Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.352
Filtrar
1.
Carbohydr Polym ; 335: 122107, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616081

RESUMO

In this study, the polyvinylpyrrolidone-alizarin nanoparticles (PVP-AZ NPs) with favorable water dispersion and the carbon quantum dots (RQDs) with aggregate induced emission effect were synthesized to construct an eco-friendly film for food freshness monitoring. The introduction of PVP-AZ NPs and RQDs enhanced the network structure and thermal stability of the cassava starch/polyvinyl alcohol film, and reduced its crystallinity and light transmittance via non-covalent binding with the film-forming matrix. The developed film exhibited visually recognizable colorimetric and fluorescent responses to ammonia at 0.025-25 mg/mL, and it can be reused at least 6 times. Practical application experiment proved that the film, as an indicator label, can achieve accurate, real-time, and visual dynamic monitoring of the freshness of shrimp stored at 25 °C, 4 °C, and - 20 °C under daylight (orange yellow to purple) and UV light (red to blue). The integration of multivariate detection technology can eliminate the interference of external factors by self-correction to improve sensitivity and reliability, which provides a reference for the development of other food quality and safety monitoring platforms.


Assuntos
Antraquinonas , Manihot , Animais , Álcool de Polivinil , Reprodutibilidade dos Testes , Alimentos Marinhos , Crustáceos , Povidona , Amido
2.
Biomed Mater ; 19(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593822

RESUMO

This study utilized the freeze-drying method to create a chitosan (CS) and polyvinyl alcohol (PVA) sponge. To enhance its antibacterial properties, curcumin and nano silver (Cur@Ag) were added for synergistic antibacterial. After adding curcumin and nano silver, the mechanical properties of the composite sponge dressing (CS-PVA-Cur@Ag) were improved. The porosity of the composite sponge dressing was closed to 80%, which was helpful for drug release, and it had good water absorption and water retention rate. The nano silver diameter was 50-80 nm, which was optimal for killing bacteria. Antibacterial tests usedEscherichia coliandStaphylococcus aureusdemonstrated that little nano silver was required to eliminate bacteria. Finally, in the rat full-thickness skin wound model, the composite sponge dressing can promote wound healing in a short time. In summary, CS-PVA-Cur@Ag wound dressing could protect from bacterial infection and accelerate wound healing. Thus, it had high potential application value for wound dressing.


Assuntos
Quitosana , Curcumina , Prata , Ratos , Animais , Álcool de Polivinil , Antibacterianos , Bactérias , Água
3.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611703

RESUMO

In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.


Assuntos
Ligustrum , Pectinas , Pectinas/farmacologia , Álcool de Polivinil , Polissacarídeos/farmacologia , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Colágeno Tipo I , Quimiocinas , Hidrogéis
4.
Int J Biol Macromol ; 265(Pt 2): 130981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513894

RESUMO

High-value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m3 for the CMC/PVA film to 210.9 % and 1426 kJ/m3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow-release urea, soil moisture retention, and heat preservation performances.


Assuntos
Ferro , Lignina , Agricultura/métodos , Solo , Álcool de Polivinil/química , Ureia , Sódio
5.
Int J Biol Macromol ; 265(Pt 1): 130792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479670

RESUMO

The curdlan gel is a natural material produced by bacteria. It utilizes chemical cross-linking reactions to form a 3D porous composite hydrogel, increasing its porosity and water content, and improving its mechanical properties. It can be used in tissue repair and regenerative medicine. Curdlan-Poly(vinyl alcohol) (PVA) composite hydrogel can rapidly swell within 1 min due to its porous structure. Compression tests confirmed that it still maintains its original mechanical strength, even after five repeated freeze-thaw (FT) processes, making it suitable for long-term cryopreservation. The purpose of this study is to transplant umbilical cord mesenchymal stem cells (UC-MSCs) on Curdlan-PVA composite hydrogel and observe the chondrocytes on the material. The results of using 4',6-diamidino-2-phenylindole (DAPI), hematoxylin and eosin (H&E), calcein-acetoxymethyl ester (calcein AM), and Collagen type II-Fluorescein isothiocyanate (FITC) staining, confirmed that UC-MSCs can attach and differentiate into chondrocytes on 3D Curdlan-PVA composite hydrogel.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , beta-Glucanas , Hidrogéis/farmacologia , Hidrogéis/química , Álcool de Polivinil/química , Congelamento , Condrogênese , Materiais Biocompatíveis/química , Etanol
6.
Int J Biol Macromol ; 265(Pt 1): 130803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484811

RESUMO

To solve the inherent problems of conductive hydrogels, such as relatively low mechanical properties and fatigue resistance, inability to work after water loss, and difficulty weaving. In this study, the borax-crosslinked polyvinyl alcohol/k-carrageenan (kC) conducting hydrogels (BPKKOH) were prepared by a simple one-pot method, and KOH treatment was used instead of the cumbersome and time-consuming freeze-thaw cycle to improve the comprehensive properties. The KOH treatment increased the hydrogel hydrogen bonding content by 7.72 % and synergized with the induction of kC by K+ to enhance the tensile and compressive strengths by 8.12 and 34.6 times, respectively. Meanwhile, the BPKKOH hydrogel's fatigue resistance and shape recovery after water loss were improved. Additionally, the BPKKOH hydrogels can be monitored for finger bending, showing clear and stable differences in electrical signals. BPKKOH hydrogels combined with Morse code realize applications in information transmission and encryption/decryption. Notably, introducing KOH ensures the molding and preparation of BPKKOH hydrogel fibers while having good signal responsiveness and monitoring ability. More importantly, it can be woven into fabrics that can be loaded with heavy weights, which has the potential to be directly applied in smart wearables. This work provides new ideas for applying flexible sensors and wearable smart textiles.


Assuntos
Hidrogéis , Álcool de Polivinil , Carragenina , Condutividade Elétrica , Água
7.
Int J Biol Macromol ; 265(Pt 1): 130858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490398

RESUMO

Electrospinning has been acknowledged as an efficient technique for the fabrication of continuous nanofibers from polymeric based materials such as polyvinyl alcohol (PVA), cellulose acetate (CA), chitin nanocrystals and others. These nanofibers exhibit chemical and mechanical stability, high porosity, functionality, high surface area and one-dimensional orientation which make it extremely beneficial in industrial application. In recent years, research on chitin - a biopolymer derived from crustacean and fungal cell wall - had gained interest due to its unique structural arrangement, excellent physical and chemical properties, in which make it biodegradable, non-toxic and biocompatible. Chitin has been widely utilized in various applications such as wound dressings, drug delivery, tissue engineering, membranes, food packaging and others. However, chitin is insoluble in most solvents due to its highly crystalline structure. An appropriate solvent system is required for dissolving chitin to maximize its application and produce a fine and smooth electrospun nanofiber. This review focuses on the preparation of chitin polymer solution through dissolution process using different types of solvent system for electrospinning process. The effect of processing parameters also discussed by highlighting some representative examples. Finally, the perspectives are presented regarding the current application of electrospun chitin nanofibers in selected fields.


Assuntos
Quitina , Engenharia Tecidual , Quitina/química , Engenharia Tecidual/métodos , Polímeros , Álcool de Polivinil/química , Solventes
8.
Sci Rep ; 14(1): 7356, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548906

RESUMO

Packaging is very important to maintain the quality of food and prevent the growth of microbes. Therefore, the use of food packaging with antimicrobial properties protects the food from the growth of microorganisms. In this study, antibacterial nanocomposite films of polyvinyl alcohol/starch/chitosan (PVA/ST/CS) together with nickel oxide-copper oxide nanoparticles (NiO-CuONPs) are prepared for food packaging. NiO-CuONPs were synthesized by the co-precipitation method, and structural characterization of nanoparticles (NPs) was carried out by XRD, FTIR, and SEM techniques. Composites of PVA/ST/CS, containing different percentages of NPs, were prepared by casting and characterized by FTIR and FESEM. The mechanical properties, diffusion barrier, and thermal stability were determined. The nanoparticles have a round structure with an average size of 6.7 ± 1.2 nm. The cross-section of PVA/ST/CS film is dense, uniform, and without cracks. In the mechanical tests, the addition of NPs up to 1% improved the mechanical properties (TS = 31.94 MPa), while 2% of NPs lowered TS to 14.76 MPa. The fibroblast cells toxicity and the films antibacterial activity were also examined. The films displayed stronger antibacterial effects against Gram-positive bacteria (Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli). Furthermore, these films have no toxicity to fibroblast cells and the survival rate of these cells in contact with the films is more than 84%. Therefore, this film is recommended for food packaging due to its excellent mechanical and barrier properties, good antibacterial activity, and non-toxicity.


Assuntos
Quitosana , Nanopartículas , Quitosana/farmacologia , Quitosana/química , Embalagem de Alimentos/métodos , Álcool de Polivinil/química , Amido , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
9.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547269

RESUMO

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Polímeros , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Álcool de Polivinil/química , Álcool de Polivinil/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletricidade , Animais , Ratos , Ratos Sprague-Dawley , Compostos Férricos/química , Compostos Férricos/metabolismo
10.
Chem Pharm Bull (Tokyo) ; 72(3): 324-329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508743

RESUMO

Polymeric nanofibers generated via electrospinning offer a promising platform for drug delivery systems. This study examines the application of electrospun polyvinyl alcohol (PVA) nanofibers for controlled lysozyme (LZM) delivery. By using various PVA grades, such as the degree of polymerization/hydrolysis, this study investigates their influence on nanofiber morphology and drug-release characteristics. LZM-loaded PVA monolithic nanofibers having 50% drug content exhibit efficient entrapment, wherein rapid dissolution is achieved within 30 min. The initial burst of LZM from the nanofiber was reduced as the LZM content was lowered. The initial dissolution is greatly influenced by the choice of PVA grade used; fully hydrolyzed PVA nanofibers demonstrate controlled release due to the reduced water solubility of PVA. Furthermore, coaxial electrospinning, which creates core-shell nanofibers with polycaprolactone as a controlled release layer, enables sustained LZM release over an extended period. This study confirms a correlation between PVA characteristics and controlled drug release and provides valuable insights into tailoring nanofiber properties for pharmaceutical applications.


Assuntos
Nanofibras , Álcool de Polivinil , Preparações de Ação Retardada , Muramidase , Sistemas de Liberação de Medicamentos
11.
An Acad Bras Cienc ; 96(1): e20230092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511742

RESUMO

Poly(vinyl alcohol) (PVOH) is a water-soluble polymer having a hydroxyl group as a functional group contributing to excellent membrane-forming and mechanical performance. PVOH is obtained by the hydrolysis of polyvinyl acetate, and its physical properties are affected by its degree of hydrolysis, whether, partial or complete. In this study, PVOH hydrogels were synthesized by a solution under stirring and heating techniques with citric (AC) and tartaric acids (AT) crosslinker agents, with different time reactions of 20 min.; 1; 2, and 3 h were investigated. These samples were characterized by the kinetics of water uptake, gel fraction, thermal analysis, and physical-chemical analysis, and their structure was elucidated. The results obtained have shown chemical modification by organic acids and improved the properties to good thermal stability and swelling to AT hydrogels up to 900% water uptake. In the gel fraction, the samples' esterification was shown and verified by FTIR spectra. To AC hydrogels the chemical modification was low due to the steric hindrance, which caused disintegration of the hydrogel in swelling and gel fraction test, but with absorption in the moisture test performed. The incorporation and effects of citric and tartaric acids enable the development of new hydrogel systems, with specific properties.


Assuntos
Hidrogéis , Álcool de Polivinil , Álcool de Polivinil/química , Tempo de Reação , Hidrogéis/química , Água
12.
J Mater Chem B ; 12(12): 3079-3091, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38444266

RESUMO

Traditional hydrogels are usually weak and brittle, which limit their application in articular cartilage replacement because cartilage is generally strong, tough, and elastic in nature. Therefore, it is highly desirable to construct hydrogels to mimic the mechanical properties of the native articular cartilage. Herein, in this work, poly(vinyl alcohol)/polyacrylamide (PVA/PAM) DN hydrogels were prepared by in situ polymerization, which were then treated with Hofmeister series ions (Cit3-, SO42-, and Cl-) to achieve H-PVA/PAM DN hydrogels. Among the three Hofmeister ions, the DN hydrogel treated with Cit3- (named PVA/PAM-Cit) showed the densest microstructure and the highest crystallinity degree. In this context, PVA/PAM-Cit exhibited a tensile strength of 18.9 ± 1.6 MPa, a compressive strength of 102.3 ± 7.9 MPa, a tensile modulus of 10.6 ± 2.1 MPa, a compressive modulus of 8.9 ± 0.8 MPa, and a roughness of 66.2 ± 4.2 MJ m-3, respectively, which were the highest strength and modulus, and the second highest toughness when compared with those of the reported PVA and PVA based DN hydrogels so far. It also showed an extreme high elasticity, which could maintain a stress of 99.2% after 500 cycles of fatigue testing. Additionally, PVA/PAM-Cit can promote the adhesion, spreading and proliferation of chondrocytes. These results verify that such a strong, tough, and elastic hydrogel could be a novel candidate material for articular cartilage replacement.


Assuntos
Resinas Acrílicas , Cartilagem Articular , Álcool de Polivinil/química , Etanol , Hidrogéis/química , Íons
13.
Talanta ; 272: 125789, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428130

RESUMO

Moving towards green chemistry to minimize the diverse effect of chemicals on human health and environment has become a great issue in chemistry. On the other hand, determination of pharmaceuticals is an important issue for both human health and environment. In this regard two natural and benign compounds such as quercetin a polyphenolic flavonoid and Arabic Gum (AG) a polysaccharide were used to construct a sensor for meropenem. Herein, a new method was established for the synthesis of AG and polyvinyl alcohol (PVA) composite decorated by quercetin nanoparticles (QUENPs) as a fluorimetric film sensor to measure meropenem. In order to embed QUENPs in the polymer composite substrate, first QUENPs were synthesized and then added to the prepared composite solution under optimal conditions. The characteristics of AG and PVA composite (AG-PVA) and AG-PVA composite decorated by QUENPs films (QUENPs-AG-PVA), before and after the addition of meropenem was studied by TEM, FT-IR and EDX-Mapping. The developed film sensor was placed in a holder made with 3D printer. The difference in the fluorescence intensity of the fabricated film before and after the addition of meropenem was taken as the signal for measuring meropenem. The effect of different parameters on the fabrication of film fluorimetric sensor such as the concentration of polymer solutions, the volume of QUENPs and the volume of glycerol were investigated. Factors affecting the measurement of meropenem such as pH, type of buffer, volume of meropenem solution added on the sensor and time were also investigated. Under the obtained optimum conditions, the calibration graph was linear in the concentration range of 50-800 ng mL-1 with a correlation coefficient (r) of 0.9976 and the detection limit was 42.6 ng mL-1. The relative standard deviation was 3.5% and 1.4%, for eight replicate determinations of 100 ng mL-1 and 400 ng mL-1 of meropenem, respectively. The proposed method was successfully utilized for determination of meropenem in blood serum, human urine and pharmaceutical samples.


Assuntos
Nanopartículas , Álcool de Polivinil , Humanos , Álcool de Polivinil/química , Meropeném , Quercetina , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Polímeros
14.
J Mater Chem B ; 12(13): 3262-3272, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38456357

RESUMO

Traditional petroleum-based plastics have high energy consumption, require professional equipment, are non-degradable after use, and lack antibacterial properties, making it impossible to achieve long-lasting freshness in fruits and vegetables. Herein, we report a novel co-type film-forming method with low energy consumption and without production equipment, which uses PVA-borax gel as a substrate and adds a certain proportion of CMC and TA to prepare multifunctional CMC/TA@PVA-borax composite hydrogels (CTPB). The dynamic borax ester bonding and hydrogen bonding in the CTPB hydrogel results in an ultra-high tensile strength of more than 5500% and rapid self-healing within 8 s. Interestingly, hydrogels can be arbitrarily shaped and stretched like play dough and thus can be stretched into ductile films by co-type film formation. The antimicrobial properties of the hydrogel film can be attributed to the synergistic effects of TA and borax. The mussel structure of TA allows the hydrogel film to adhere directly to different surfaces for more effective bacterial killing. In addition, the hydrogel film has a high level of biosafety and biodegradability and shows good performance in fruit storage. This study provides a convenient and low-energy method for the preparation of films, which in part reduces the increasing environmental pollution caused by petroleum-based plastics.


Assuntos
Boratos , Frutas , Petróleo , Resistência à Tração , Álcool de Polivinil/química , Hidrogéis/química , Plásticos
15.
J Mater Sci Mater Med ; 35(1): 23, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526676

RESUMO

In the aging society, slow bone regeneration poses a serious hindrance to the quality of life. To deal with this problem, in this study, we have combined irisin with the bioglass regular beads to enhance the bone regeneration process. For this purpose, highly porous bioglass was obtained as spherical beads by using sodium alginate. The bioglass was evaluated by various analytical techniques such as SEM, EDS, XRD, and pore size distribution. The results depicted that porous bioglass was prepared correctly and SEM analysis showed a highly porous bioglass was formulated. On this bioglass, irisin was loaded with the assistance of polyvinyl alcohol (PVA) in three concentrations (50 ng/ml, 100 ng/ml, and 150 ng/ml per 1 g of bioglass). SEM analysis showed that pores are covered with PVA. The irisin release profile showed a sustained release over the time period of 7 days. In vitro, biocompatibility evaluation by the MC3T3E1 cells showed that prepared bioglass and irisin loaded bioglass (BGI50, BGI100, and BG150) are highly biocompatible. Alizarin Red staining analysis showed that after 2 weeks BGI50 samples showed highest calcium nodule formation. In vivo in the rabbit femur model was conducted for 1 and 2 months. BGI150 samples showed highest BV/TV ratio of 37.1 after 2 months. The histological data showed new bone formation surrounding the beads and with beads loaded with irisin. Immunohistochemistry using markers OPN, RUNX, COL, and ALP supported the osteogenic properties of the irisin-loaded bioglass beads. The results indicated that irisin-loaded bioglass displayed remarkable bone regeneration.


Assuntos
Osteogênese , Tecidos Suporte , Animais , Coelhos , Tecidos Suporte/química , Fibronectinas , Qualidade de Vida , Cerâmica/química , Álcool de Polivinil
16.
Int J Biol Macromol ; 263(Pt 1): 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428758

RESUMO

Anthocyanins (ACNs) are natural compounds with potential applications due to their colorimetric response to pH. Due to their sensitivity to various environmental factors, nanoencapsulation with biopolymers is a successful strategy for stabilizing ACNs. In this work ACNs were extracted from grape skins and encapsulated into chitosan (CS) nanoparticles by ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent. CS nanoparticles loaded with ACNs had particle sizes between 291 and 324 nm and polydispersity index around 0.3. The encapsulation efficiency of ACNs was approximately 60 %; and encapsulated anthocyanins (ACN-NPs) exhibited color change properties under different pH conditions. pH-sensitive labels based on polyvinyl alcohol (PVA) were prepared by the casting method. The effect of incorporating ACN-NPs on the physical, structural, and pH-sensitive properties of PVA labels was evaluated, and its application as shrimp freshness indicator was studied. The nanoencapsulation protected ACNs against heat and light treatments, preserving the original purple color. When applying the label, visible changes from red to blue until reaching yellow were observed with the change in the quality of the shrimp at the refrigeration temperature. The results suggest that PVA labels containing ACNs encapsulated in C-NPs can be used as smart packaging labels in the food industry.


Assuntos
Quitosana , Nanopartículas , Vitis , Quitosana/química , Álcool de Polivinil/química , Antocianinas/química , Nanopartículas/química , Extratos Vegetais/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio
17.
IEEE Trans Nanobioscience ; 23(2): 368-377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427547

RESUMO

Known for its water solubility, flexibility, strong adhesion, and eco-friendly nature, polyvinyl alcohol (PVA) is widely used in various industries. In the medical field, it is used for applications such as creating bandages and orthopaedic devices. Incorporating sodium alginate (SA) into PVA membranes enhances their structural integrity, breathability, and permeability, thereby minimising the risk of cellular damage in the wound zone. Moreover, the addition of tamanu oil (C alophyllum inophyllum L.) and silver nanoparticles, both of which are known for their antibacterial properties and benefits in traditional wound healing, further enhances the membranes' wound-healing effectiveness. Following production, the membranes undergo a series of tests designed to evaluate their physical properties as well as their antioxidant and antibacterial capabilities. Subsequently, in vitro testing is conducted using human skin cells; experiments on Wistar rats are then performed. Numerous experiments have consistently demonstrated that the performance of polyvinyl alcohol/sodium alginate/tamanu oil (PVA/SA/Oil) membrane is superior to that of polyvinyl alcohol/sodium alginate/tamanu oil/silver nanoparticles (PVA/SA/Oil/Ag NP) membrane. Specifically, the polyvinyl alcohol/sodium alginate (PVA/SA) combination exhibits an impressive wound-healing rate of 98.82% after 15 days, with cells maintaining a high viability of 92% in a nourishing environment. Moreover, these membranes exhibit exceptional resistance to the oxidation of free radicals, surpassing the 70% threshold, and they possess antibacterial activity against Staphylococcus aureus subsp. aureus in vitro. Based on the obtained results, the nanofiber membranes composed of polyvinyl alcohol/ alginate/ tamanu oil, with or without silver nanoparticles, have shown potential as wound dressings in the wound care discipline.


Assuntos
Nanopartículas Metálicas , Prata , Staphylococcus , Ratos , Animais , Humanos , Prata/farmacologia , Prata/química , Álcool de Polivinil , Alginatos/farmacologia , Alginatos/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Ratos Wistar , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens
18.
Sci Rep ; 14(1): 5391, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443415

RESUMO

The ability of wound dressing materials to tackle skin pathogens colonization that is associated with open wound infections is limited. Recently, green-synthesized metal oxide nanoparticles has received a lot of attention to overcome this limitation. However, titanium dioxide nanoparticles (TiO2-NPs) exhibit exceptional antibacterial properties. In this work, several concentrations (0, 1, 3, and 5 wt.%) of TiO2 NPs prepared using Aloe vera leaf extract were added to a blend of polyvinyl alcohol and sodium alginate (PVA:SA). This nanocomposite was designed to enhance the healing process of wounds. The interaction between the PVA:SA composite and the TiO2 NPs was confirmed by FTIR. The thermal behavior of the nanocomposite films was investigated using DSC and TGA. The experimental results indicate that the glass transition temperatures of the nanocomposites increased by increasing the added amount of TiO2 NPs to be 53.7 °C (1 wt.%), 55.8 °C (3 wt.%), and 60.6 °C (5 wt.%), which were consistently lower than the glass transition temperature of the matrix material (69.6 °C). The Dynamic Mechanical Analysis was examined. The nanocomposite doped with 5 wt.% of TiO2 NPs detected a high storage modulus (21.6 × 108). Based on swelling and degradation studies, the prepared PVA:SA:TiO2 nanocomposite films have an excellent swelling rate, and the inclusion of TiO2 NPs increases the stability of the polymeric matrix. The PVA:SA:TiO2 nanocomposite films exhibited a superior antibacterial efficacy against Gram-positive bacteria such as Bacillus cereus and Staphylococcus aureus, compared to their effectiveness against Gram-negative bacteria like Escherichia coli. Moreover, the nanocomposite films were biocompatible with Human Skin Fibroblast. Therefore, the developed PVA:SA:TiO2 nanocomposite films suit wound dressing applications.


Assuntos
Surdez , Nanopartículas Metálicas , Humanos , Álcool de Polivinil , Bandagens , Alginatos , Antibacterianos/farmacologia , Escherichia coli
19.
J Orthop Surg Res ; 19(1): 175, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459593

RESUMO

BACKGROUND: Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS: This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS: The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS: PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.


Assuntos
Escherichia coli , Álcool de Polivinil , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Próteses e Implantes , Biofilmes , Titânio , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
20.
Int J Biol Macromol ; 264(Pt 1): 130628, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453111

RESUMO

Multifunctional packaging films that monitor and maintain fish freshness hold significant potential for use in the food industry. This study introduces a multifunctional intelligent packaging film comprising alizarin (ALI)-embedded cubic γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) (denoted as γ-CD-MOFs@ALI) in a methylcellulose/polyvinyl alcohol (MP)-based matrix to achieve colorimetric monitoring and enhanced preservation of fish freshness. The MP/γ-CD-MOFs@ALI reveals a rapid color transition in 3 min from yellow color progressively darkens to purple as the pH increases from 2.0 to 10.0. And it is proved that the as-prepared film owns high antibacterial activity against Gram-positive bacteria (S. aureus), impressive ABTS+ radical scavenging rates of 85.54 ± 1.25 %, and effective ALI sustained-release properties. The intelligent packaging film exhibits an excellent colorimetric response to total volatile basic nitrogen and provides exceptional freshness preservation performance, effectively prolonging the shelf life of Ctenopharyngodon idella (grass carp) under 25 °C to 42 h.


Assuntos
Antraquinonas , Carpas , Estruturas Metalorgânicas , gama-Ciclodextrinas , Animais , Álcool de Polivinil , Staphylococcus aureus , Metilcelulose , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Antocianinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...