Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.552
Filtrar
1.
J Am Chem Soc ; 146(10): 6773-6783, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421958

RESUMO

The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.


Assuntos
Hidrocarbonetos Fluorados , Propanóis , Proteínas , Triptofano , Proteínas/química , Peptídeos , Catálise
2.
Int J Biol Macromol ; 261(Pt 2): 129845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302016

RESUMO

Numerous neurodegenerative disorders are characterized by protein misfolding and aggregation. The mechanism of protein aggregation is intricate, and it is very challenging to study at cellular level. Inhibition of protein aggregation by interfering with its pathway is one of the ways to prevent neurodegenerative diseases. In the present work, we have evaluated the protective effect of a polyphenol compound chlorogenic acid (CGA) on the native and molten globule state of horse heart cytochrome c (cyt c). A molten globule state of this heme protein was achieved in the presence of fluorinated alcohol 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at physiological pH, as studied by UV-Vis absorption, circular dichroism, intrinsic and ANS fluorescence. We found that at 50 % (v/v) HFIP, the native cyt c transformed into a molten globule state. The same techniques were also used to analyze the protective effect of CGA on the molten globule state of cyt c, and the results show that the CGA prevented the molten globular state and retained the protein close to the native state at 1:1 protein:CGA sub molar ratio. Molecular dynamics study also revealed that CGA retains the stability of cyt c in HFIP medium by preserving it in an intermediate state close to native conformation.


Assuntos
Ácido Clorogênico , Citocromos c , Hidrocarbonetos Fluorados , Propanóis , Animais , Cavalos , Citocromos c/química , Dobramento de Proteína , Agregados Proteicos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Conformação Proteica , Desnaturação Proteica
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339215

RESUMO

α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer-Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component.


Assuntos
Alcinos , Líquidos Iônicos , Propanóis , Cetonas , Dióxido de Carbono , Biomassa , Catálise
4.
J Proteomics ; 296: 105124, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38364903

RESUMO

Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.


Assuntos
1-Propanol , Ácido Láctico/análogos & derivados , Serina , Humanos , Feminino , Animais , Bovinos , Estro , Metabolômica , Biomarcadores/análise , Metaboloma , Propanóis
5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255766

RESUMO

Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 µM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G0/G1 phase and downregulating the expression of C/EBPß, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Propanóis , Camundongos , Animais , Células 3T3-L1 , Ciclo Celular , Divisão Celular
6.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256094

RESUMO

The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Propanóis , Dióxido de Carbono , Ouro , Alumínio , Compostos de Epóxi , Íons
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38038711

RESUMO

There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ±â€…38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.


Enteric methane (CH4) is a by-product from the fermentation of feed in the digestive tract of cattle. The production of CH4 is responsible for the loss of 2% to 12% of the animal's gross energy intake. A potent greenhouse gas, CH4 from ruminant systems accounts for 30% of international anthropogenic CH4 emissions. As a result, a significant effort has been made internationally to reduce CH4 emissions from ruminants in order to achieve reductions in global greenhouse gas emissions. The supplementation of additives in the feed has been demonstrated to be an effective strategy in reducing CH4 emitted from livestock. The purpose of this research was to investigate the effects of supplementing young growing cattle with the CH4 inhibitor, 3-nitrooxypropanol (3-NOP), consuming a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of the experiment) were assigned to one of two treatments: control (no 3-NOP) and 3-NOP. Animals received their diets for 12 wk. Animal performance was recorded weekly, with CH4 and hydrogen (H2) emissions recorded daily. Dry matter intake and animal performance were not affected by the inclusion of 3-NOP. Over the duration of this study, the inclusion of 3-NOP decreased daily CH4 emissions by 30.6%, with a 227% increase in daily H2 emissions.


Assuntos
Ração Animal , Propanóis , Rúmen , Animais , Bovinos , Masculino , Ração Animal/análise , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Metano/metabolismo , Rúmen/metabolismo
8.
J Dairy Sci ; 107(1): 220-241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690719

RESUMO

The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.


Assuntos
Leite , Nitratos , Propanóis , Feminino , Bovinos , Animais , Nitratos/farmacologia , Lactação , Gorduras na Dieta/farmacologia , Metano , Dieta/veterinária , Ingestão de Alimentos , Ração Animal/análise , Rúmen , Zea mays
9.
Chem Res Toxicol ; 37(1): 16-19, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079418

RESUMO

The surfactant sodium lauryl sulfate (SLS), although consistently positive in the murine local lymph node assay (LLNA) for skin sensitization, shows no evidence of being a human sensitizer and is often described as a false positive, lacking structural alerts for sensitization. However, there is evidence of the cinnamyl sulfate anion being the metabolite responsible for the sensitization potential of cinnamyl alcohol to humans and in animal tests. Here, manufacturing chemistry data and physical organic chemistry principles are applied to confirm that SLS is not reactive enough to sensitize, whereas sensitization to cinnamyl alcohol via cinnamyl sulfate is plausible. Sensitization data for several other primary alcohols, including geraniol, farnesol, and possibly hydrocortisone, are also consistent with this mechanism. It seems possible that biosulfation may play a wider role than has previously been recognized in skin sensitization.


Assuntos
Álcoois , Dermatite Alérgica de Contato , Humanos , Animais , Camundongos , Álcoois/metabolismo , Sulfatos/metabolismo , Pele/metabolismo , Propanóis/metabolismo , Ensaio Local de Linfonodo , Dermatite Alérgica de Contato/metabolismo , Alérgenos/química
10.
Environ Entomol ; 53(1): 101-107, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160262

RESUMO

As part of a long-term project on unraveling the use of pheromones in the large beetle family Cerambycidae, field trials were conducted with generic blends of known cerambycid pheromones at a desert site in southern California. In the first year of testing (2022), the species Eustromula valida (LeConte) (subfamily Cerambycinae, tribe Elaphidiini) and Aethecerinus latecinctus (Horn) (Cerambycinae, Trachyderini) were weakly attracted to one of the lure blends. In follow-up trials in 2023, only E. valida were caught, and collection of volatiles from both sexes of E. valida determined that males sex-specifically produced 3-methylthiopropan-1-ol (methionol), a compound that was not in the tested lure blends. Beetles of both sexes were strongly and specifically attracted to this compound in field bioassays, verifying that it is an aggregation-sex pheromone. No sympatric species were attracted to methionol while it was deployed in the field. Several recent studies have identified methionol as a pheromone component for other cerambycid species in both North and South America, suggesting it may represent another common pheromone component within the Cerambycidae.


Assuntos
Besouros , Atrativos Sexuais , Sulfetos , Feminino , Masculino , Animais , Atrativos Sexuais/farmacologia , Feromônios/farmacologia , Propanóis
11.
Biotechnol Lett ; 46(1): 107-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150097

RESUMO

PURPOSE: Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS: This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION: CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.


Assuntos
Esterases , Lignina , Polyporales , Propanóis , Esterases/química , Carboidratos , Ésteres , Glucuronatos , Especificidade por Substrato
12.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569673

RESUMO

The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.


Assuntos
Alcenos , Vanádio , Alcenos/química , Vanádio/química , Compostos de Epóxi/química , Estereoisomerismo , Propanóis/química , Catálise , Álcoois/química
13.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445775

RESUMO

Ionic liquids (ILs) have presented excellent behaviors in the separation of azeotropes in extractive distillation. However, the intrinsic molecular nature of ILs in the separation of azeotropic systems is not clear. In this paper, Fourier-transform infrared spectroscopy (FTIR) and theoretical calculations were applied to screen the microstructures of ethyl propionate-n-propanol-1-ethyl-3-methylimidzolium acetate ([EMIM][OAC]) systems before and after azeotropy breaking. A detailed vibrational analysis was carried out on the v(C=O) region of ethyl propionate and v(O-D) region of n-propanol-d1. Different species, including multiple sizes of propanol and ethyl propionate self-aggregators, ethyl propionate-n-propanol interaction complexes, and different IL-n-propanol interaction complexes, were identified using excess spectroscopy and confirmed with theoretical calculations. Their changes in relative amounts were also observed. The hydrogen bond between n-propanol and ethyl propionate/[EMIM][OAC] was detected, and the interaction properties were also revealed. Overall, the intrinsic molecular nature of the azeotropy breaking was clear. First, the interactions between [EMIM][OAC] and n-propanol were stronger than those between [EMIM][OAC] and ethyl propionate, which influenced the relative volatilities of the two components in the system. Second, the interactions between n-propanol and [EMIM][OAC] were stronger than those between n-propanol and ethyl propionate. Hence, adding [EMIM][OAC] could break apart the ethyl propionate-n-propanol complex (causing the azeotropy in the studied system). When x([EMIM][OAC]) was lower than 0.04, the azeotropy still existed mainly because the low IL could not destroy the whole ethyl propionate-n-propanol interaction complex. At x(IL) > 0.04, the whole ethyl propionate-n-propanol complex was destroyed, and the azeotropy disappeared.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , 1-Propanol , Espectroscopia de Infravermelho com Transformada de Fourier , Propanóis
14.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511098

RESUMO

The reductive catalytic fractionation of flax shives in the presence of bimetallic NiRu catalysts supported on oxidized carbon materials (CM) such as mesoporous Sibunit and carbon mesostructured by KAIST (CMK-3) was studied. The catalysts based on CMK-3 were characterized by a higher surface area (1216 m2/g) compared to the ones based on Sibunit (315 m2/g). The catalyst supported on CMK-3 (10Ni3RuC400) was characterized by a more uniform distribution of Ni particles, in contrast to the Sibunit-based catalyst (10Ni3RuS450), on the surface of which large agglomerated particles (300-400 nm) were presented. The bimetallic catalysts were found to be more selective towards propanol-substituted methoxyphenols compared to monometallic Ru/C and Ni/C catalysts. A high yield of monomers (up to 26 wt%, including 17% 4-propanol guaiacol) was obtained in the presence of a 10Ni3RuC400 catalyst based on CMK-3.


Assuntos
Etanol , Linho , Catálise , 1-Propanol , Propanóis , Carbono
15.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373528

RESUMO

Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker's method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs-Helmholtz equation. Robinson-Mathias, and Peng-Robinson-Stryjek-Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included.


Assuntos
1-Propanol , 2-Propanol , Eucaliptol , Termodinâmica , Gases , Propanóis
16.
Org Lett ; 25(27): 5073-5077, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37387465

RESUMO

A regio- and stereoselective allylation of N-unsubstituted anilines has been developed that explores aryl allenes as masked allyl synthons and a combination of Mg(OTf)2/HFIP as an effective proton source. The protocol is operationally simple and scalable and offers high yields of diverse p-allyl anilines bearing an olefin motif with exclusive E-geometry. The methodology was also suitable for the regioselective allylation of indole and can be advanced in a three-component reaction mode using NIS activator. The alteration of the catalytic system with TfOH resulted in the regioselective difunctionalization of allenes, which follows an allylation/hydroarylation cascade.


Assuntos
Alcadienos , Estereoisomerismo , Propanóis
17.
J Agric Food Chem ; 71(22): 8551-8557, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216486

RESUMO

Cell-free expression systems have emerged as a potent and promising platform for the biosynthesis of chemicals by reconstituting in vitro expressed enzymes. Here, we report cell-free biosynthesis of cinnamyl alcohol (cinOH) with enhanced productivity by using the Plackett-Burman experimental design for multifactor optimization. Initially, four enzymes were individually expressed in vitro and directly mixed to reconstitute a biosynthetic route for the synthesis of cinOH. Then, the Plackett-Burman experimental design was used to screen multiple reaction factors and found three crucial parameters (i.e., reaction temperature, reaction volume, and carboxylic acid reductase) for the cinOH production. With the optimum reaction conditions, approximately 300 µM of cinOH was synthesized after 10 h of cell-free biosynthesis. Extending the production time to 24 h also increased the production to a maximum yield of 807 µM, which is nearly 10 times higher than the initial yield without optimization. This study demonstrates that cell-free biosynthesis can be combined with other powerful optimization methodologies such as the Plackett-Burman experimental design for enhanced production of valuable chemicals.


Assuntos
Sistema Livre de Células , Propanóis
18.
J Org Chem ; 88(13): 9459-9468, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229619

RESUMO

An intramolecular amination of allylic alcohols is developed as an efficient and general access to biologically important multisubstituted indolizines and their variants. Two metal-free synthetic platforms including using aqueous hydrochloric acid solution as the solvent and p-toluenesulfonic acid as the catalyst have been established, enabling the divergent synthesis of these valuable compounds in high yields.


Assuntos
Paládio , Propanóis , Aminação , Catálise
19.
Chemistry ; 29(33): e202300826, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36973187

RESUMO

Transition metal-catalyzed divergent synthesis through alternation of the catalyst is appealing, as it provides an operationally simple way to access different valuable products, while using the same reactants as starting materials. Herein, a gold-catalyzed cascade reaction of conjugated diynamides with allylic alcohols is described. By variation of the catalysts, substituted allenes and furans could be obtained selectively. Mechanistic studies indicate that, after the addition of allylic alcohol to gold-activated diynamide, a [3,3]-sigmatropic rearrangement would take place and lead to the formation of a common reactive intermediate, which would further convert to the final products selectively. Further variation of the structure of diynamides has unveiled an additional reaction sequence involving intramolecular Himbert arene/allene Diels-Alder cycloaddition to afford a series of dearomatized products bearing bicyclo[2,2,2]octadiene core.


Assuntos
Ouro , Propanóis , Ouro/química , Catálise
20.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677609

RESUMO

The epoxidation process of semi-synthetic triterpenoids 2-methyl-3-oxo-19ß,28-epoxy- 18α-olean-1-ene, and its allylic alcohol derivatives were examined. 1,2α-epoxide, as the main product, was found to be formed from the starting enone exposed to m-chloroperbenzoic acid (mCPBA). In the case of hydroxy-directed mCPBA-oxidation of triterpenic allyl alcohols and their 3α-alkyl-substituted derivatives, inversion of C1 and C2 asymmetric centers with the formation of 1,2ß-epoxyalcohols took place. The synthesis of 2,3α-epoxides was fulfilled from 2,3-dialkyl-substituted C(3) allyl alcohols by the action of pyridinium chlorochromate under [1,3]-oxidative rearrangement conditions. The transformations brought about enabled chiral oleanane derivatives with an oxygen-containing substituent at the C1, C2, and C3 atoms to be obtained. The study also provides information on in silico PASS prediction of pharmacological effects and in vitro evaluation of the cytotoxic activity of the synthesized compounds.


Assuntos
Clorobenzoatos , Propanóis , Estereoisomerismo , Propanóis/farmacologia , Compostos de Epóxi/farmacologia , Álcoois
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...