xenon, involving measurements from 1384 animals, including murine, rat, and porcine models. Brain injury models included ischaemic brain injury after cardiac arrest (CA), neurological injury after cardiopulmonary bypass (CPB), traumatic brain injury (TBI), and ischaemic stroke. Both argon and xenon had significant (P<0.001), positive neuroprotective effect sizes. The overall effect size for argon (CA, TBI, stroke) was 18.1% (95% confidence interval [CI], 8.1-28.1%), and for xenon (CA, TBI, stroke) was 34.1% (95% CI, 24.7-43.6%). Including the CPB model, only present for xenon, the xenon effect size (CPB, CA, TBI, stroke) was 27.4% (95% CI, 11.5-43.3%). Xenon, both with and without the CPB model, was significantly (P<0.001) more protective than argon. CONCLUSIONS: These findings provide evidence to support the use of xenon and argon as neuroprotective treatments for acquired brain injuries. Current evidence suggests that xenon is more efficacious than argon overall.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Parada Cardíaca , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Argônio/farmacologia , Argônio/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Gases Nobres/farmacologia , Gases Nobres/uso terapêutico , Ratos , Suínos , Xenônio/farmacologia , Xenônio/uso terapêutico
15.
Appl Spectrosc ; 76(8): 988-997, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35537200

RESUMO

This study with surrogate materials shows that laser-induced breakdown spectroscopy (LIBS) is a robust tool with promising capability toward monitoring gaseous (Xe and Kr) and aerosol (Cs and Rb) species in an off-gas stream from a molten salt reactor (MSR). MSRs will continually evolve fission products into the cover gas flowing across the reactor headspace. The cover gas entrains Xe and Kr gases, along with aerosol particles, before passing into an off-gas treatment system. Univariate models of Xe and Kr peaks showed a strong correlation to concentration indicated by their coefficients of determination of 0.983 and 0.997, respectively. Multivariate models were built for all four analytes using partial least squares regression coupled with preprocessing steps including normalization, trimming, and/or genetic algorithm derived filters. The models were evaluated by predicting the concentrations of the analytes in four validation samples, in which all calibration models were successfully validated at a confidence interval of 99.9%. Lastly, pressure controllers were used to regulate the mass flow rate of Kr flowing into the measurement cell in sinusoidal and stepwise waveforms to test the real-time monitoring capabilities of the regression models. Both univariate and partial least squares Kr models were able to successfully quantify the gas concentration in the real-time evaluation. The root mean squared error of prediction (RMSEP) values for these real-time tests were calculated to be 0.051, 0.060, and 0.121 mol% demonstrating the measurement systems' capability to perform online monitoring with acceptable accuracy.


Assuntos
Criptônio , Gases Nobres , Aerossóis , Gases , Criptônio/química , Lasers , Gases Nobres/química , Análise Espectral
16.
Sci Total Environ ; 837: 155859, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35568162

RESUMO

Due to their biological and chemical inertness, noble gases in natural waters are widely used to trace natural waters and to determine ambient temperature conditions during the last intensive contact with the atmosphere (equilibration). Noble gas solubilities are strong functions of temperature, with higher temperatures resulting in lower concentrations. Thus far, only common environmental conditions have been considered, and hence investigated temperatures have almost never exceeded 35 °C, but environmental scenarios that generate higher surface-water temperatures (such as volcanism) exist nonetheless. Recently published measurements of noble gas concentrations in Lake Kivu, which sits at the base of the Nyiragongo volcano in East Africa, unexpectedly show that the deep waters are strongly depleted in noble gases with respect to in-situ conditions, and so far no quantitative explanation for this observation has been provided. We make use of recently published noble gas solubility data at higher temperatures to investigate our hypothesis that unusually high equilibration temperatures could have caused the low measured noble gas concentrations by applying various approaches of noble gas thermometry. Noble gas concentration ratios and least squares fitting of individual concentrations indicate that the data agrees best with the assumption that deep water originates from groundwater formed at temperatures of about 65 °C. Thus, no form of degassing is required to explain the observed noble gas depletion: the deep water currently contained in Lake Kivu has most probably never experienced a large scale degassing event. This conclusion is important as limnic eruptions were feared to threaten the lives of the local population.


Assuntos
Lagos , Termometria , África Oriental , Gases Nobres/análise , Temperatura , Água
17.
Undersea Hyperb Med ; 49(2): 207-226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580488

RESUMO

Inert gas bubbles in tissues and in blood have been historically considered as the only triggering factors for DCS, but now many other factors are considered to affect the final outcome of a decompression profile for a certain individual. In this sense, inflammation seems to play a relevant role, not only due to the physical damage of tissues by the bubbles, but as a potentiator of the process as a whole. The present study aims to put forward a mathematical model of bubble formation associated with an inflammatory process related to decompression. The model comprises four state-variables (inert gas pressure, inert gas bubbles, proinflammatory and inflammatory factors) in a set of non-linear differential equations. The model is non-extensive: inert gas transitions between liquid and gaseous phases do not change the concentration of the dissolved gas. The relationship between bubbles and inflammation is given through parameters that form a positive feedback loop. The results of the model were compared with the experimental results of echocardiography from volunteers in two dive/decompression profiles; the model shows a very good agreement with the empirical data and previews different inflammatory outcomes for different experimental profiles. We suggest that slight changes in the parameters' values might turn the simulations from a non-inflammatory to an inflammatory profile for a given individual. Therefore, the present model might help address the problem of DCS on a particular basis.


Assuntos
Doença da Descompressão , Mergulho , Descompressão , Doença da Descompressão/etiologia , Gases , Humanos , Inflamação , Gases Nobres
18.
J Chem Inf Model ; 62(5): 1318-1327, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35179902

RESUMO

Argon belongs to the group of chemically inert noble gases, which display a remarkable spectrum of clinically useful biological properties. In an attempt to better understand noble gases, notably argon's mechanism of action, we mined a massive noble gas modeling database which lists all possible noble gas binding sites in the proteins from the Protein Data Bank. We developed a method of analysis to identify among all predicted noble gas binding sites the potentially relevant ones within protein families which are likely to be modulated by Ar. Our method consists in determining within structurally aligned proteins the conserved binding sites whose shape, localization, hydrophobicity, and binding energies are to be further examined. This method was applied to the analysis of two protein families where crystallographic noble gas binding sites have been experimentally determined. Our findings indicate that among the most conserved binding sites, either the most hydrophobic one and/or the site which has the best binding energy corresponds to the crystallographic noble gas binding sites with the best occupancies, therefore the best affinity for the gas. This method will allow us to predict relevant noble gas binding sites that have potential pharmacological interest and thus potential Ar targets that will be prioritized for further studies including in vitro validation.


Assuntos
Gases Nobres , Proteínas , Argônio/química , Sítios de Ligação , Bases de Dados de Proteínas , Gases Nobres/metabolismo , Proteínas/química
19.
Sci Total Environ ; 824: 153835, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176379

RESUMO

Geological storage of carbon dioxide (CO2) is an integral component of cost-effective greenhouse gas emissions reduction scenarios. However, a robust monitoring regime is necessary for public and regulatory assurance that any leakage from a storage site can be detected. Here, we present the results from a controlled CO2 release experiment undertaken at the K-COSEM test site (South Korea) with the aim of demonstrating the effectiveness of the inherent tracer fingerprints (noble gases, δ13C) in monitoring CO2 leakage. Following injection of 396 kg CO2(g) into a shallow aquifer, gas release was monitored for 2 months in gas/water phases in and above the injection zone. The injection event resulted in negative concentration changes of the dissolved gases, attributed to the stripping action of the depleted CO2. Measured fingerprints from inherent noble gases successfully identified solubility-trapping of the injected CO2 within the shallow aquifer. The δ13C within the shallow aquifer could not resolve the level of gas trapping, due to the interaction with heterogeneous carbonate sources in the shallow aquifer. The time-series monitoring of δ13CDIC and dissolved gases detected the stripping action of injected CO2(g), which can provide an early warning of CO2 arrival. This study highlights that inherent noble gases can effectively trace the upwardly migrating and fate of CO2 within a shallow aquifer.


Assuntos
Dióxido de Carbono , Água Subterrânea , Preparações de Ação Retardada , Gases , Gases Nobres
20.
J Chromatogr A ; 1657: 462571, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614469

RESUMO

The development of highly selective and sensitive analytical methods for the nontarget screening of persistent organic pollutants such as halogenated compounds in environmental samples is a challenging task. Soft ionization mass spectrometry has emerged as a powerful technique for obtaining essential molecular information, and it is expected to reveal compounds that remain hidden with conventional fragmentation techniques such as electron ionization (EI). In this study, a soft ionization method based on electron capture negative ionization using an inert gas was developed for the nontarget screening of chlorinated aromatics in environmental samples and was applied to comprehensive two-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (GC × GC-HRToFMS). In particular, argon (Ar) and helium (He) were evaluated as inert moderating gases, and were compared against the conventional methane (CH4). The optimal ionization conditions, including the flow rate and ion source temperature, were investigated based on the molecular ion intensities of highly chlorinated aromatics decachlorobiphenyl and octachlorodibenzofuran. Ar-mediated soft ionization provided the best sensitivity to molecular ions among the three gases at a low flow rate (0.1 mL min-1) and low ion source temperature, and more selective detection of molecular ions (i.e., less fragmentation) was obtained with the inert gases than with CH4. This method is also applicable to other chlorinated aromatics such as tetra- to nonachlorobiphenyls, tetra- to heptachlorinated dibenzofurans, pentachlorobenzene, and hexachlorobenzene. To demonstrate the applicability of the proposed method to a wide range of chlorinated aromatics in environmental samples, both Ar-mediated soft ionization and conventional EI were applied to GC × GC-HRToFMS for analysis of a crude extract of house dust. Soft ionization enabled the selective and sensitive detection of molecular ions for minor amounts of chlorinated aromatics, even in complex matrices. Furthermore, the extracted ion chromatograms of halide anions (Cl- or Br-) were useful for screening other chlorinated or brominated compounds in the environmental samples. The results suggest that combining information on halide anions obtained by soft ionization and the structural information provided by EI would constitute a powerful approach for the comprehensive identification of chlorinated aromatics.


Assuntos
Poeira , Gases Nobres , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...