Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
1.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
2.
Carbohydr Polym ; 332: 121906, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431392

RESUMO

Conventional methods faced challenges in pretreating natural cellulose fibres due to their high energy consumption and large wastewater drainage. This research devised an efficient solid-state pretreatment method for pretreating hemp fibres using ethanolamine (ETA) assisted by microwave (MW) heating. This method produced a notable removal rate of lignin (85.4 %) with the highest cellulose content (83.0 %) at a high solid content (30 %) and low temperature (70 °C). Both FT-IR and XRD analyses indicated that the pretreatment did not alter the structure of cellulose within the hemp fibres but increased crystallinity as the CrI increased from 84 % in raw hemp fibre to 89 % in pretreated fibre. As a result, it produced hemp fibres with impressive fineness (4.6 dtex) and breaking strength (3.81 cN/dtex), meeting the requirement of textile fibre. In addition, an improvement in glucose concentration (15.6 %) was observed in enzymatic hydrolysis of the MW pretreated hemp fibres compared to the fibres pretreated without MW. Furthermore, the FT-IR and NMR data confirmed that the amination of lignin occurred even at low temperature, which contributed to the high lignin removal rate. Thus, this study presents a potentially effective energy-saving, and environmentally sustainable solid-state method for pretreating hemp fibres.


Assuntos
Cannabis , Lignina , Etanolamina , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Celulose , Hidrólise
3.
Chemosphere ; 351: 141113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185428

RESUMO

In this study, the optimization of potassium carbonate (K2CO3) exposure conditions for CO2 capture with the use of 2-methypiperazine (2MPz) and monoethanolamine (MEA) as promoters was investigated. The tested operating conditions for the CO2 capture process included the pH, temperature, K2CO3 dose, gas flow rate, and pressure, and their effect on the CO2 absorption/desorption rate and CO2 absorption efficiency was assessed. Response surface methodology (RSM) was also employed to determine the equations for the optimal long-term operating conditions. The results showed that the CO2 absorption rate and efficiency increased under K2CO3 exposure with an increase in the pressure and loading rate. Moreover, for the temperature the absorption efficiency first increase and then decreases with increase in temperature, however, the with increase in temperature the faster absorption were observed with lower absorption loading rate. Furthermore, pH had a more complex effect due to its variable effects on the speciation of bicarbonate ions (HCO3-) and carbonate ions (CO32-). Under higher pH conditions, there was an increase in the concentration of HCO3-, which has a higher CO2 loading capacity than CO32-. Contouring maps were also used to visualize the effect of different exposure conditions on the CO2 absorption rate and efficiency and the role of 2MPz and MEA as promoters in the K2CO3 solution for CO2 absorption. The results showed that the mean CO2 absorption rate was 6.76 × 10-4 M/L/s with an R2 of 0.9693 for the K2CO3 solution containing 2MPz. The highest absorption rate (6.56-7.20 × 10-4 M/L/s) was observed at a temperature of 298-313 K, a pressure of >2 bar, a pH of 8-9, and a loading rate of 80-120 L/h for a concentration of 1-3 M K2CO3 and 0.05-1.5 M 2MPz. The CO2 absorption efficiency exhibited a variation of 56-70% under the same conditions.


Assuntos
Dióxido de Carbono , Etanolamina , Piperazinas , Temperatura
4.
Toxicol Lett ; 391: 32-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048885

RESUMO

Chlorine is a toxic industrial chemical that has been used as a chemical weapon in recent armed conflicts. Confirming human exposure to chlorine has proven challenging, and there is currently no established method for analyzing human biomedical samples to unambiguously verify chlorine exposure. In this study, two chlorine-specific biomarkers: palmitoyl-oleoyl phosphatidylglycerol chlorohydrin (POPG-HOCl) and the lipid derivative oleoyl ethanolamide chlorohydrin (OEA-HOCl) are shown in bronchoalveolar lavage fluid (BALF) samples from spontaneously breathing pigs after chlorine exposure. These biomarkers are formed by the chemical reaction of chlorine with unsaturated phospholipids found in the pulmonary surfactant, which is present at the gas-liquid interface within the lung alveoli. Our results strongly suggest that lipid chlorohydrins are promising candidate biomarkers in the development of a verification method for chlorine exposure. The establishment of verified methods capable of confirming the illicit use of toxic industrial chemicals is crucial for upholding the principles of the Chemical Weapons Convention (CWC) and enforcing the ban on chemical weapons. This study represents the first published dataset in BALF revealing chlorine biomarkers detected in a large animal. Furthermore, these biomarkers are distinct in that they originate from molecular chlorine rather than hypochlorous acid.


Assuntos
Cloridrinas , Etanolamina , Ácidos Oleicos , Fosfolipídeos , Humanos , Animais , Suínos , Cloro/toxicidade , Cloridrinas/química , Líquido da Lavagem Broncoalveolar , Biomarcadores
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166908, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793464

RESUMO

Metabolic disorders such as type 2 diabetes, fatty liver disease, hyperlipidemia, and obesity commonly co-occur but clinical treatment options do not effectively target all disorders. Calorie restriction, semaglutide, rosiglitazone, and mitochondrial uncouplers have all demonstrated efficacy against one or more obesity-related metabolic disorders, but it currently remains unclear which therapeutic strategy best targets the combination of hyperglycaemia, liver fat, hypertriglyceridemia, and adiposity. Herein we performed a head-to-head comparison of 5 treatment interventions in the female db/db mouse model of severe metabolic disease. Treatments included ∼60 % calorie restriction (CR), semaglutide, rosiglitazone, BAM15, and niclosamide ethanolamine (NEN). Results showed that BAM15 and CR improved body weight and liver steatosis to levels superior to semaglutide, NEN, and rosiglitazone, while BAM15, semaglutide, and rosiglitazone improved glucose tolerance better than CR and NEN. BAM15, CR, semaglutide, and rosiglitazone all had efficacy against hypertriglyceridaemia. These data provide a comprehensive head-to-head comparison of several key treatment strategies for metabolic disease and highlight the efficacy of mitochondrial uncoupling to correct multiple facets of the metabolic disease milieu in female db/db mice.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Feminino , Niclosamida/uso terapêutico , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Etanolamina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Restrição Calórica , Etanolaminas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
6.
Nanomedicine ; 55: 102724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007066

RESUMO

In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Etanolamina/análise , Etanolamina/química , Etanolaminas , DNA/química , Sequência de Bases , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
7.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(5): 451-457, 2023 Dec 04.
Artigo em Chinês | MEDLINE | ID: mdl-38148533

RESUMO

OBJECTIVE: To establish a snail control approach for spraying chemicals with drones against Oncomelania hupensis in complex snail habitats in hilly regions, and to evaluate its molluscicidal effect. METHODS: The protocol for evaluating the activity of spraying chemical molluscicides with drones against O. hupensis snails was formulated based on expert consultation and literature review. In August 2022, a pretest was conducted in a hillside field environment (12 000 m2) north of Dafengji Village, Dacang Township, Weishan County, Yunnan Province, which was assigned into four groups, of no less than 3 000 m2 in each group. In Group A, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2, and in Group B, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with drones at a dose of 40 g/m2, while in Group C, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2, and in Group D, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with knapsack sprayers at a dose of 40 g/m2. Then, each group was equally divided into six sections according to land area, with Section 1 for baseline surveys and sections 2 to 6 for snail surveys after chemical treatment. Snail surveys were conducted prior to chemical treatment and 1, 3, 5, 7 days post-treatment, and the mortality and corrected mortality of snails, density of living snails and costs of molluscicidal treatment were calculated in each group. RESULTS: The mortality and corrected mortality of snails were 69.49%, 69.09%, 53.57% and 83.48%, and 68.58%, 68.17%, 52.19% and 82.99% in groups A, B, C and D 14 days post-treatment, and the density of living snails reduced by 58.40%, 63.94%, 68.91% and 83.25% 14 days post-treatment relative to pre-treatment in four groups, respectively. The median concentrations of chemical molluscicides were 37.08, 35.42, 42.50 g/m2 and 56.25 g/m2 in groups A, B, C and D, and the gross costs of chemical treatment were 0.93, 1.50, 0.46 Yuan per m2 and 1.03 Yuan per m2 in groups A, B, C and D, respectively. CONCLUSIONS: The molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against O. hupensis snails is superior to manual chemical treatment without environmental cleaning, and chemical treatment with drones and manual chemical treatment show comparable molluscicidal effects following environmental cleaning in hilly regions. The cost of chemical treatment with drones is slightly higher than manual chemical treatment regardless of environmental cleaning. Spraying 5% niclosamide ethanolamine salt granules with drones is recommended in complex settings with difficulty in environmental cleaning to improve the molluscicidal activity and efficiency against O. hupensis snails.


Assuntos
Moluscocidas , Niclosamida , Niclosamida/farmacologia , Etanolamina/farmacologia , Dispositivos Aéreos não Tripulados , China , Moluscocidas/farmacologia , Etanolaminas
8.
J Am Chem Soc ; 145(47): 25614-25620, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971368

RESUMO

Phospholipids are the primary constituents of cell membranes across all domains of life, but how and when phospholipids appeared on early Earth remains unknown. Pressingly, most prebiotic syntheses of complex phospholipids rely upon substrates not yet shown to have been available on early Earth. Here, we describe potentially prebiotic syntheses of a diverse array of complex phospholipids and their building blocks. First, we show that choline could have been produced on early Earth by stepwise N-methylation of ethanolamine. Second, taking a systems chemistry approach, we demonstrate that the intrinsically activated glycerol-2,3-cyclic phosphate undergoes ring opening with combinations of prebiotic amino alcohols to yield complex phospholipid headgroups. Importantly, this pathway selects for the formation of 2-amino alcohol-bearing phospholipid headgroups and enables the accumulation of their natural regioisomers. Finally, we show that the dry-state ring opening of cyclic lysophosphatidic acids leads to a range of self-assembling lysophospholipids. Our results provide new prebiotic routes to key intermediates on the way toward modern phospholipids and illuminate the potential origin and evolution of cell membranes.


Assuntos
Glicerol , Fosfolipídeos , Fosfatos/química , Etanolaminas , Colina , Etanolamina , Amino Álcoois
9.
Redox Biol ; 66: 102874, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683300

RESUMO

OBJECTIVE: Enhancing energy turnover via uncoupled mitochondrial respiration in adipose tissue has great potential to improve human obesity and other metabolic complications. However, the amount of human brown adipose tissue and its uncoupling protein 1 (UCP1) is low in obese patients. Recently, a class of endogenous molecules, N-acyl amino acids (NAAs), was identified as mitochondrial uncouplers in murine adipocytes, presumably acting via the adenine nucleotide translocator (ANT). Given the translational potential, we investigated the bioenergetic effects of NAAs in human adipocytes, characterizing beneficial and adverse effects, dose ranges, amino acid derivatives and underlying mechanisms. METHOD: NAAs with neutral (phenylalanine, leucine, isoleucine) and polar (lysine) residues were synthetized and assessed in intact and permeabilized human adipocytes using plate-based respirometry. The Seahorse technology was applied to measure bioenergetic parameters, dose-dependency, interference with UCP1 and adenine nucleotide translocase (ANT) activity, as well as differences to the established chemical uncouplers niclosamide ethanolamine (NEN) and 2,4-dinitrophenol (DNP). RESULT: NAAs with neutral amino acid residues potently induce uncoupled respiration in human adipocytes in a dose-dependent manner, even in the presence of the UCP1-inhibitor guanosine diphosphate (GDP) and the ANT-inhibitor carboxyatractylate (CAT). However, neutral NAAs significantly reduce maximal oxidation rates, mitochondrial ATP-production, coupling efficiency and reduce adipocyte viability at concentrations above 25 µM. The in vitro therapeutic index (using induced proton leak and viability as determinants) of NAAs is lower than that of NEN and DNP. CONCLUSION: NAAs are potent mitochondrial uncouplers in human adipocytes, independent of UCP1 and ANT. However, previously unnoticed adverse effects harm adipocyte functionality, reduce the therapeutic index of NAAs in vitro and therefore question their suitability as anti-obesity agents without further chemical modifications.


Assuntos
Adipócitos , Aminoácidos , Humanos , Animais , Camundongos , Etanolamina , Tecido Adiposo Marrom , Metabolismo Energético
10.
Appl Microbiol Biotechnol ; 107(23): 7301-7312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750914

RESUMO

Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. However, available strategies to follow gene expression in bacteria within their natural ecosystem that can be typically rich and complex are scarce. In this work, we designed a plasmid-based tool ensuring both the identification of a strain of interest in complex environments and the monitoring of gene expression through the combination of two distinct fluorescent proteins as reporter genes. The tool was validated in Escherichia coli to monitor the expression of eut genes involved in the catabolism of ethanolamine. We demonstrated that the constructed reporter strain gradually responds with a bimodal output to increasing ethanolamine concentrations during in vitro cultures. The reporter strain was next inoculated to mice, and flow cytometry was used to detect the reporter strain among the dense microbiota of intestinal samples and to analyze specifically the expression of eut genes. This novel dual-fluorescent reporter system would be helpful to evaluate transcriptional processes in bacteria within complex environments. KEY POINTS: • A reporter tool was developed to monitor bacterial gene expression in complex environments. • Ethanolamine utilization (eut) genes are expressed by commensal E. coli in the mouse gut. • Expression of eut genes follows a bimodal distribution.


Assuntos
Escherichia coli , Microbiota , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Etanolamina/metabolismo , Etanolaminas , Genes Reporter , Expressão Gênica
11.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762494

RESUMO

For pathogens identification, the PCR test is a widely used method, which requires the isolation of nucleic acids from different samples. This extraction can be based on the principle of magnetic separation. In our work, amine-functionalized magnesium ferrite nanoparticles were synthesized for this application by the coprecipitation of ethanolamine in ethylene glycol from Mg(II) and Fe(II) precursors. The conventional synthesis method involves a reaction time of 12 h (MgFe2O4-H&R MNP); however, in our modified method, the reaction time could be significantly reduced to only 4 min by microwave-assisted synthesis (MgFe2O4-MW MNP). A comparison was made between the amine-functionalized MgFe2O4 samples prepared by two methods in terms of the DNA-binding capacity. The experimental results showed that the two types of amine-functionalized magnesium ferrite magnetic nanoparticles (MNPs) were equally effective in terms of their DNA extraction yield. Moreover, by using a few minutes-long microwave synthesis, we obtained the same quality magnesium ferrite particles as those made through the long and energy-intensive 12-h production method. This advancement has the potential to improve and expedite pathogen identification processes, helping to better prevent the spread of epidemics.


Assuntos
Aminas , Nanopartículas de Magnetita , Fenômenos Físicos , Etanolamina
12.
PLoS Pathog ; 19(7): e1011112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506172

RESUMO

Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.


Assuntos
Leishmania major , Leishmania major/genética , Etanolaminas/metabolismo , Etanolamina/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Homeostase
13.
Pharm Res ; 40(8): 1915-1925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498498

RESUMO

PURPOSE: Niclosamide is approved as an oral anthelminthic, but its low oral bioavailability hinders its medical use requiring high drug exposure outside the gastrointestinal tract. An optimized solution of niclosamide for nebulization and intranasal administration using the ethanolamine salt has been developed and tested in a Phase 1 trial. In this study we investigate the pulmonary exposure of niclosamide following administration via intravenous injection, oral administration or nebulization. METHODS: We characterized the plasma and pulmonary pharmacokinetics of three ascending doses of nebulized niclosamide in sheep, compare it to intravenous niclosamide for compartmental PK modelling, and to the human equivalent approved 2 g oral dose to investigate in the pulmonary exposure of different niclosamide delivery routes. Following a single-dose administration to five sheep, niclosamide concentrations were determined in plasma and epithelial lining fluid (ELF). Non-compartmental and compartmental modeling was used to characterize pharmacokinetic profiles. Lung function tests were performed in all dose groups. RESULTS: Administration of all niclosamide doses were well tolerated with no adverse changes in lung function tests. Plasma pharmacokinetics of nebulized niclosamide behaved dose-linear and was described by a 3-compartmental model estimating an absolute bioavailability of 86%. ELF peak concentration and area under the curve was 578 times and 71 times higher with nebulization of niclosamide relative to administration of oral niclosamide. CONCLUSIONS: Single local pulmonary administration of niclosamide via nebulization was well tolerated in sheep and resulted in substantially higher peak ELF concentration compared to the human equivalent oral 2 g dose.


Assuntos
Antibacterianos , Niclosamida , Humanos , Animais , Ovinos , Administração por Inalação , Etanolamina , Pulmão , Etanolaminas
14.
Sci Rep ; 13(1): 12113, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495686

RESUMO

Psoriasis is an inflammatory skin disease that is characterized by keratinocyte hyperproliferation, abnormal epidermal differentiation and dysregulated lipid metabolism. Some lipid mediators of the N-acylethanolamines (NAEs) and monoacylglycerols (MAGs) can bind to cannabinoid (CB) receptors and are referred to as part of the endocannabinoidome. Their implication in psoriasis remains unknown. The aim of the present study was to characterize the endocannabinoid system and evaluate the effects of n-3-derived NAEs, namely N-eicosapentaenoyl-ethanolamine (EPEA), in psoriatic keratinocytes using a psoriatic skin model produced by tissue engineering, following the self-assembly method. Psoriatic skin substitutes had lower FAAH2 expression and higher MAGL, ABHD6 and ABHD12 expression compared with healthy skin substitutes. Treatments with alpha-linolenic acid (ALA) increased the levels of EPEA and 1/2-docosapentaenoyl-glycerol, showing that levels of n-3 polyunsaturated fatty acids modulate related NAE and MAG levels. Treatments of the psoriatic substitutes with 10 µM of EPEA for 7 days resulted in decreased epidermal thickness and number of Ki67 positive keratinocytes, both indicating decreased proliferation of psoriatic keratinocytes. EPEA effects on keratinocyte proliferation were inhibited by the CB1 receptor antagonist rimonabant. Exogenous EPEA also diminished some inflammatory features of psoriasis. In summary, n-3-derived NAEs can reduce the psoriatic phenotype of a reconstructed psoriatic skin model.


Assuntos
Etanolamina , Psoríase , Humanos , Etanolamina/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Proliferação de Células , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Monoacilglicerol Lipases/metabolismo
15.
Langmuir ; 39(28): 9671-9680, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421360

RESUMO

Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.


Assuntos
Etanolamina , Etanolaminas , Etanolamina/análise , Etanolaminas/análise , Membranas/química , Membrana Celular , Fosfolipídeos , Fosfatos
16.
Sci Rep ; 13(1): 10994, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420016

RESUMO

The release of excessive carbon dioxide (CO2) into the atmosphere poses potential threats to the well-being of various species on Earth as it contributes to global working. Therefore, it is necessary to implement appropriate actions to moderate CO2 emissions. A hollow fiber membrane contactor is an emerging technology that combines the advantages of separation processes and chemical absorptions. This study investigates the efficacy of wet and falling film membrane contactors (FFMC) in enhancing CO2 absorption in a monoethanolamine (MEA) aqueous solution. By analyzing factors such as membrane surface area, gas flow rate, liquid inlet flow rates, gas-liquid contact time, and solvent loading, we examine the CO2 absorption process in both contactors. Our results reveal a clear advantage of FFMC, achieving an impressive 85% CO2 removal efficiency compared to 60% with wet membranes. We employ COMSOL Multiphysics 6.1 simulation software and finite element analysis to validate our findings, demonstrating a close agreement between predicted and experimental values, with an average relative error of approximately 4.3%. These findings highlight the significant promise of FFMC for applications in CO2 capture.


Assuntos
Dióxido de Carbono , Etanolamina , Solventes , Água
17.
Environ Sci Technol ; 57(27): 9975-9983, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37378414

RESUMO

In the CO2 capture process, solid acid catalysts have been widely adopted to decrease energy consumption in the amine regeneration process owing to abundant acid sites. However, acid sites unavoidably degenerate in the basic amine solution. To address the challenge, nonacid carbon materials including carbon molecular sieves, porous carbon, carbon nanotubes, and graphene are first proposed to catalyze amine regeneration. It is found that carbon materials can significantly increase the CO2 desorption amount by 47.1-72.3% and reduce energy consumption by 32-42%. In 20 stability experiments, CO2 loading was stable with the max difference value of 0.01 mol CO2/mol monoethanolamine (MEA), and no obvious increase in the relative heat duty (the maximum difference is 4%) occurred. The stability of carbon materials is superior to excellent solid acid catalysts, and the desorption performance is comparable. According to the results of theoretical calculation and experimental characterization, the electron-transfer mechanism of nonacid carbon materials is proposed, which is not only beneficial for MEA regeneration but also the probable reason for the stable catalytic activity. Owing to the excellent catalytic performance of carbon nanotube (CNT) in the HCO3- decomposition, nonacid carbon materials are quite promising to enhance the desorption performance of novel blend amines, which will further reduce the cost of carbon capture in the industry. This study provides a new strategy to develop stable catalysts used for amine energy-efficient regeneration.


Assuntos
Etanolamina , Nanotubos de Carbono , Dióxido de Carbono , Aminas , Fenômenos Físicos
18.
J Enzyme Inhib Med Chem ; 38(1): 2220570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37341389

RESUMO

Novel 5-deazaflavins were designed as potential anticancer candidates. Compounds 4j, 4k, 5b, 5i, and 9f demonstrated high cytotoxicity against MCF-7 cell line with IC50 of 0.5-190nM. Compounds 8c and 9g showed preferential activity against Hela cells (IC50: 1.69 and 1.52 µM respectively). However, compound 5d showed notable potency against MCF-7 and Hela cell lines of 0.1 nM and 1.26 µM respectively. Kinase profiling for 4e showed the highest inhibition against a 20 kinase panel. Additionally, ADME prediction studies exhibited that compounds 4j, 5d, 5f, and 9f have drug-likeness criteria to be considered promising antitumor agents deserving of further investigation. SAR study showed that substitutions with 2-benzylidene hydra zino have a better fitting into PTK with enhanced antiproliferative potency. Noteworthy, the incorporation of hydrazino or ethanolamine moieties at position 2 along with small alkyl or phenyl at N-10, respectively revealed an extraordinary potency against MCF-7 cells with IC50 values in the nanomolar range.


Assuntos
Etanolamina , Etanolaminas , Humanos , Células HeLa , Flavinas
19.
Biol Reprod ; 109(2): 192-203, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294625

RESUMO

In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.


Assuntos
Trifosfato de Adenosina , Motilidade dos Espermatozoides , Humanos , Masculino , Trifosfato de Adenosina/metabolismo , Motilidade dos Espermatozoides/fisiologia , Niclosamida/farmacologia , Prótons , Sêmen/metabolismo , Mitocôndrias/metabolismo , Espermatozoides/metabolismo , Etanolamina/metabolismo , Etanolamina/farmacologia , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Anticoncepcionais/farmacologia
20.
Sci Adv ; 9(17): eadf5122, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126561

RESUMO

In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.


Assuntos
Etanolaminas , Fosfolipídeos , Fosfolipídeos/metabolismo , Colina/metabolismo , Etanolamina , Bactérias/metabolismo , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...