Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.109
Filtrar
1.
J Environ Manage ; 357: 120823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583380

RESUMO

Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).


Assuntos
Compostos Férricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Conservação de Recursos Energéticos , Oxirredução , Eletrodos , Fenol , Compostos Ferrosos , Peróxido de Hidrogênio/química
2.
Environ Pollut ; 346: 123641, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428791

RESUMO

The excessive accumulation of hexavalent chromium (Cr(VI)) in the environment poses a risk to environment and human health. In the present study, a potassium bicarbonate-modified pyrite/porous biochar composite (PKBC) was prepared in a one-step process and applied for the efficient removal of Cr(VI) in wastewater. The results showed that PKBC can significantly remove Cr(VI) within 4 h over a wide range of pH (2-11). Meanwhile, the PKBC demonstrated remarkable resistance towards interference from complex ions. The addition of potassium bicarbonate increased the pore structure of the material and promoted the release of Fe2+. The reduction of Cr(VI) in aqueous solution was primarily attributed to the Fe(II)/Fe(III) redox cycle. The sulphur species achieved Fe(II)/Fe(III) cycle through electron transfer with iron, thus ensuring the continuous reduction capacity of PKBC. Besides, the removal rate was also maintained at more than 85% in the actual water samples treatment process. This work provides a new way to remove hexavalent chromium from wastewater and demonstrates the potential critical role of potassium bicarbonate and sulphur.


Assuntos
Bicarbonatos , Compostos de Potássio , Sulfetos , Águas Residuárias , Poluentes Químicos da Água , Humanos , Compostos Férricos , Potássio , Porosidade , Ferro/química , Carvão Vegetal/química , Cromo/química , Compostos Ferrosos , Poluentes Químicos da Água/análise , Adsorção
3.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504412

RESUMO

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Assuntos
Dióxido de Carbono , Compostos Férricos , Rodopseudomonas , Oxirredução , Ácido Láctico , Compostos Ferrosos , Piruvatos , Acetatos , Glucose
4.
J Am Chem Soc ; 146(12): 7915-7921, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488295

RESUMO

A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.


Assuntos
Ferro , Superóxidos , Compostos Ferrosos , Oxigênio
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479228

RESUMO

Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.


Assuntos
Ferroquelatase , Porfirinas , Humanos , Domínio Catalítico , Ferroquelatase/química , Ferroquelatase/metabolismo , Compostos Férricos , Ligantes , Porfirinas/química , Ferro/química , Compostos Ferrosos/metabolismo
6.
Sci Total Environ ; 925: 171729, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492589

RESUMO

Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.


Assuntos
Arsênio , Compostos Ferrosos , Poluentes do Solo , Humanos , Arsênio/análise , Poluentes do Solo/análise , Poluição Ambiental/análise , Solo , Disponibilidade Biológica
7.
Redox Biol ; 71: 103111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521703

RESUMO

Recent research has hypothesized that hydrogen peroxide (H2O2) may have emerged from abiotic geochemical processes during the Archean eon (4.0-2.5 Ga), stimulating the evolution of an enzymatic antioxidant system in early life. This eventually led to the evolution of cyanobacteria, and in turn, the accumulation of oxygen on Earth. In the latest issue of Redox Biology, Koppenol and Sies (vol. 29, no. 103012, 2024) argued against this hypothesis and suggested instead that early organisms would not have been exposed to H2O2 due to its short half-life in the ferruginous oceans of the Archean. We find these arguments to be factually incomplete because they do not consider that freshwater or some coastal marine environments during the Archean could indeed have led to H2O2 generation and accumulation. In these environments, abiotic oxidants could have interacted with early life, thus steering its evolutionary course.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Peróxido de Hidrogênio/química , Oxigênio/química , Fotossíntese , Oceanos e Mares , Compostos Ferrosos
8.
Chemosphere ; 353: 141575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430934

RESUMO

Bisphenol A (BPA) in seawater tends to be deposited in coastal sediments. However, its degradation under tidal oscillations has not been explored comprehensively. Hydroxyl radicals (·OH) can be generated through Fe cycling under redox oscillations, which have a strong oxidizing capacity. This study focused on the contribution of Fe-mediated production of ·OH in BPA degradation under darkness. The removal of BPA was investigated by reoxygenating six natural coastal sediments, and three redox cycles were applied to prove the sustainability of the process. The importance of low reactivity Fe(II) in the production of ·OH was investigated, specifically, Fe(II) with carbonate and Fe(II) within goethite, hematite and magnetite. The degradation efficiency of BPA during reoxygenation of sediments was 76.78-94.82%, and the contribution of ·OH ranged from 36.74% to 74.51%. The path coefficient of ·OH on BPA degradation reached 0.6985 and the indirect effect of low reactivity Fe(II) on BPA degradation by mediating ·OH production reached 0.5240 obtained via partial least squares path modeling (PLS-PM). This study emphasizes the importance of low reactivity Fe(II) in ·OH production and provides a new perspective for the role of tidal-induced ·OH on the fate of refractory organic pollutants under darkness.


Assuntos
Compostos Benzidrílicos , Fenóis , Fenóis/metabolismo , Compostos Benzidrílicos/metabolismo , Radical Hidroxila , Compostos Ferrosos , Oxirredução
9.
Chemosphere ; 353: 141588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430939

RESUMO

FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Enxofre , Sulfametazina , Compostos Ferrosos , Oxirredução
10.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
11.
J Environ Manage ; 356: 120457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503231

RESUMO

Ferrous sulfate (FeSO4) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO4-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires. The results of chemical extraction and X-ray absorption near edge structure spectroscopy (XANES) showed that the Cr(VI) in contaminated soil was successfully transformed to Cr(III) after stabilization, resulting in the dramatic decrease of water-leachable Cr(VI). The stabilization efficiency was further improved under 40 °C treatment after 30 days. Subsequently, the 120 °C treatment (7 days) had relatively little effect on the Cr speciation and mobility in soils. However, even one day of 500 °C calcination resulted in the deterioration of stabilization efficiency, and the water-leachable Cr(VI) re-increased and became higher than the Chinese environmental standards (total Cr 15 mg/L, Cr(VI) 5 mg/L) for the classification of hazardous solid wastes. XANES results reflected that heating at 500 °C facilitate the formation of Cr2O3, which was mainly caused by thermal decomposition and dehydration of Cr(OH)3 in the soil. Besides, the transformation of Cr species resulted in the enhanced association of Cr with the most stable residual fraction (88.3%-91.6%) in soil. Based on chemical extraction results, it was suggested that the oxidation of Cr(III) to Cr(VI) contributed to the re-increased mobility of Cr(VI) in soil. However, the XANES results showed that almost no significant re-oxidization of Cr(III) to Cr(VI) happened after heating at 500 °C, which was probably caused by XANES linear combination fits (LCF) uncertainties. Moreover, the changes in soil properties, including a rise in pH to a slightly alkaline range and/or the decomposition of organic matter, possibly contributed to the enhanced mobility of Cr(VI) in soil. This study contributes to clarifying the mobility and transformation of Cr in contaminated soils and provides a support for the sustainable management of remediated soils.


Assuntos
Cromo , Compostos Ferrosos , Poluentes do Solo , Temperatura , Cromo/química , Solo/química , Água , Poluentes do Solo/química
12.
J Hazard Mater ; 469: 134074, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518702

RESUMO

In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.


Assuntos
Caprilatos , Desnitrificação , Fluorocarbonos , Ferro , Ferro/metabolismo , Nitratos/metabolismo , Nitritos , Eliminação de Resíduos Líquidos , Áreas Alagadas , Fósforo , Compostos Ferrosos , Nitrogênio
13.
ACS Nano ; 18(14): 10063-10073, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533795

RESUMO

We developed an intrinsic hydrophilic single-atom iron nanobowl (Fe-SANB) for magnetic resonance imaging (MRI)-guided tumor microenvironment-triggered cancer therapy. Benefiting from the sufficient exposure of Fe single atoms and the intrinsic hydrophilicity of the bowl-shaped structure, the Fe-SANBs exhibited a superior performance for T1-weighted MRI with an r1 value of 11.48 mM-1 s-1, which is 3-fold higher than that of the commercial Gd-DTPA (r1 = 3.72 mM-1 s-1). After further coembedding Gd single atoms in the nanobowls, the r1 value can be greatly improved to 19.54 mM-1 s-1. In tumor microenvironment (TME), the Fe-SANBs can trigger pH-induced Fenton-like activity to generate highly toxic hydroxyl radicals for high-efficiency chemodynamic therapy (CDT). Both the MRI and CDT efficiency of these nanobowls can be optimized by tuning the ratio of Fe(II)/Fe(III) in the Fe-SANBs via controlling the calcination temperature. Furthermore, the generation of •OH at the tumor site can be accelerated via the photothermal effect of Fe-SANBs, thus promoting CDT efficacy. Both in vitro and in vivo results confirmed that our nanoplatform exhibited high T1-weighted MRI contrast, robust biocompatibility, and satisfactory tumor treatment, providing a potential nanoplatform for MRI-guided TME-triggered precise cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Compostos Férricos , Imageamento por Ressonância Magnética , Meios de Contraste , Microambiente Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Compostos Ferrosos , Linhagem Celular Tumoral , Peróxido de Hidrogênio
14.
J Mol Graph Model ; 129: 108753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461758

RESUMO

Through a comprehensive computational analysis utilizing Density Functional Theory (DFT), we clarify the electronic structure and spectroscopic properties of modified iron(II)-terpyridine derivatives, with the aim of enhancing the efficiency of Dye-Sensitized Solar Cells (DSSCs). We optimized a series of nineteen iron(II)-terpyridine derivatives and related compounds in acetonitrile (MeCN) as the solvent using TDDFT, evaluating their potential as dyes for DSSCs. From the conducted computations on the optimized geometries of the nineteen [Fe(Ln)2]2+ complexes, containing substituted terpyridine and related ligands L1-L19, we determined the wavelengths (λ in nm), transition energy (E in eV), oscillator strength (f), type of transitions, excited state lifetime (τ), light harvesting efficiency (LHE), frontier orbital character and their energies (ELUMO/EHOMO), natural transition orbitals (NTOs), injection driving force of a dye (ΔGinject), and regeneration driving force of a dye (ΔGregenerate). Results show that the theoretically calculated values for assessing dye efficiency in a DSSC correlate with available experimental values. The UV-visible spectra of [Fe(Ln)2]2+ exhibited a peak above 500 nm (λmax) in the visible region, attributed to the ligand-to-metal charge transfer band (LMCT) in literature, and a significant absorbance peak at approximately 300 nm (λA,max) in the UV region. The M06-D3/CEP-121G method replicated all reported λmax and λA,max values with a mean absolute deviation (MAD) of 21 and 18 nm, respectively. Our findings underscore the connections between electronic modifications and absorption spectra, emphasizing their impact on the light-harvesting capabilities and overall performance of DSSCs. This research contributes to the advancement of fundamental principles governing the design and optimization of novel photovoltaic materials, facilitating the development of more efficient and sustainable solar energy technologies.


Assuntos
Corantes , Energia Solar , Corantes/química , Ferro , Espectrofotometria Ultravioleta , Compostos Ferrosos
15.
Water Res ; 254: 121342, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428238

RESUMO

The coordination environment of Fe(II) significantly affect the reductive reactivity of Fe(II). Lactate is a common substrate for enhancing microbial dechlorination, but its effect on abiotic Fe(II)-driven reductive dechlorination is largely ignored. In this study, the structure-reactivity relationship of Fe(II) is investigated by regulating the ratio of lactate:Fe(II). This work shows that lactate-Fe(II) complexing enhances the abiotic Fe(II)-driven reductive dechlorination with the optimum lactate:Fe(II) ratio of 10:20. The formed hydrogen bond (Fe-OH∙∙∙∙∙∙O = C-) and Fe-O-C metal-ligand bond result in a reduced Fe(II) coordination number from six to four, which lead to the transition of Fe(II) coordination geometry from octahedron to tetrahedron/square planar. Coordinatively unsaturated Fe(II) results in the highest reductive dechlorination reactivity towards carbon tetrachloride (k1 = 0.26254 min-1). Excessive lactate concentration (> 10 mM) leads to an increased Fe(II) coordination number from four to six with a decreased reductive reactivity. Electrochemical characterization and XPS results show that lactate-Fe(II)-I (C3H5O3-:Fe(II) = 10:20) has the highest electron-donating capacity. This study reveals the abiotic effect of lactate on reductive dechlorination in a subsurface-reducing environment where Fe(II) is usually abundant.


Assuntos
Ácido Láctico , Metais , Tetracloreto de Carbono/química , Compostos Ferrosos
16.
J Hazard Mater ; 469: 133897, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442599

RESUMO

Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.


Assuntos
Bacillus , Oryza , Poluentes do Solo , Ferro , Antimônio/toxicidade , Raízes de Plantas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Bactérias , Oxirredução , Compostos Ferrosos
17.
Water Res ; 254: 121412, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457944

RESUMO

Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Solo/química , Áreas Alagadas , Lignina , Minerais/química , Ferro/análise , Água/análise , Fenóis/análise , Compostos Ferrosos , Carbono/química
18.
Environ Microbiol Rep ; 16(2): e13239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490970

RESUMO

Phototrophic Fe(II)-oxidizers use Fe(II) as electron donor for CO2 fixation thus linking Fe(II) oxidation, ATP formation, and growth directly to the availability of sunlight. We compared the effect of short (10 h light/14 h dark) and long (2-3 days light/2-3 days dark) light/dark cycles to constant light conditions for the phototrophic Fe(II)-oxidizer Chlorobium ferrooxidans KoFox. Fe(II) oxidation was completed first in the setup with constant light (9 mM Fe(II) oxidised within 8.9 days) compared to the light/dark cycles but both short and long light/dark cycles showed faster maximum Fe(II) oxidation rates. In the short and long cycle, Fe(II) oxidation rates reached 3.5 ± 1.0 and 2.6 ± 0.3 mM/d, respectively, compared to 2.1 ± 0.3 mM/d in the constant light setup. Maximum Fe(II) oxidation was significantly faster in the short cycle compared to the constant light setup. Cell growth reached roughly equivalent cell numbers across all three light conditions (from 0.2-2.0 × 106 cells/mL to 1.1-1.4 × 108 cells/mL) and took place in both the light and dark phases of incubation. SEM images showed different mineral structures independent of the light setup and 57 Fe Mössbauer spectroscopy confirmed the formation of poorly crystalline Fe(III) oxyhydroxides (such as ferrihydrite) in all three setups. Our results suggest that periods of darkness have a significant impact on phototrophic Fe(II)-oxidizers and significantly influence rates of Fe(II) oxidation.


Assuntos
Fenômenos Bioquímicos , Compostos Férricos , Compostos Ferrosos , Minerais , Oxirredução
19.
Sci Rep ; 14(1): 5634, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454122

RESUMO

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Fosfinas , Fosfitos , Humanos , Simulação de Acoplamento Molecular , Complexos de Coordenação/química , Ferro , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , DNA/metabolismo , Maleimidas , Compostos Ferrosos/farmacologia , Antineoplásicos/química , Ligantes , Linhagem Celular Tumoral
20.
Environ Monit Assess ; 196(4): 354, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466524

RESUMO

Natural pyrite (NP) is an alternative catalyst for wastewater purification via advanced oxidation processes (AOPs). However, the activation performance and mechanism of periodate (PI) by NP have not yet been revealed. Herein, this work examines the activation performance of NP towards PI and its application in the degradation of antibiotic wastewater. Interestingly, 95.69% of chlortetracycline (CTC) was degraded by NP within 20 min via PI activation. Besides, NP shows effective degradation of various pollutants such as rhodamine B (65.81%), sulfamethoxazole (89.04%), and sodium butylxanthate (99.77%) within 20 min. The active species quenching experiment suggested that the active species ∙ OH , IO 3 ∙ , 1O2 and the active complex of PI bonded with NP surface participated in CTC degradation. In addition, Fe(II) on NP surface is the main active site for PI activation, while Sn2- species accelerates the reduction of Fe(III) to Fe(II) and promotes sustained PI activation. This work provides new ideas for the application of NP in environmental pollution control.


Assuntos
Clortetraciclina , Ferro , Ácido Periódico , Sulfetos , Poluentes Químicos da Água , Compostos Férricos , Monitoramento Ambiental , Clortetraciclina/química , Oxirredução , Compostos Ferrosos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...