Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175846

RESUMO

It has been demonstrated previously that a variety of carbonic anhydrase inhibitors (CAIs) can induce vasodilation in pre-contracted retinal arteriolar segments although with different efficacy and potency. Since the CAIs tested so far are able to permeate cell membranes and inhibit both intracellular and extracellular isoforms of the enzyme, it is not clear whether extra- or intracellular isoforms or mechanisms are mediating their vasodilatory effects. By means of small wire myography, we have tested the effects of four new CAIs on wall tension in pre-contracted retinal arteriolar segments that demonstrably do not enter cell membranes but have high affinity to both cytosolic and membrane-bound isoforms of CA. At concentrations between 10-6 M to 10-3 M, none of the four membrane impermeant CAIs had any significant effect on arteriolar wall tension, while the membrane permeant CAI benzolamide (10-3 M) fully dilated all arteriolar segments tested. This suggests that CAI act as vasodilators through cellular mechanisms located in the cytoplasm of vascular cells.


Assuntos
Inibidores da Anidrase Carbônica , Artéria Retiniana , Animais , Suínos , Inibidores da Anidrase Carbônica/farmacologia , Vasodilatação , Benzolamida/farmacologia , Permeabilidade
2.
J Enzyme Inhib Med Chem ; 38(1): 2184299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36856011

RESUMO

Schistosoma mansoni is an intestinal parasite with one ß-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.


Assuntos
Anidrases Carbônicas , Parasitos , Animais , Schistosoma mansoni , Benzolamida , Clonagem Molecular
3.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106611

RESUMO

A new ß-class carbonic anhydrase was cloned and purified from the filamentous ascomycete Sordaria macrospora, CAS3. This enzyme has a higher catalytic activity compared to the other two such enzymes from this fungus, CAS1 and CAS2, which were reported earlier, with the following kinetic parameters: kcat of (7.9 ± 0.2) × 105 s-1, and kcat/Km of (9.5 ± 0.12) × 107 M-1∙s-1. An inhibition study with a panel of sulfonamides and one sulfamate was also performed. The most effective CAS3 inhibitors were benzolamide, brinzolamide, dichlorophnamide, methazolamide, acetazolamide, ethoxzolamide, sulfanilamide, methanilamide, and benzene-1,3-disulfonamide, with KIs in the range of 54-95 nM. CAS3 generally shows a higher affinity for this class of inhibitors compared to CAS1 and CAS2. As S. macrospora is a model organism for the study of fruiting body development in fungi, these data may be useful for developing antifungal compounds based on CA inhibition.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Sordariales/enzimologia , Relação Estrutura-Atividade , Acetazolamida/química , Sequência de Aminoácidos/genética , Benzolamida/química , Inibidores da Anidrase Carbônica/classificação , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/isolamento & purificação , Etoxzolamida/química , Humanos , Cinética , Metazolamida/química , Sulfanilamida/química , Sulfonamidas/química , Tiazinas/química
4.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678227

RESUMO

Carbonic anhydrase inhibitors (CAIs), such as dorzolamide (DZA), are used as anti-glaucoma drugs to lower intraocular pressure, but it has been found that some of these drugs act as vasodilators of retinal arteries. The exact mechanism behind the vasodilatory effect is not yet clear. Here we have addressed the issue by using small vessel myography to examine the effect of CAIs of the sulfonamide and coumarin type on the wall tension in isolated segments of porcine retinal arteries. Vessels were pre-contracted by the prostaglandin analog U-46619, and CAIs with varying affinity for five different carbonic anhydrase (CA) isoenzymes found in human tissue tested. We found that all compounds tested cause a vasodilation of pre-contracted retinal arteries, but with varying efficacy, as indicated by the calculated mean EC50 of each compound, ranging from 4.12 µM to 0.86 mM. All compounds had a lower mean EC50 compared to DZA. The dilation induced by benzolamide (BZA) and DZA was additive, suggesting that they may act on separate mechanisms. No clear pattern in efficacy and affinity for CA isoenzymes could be discerned from the results, although Compound 5, with a low affinity for all isoenzymes except the human (h) CA isoform IV, had the greatest potency, with the lowest EC50 and inducing the most rapid and profound dilation of the vessels. The results suggest that more than one isozyme of CA is involved in mediating its role in controlling vascular tone in retinal arteries, with a probable crucial role played by the membrane-bound isoform CA IV.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Artéria Retiniana/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Acetazolamida/química , Acetazolamida/farmacologia , Animais , Benzolamida/química , Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Suínos , Tiofenos/química , Tiofenos/farmacologia
5.
Exp Mol Pathol ; 105(3): 345-351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308197

RESUMO

BACKGROUND: Recent studies from our laboratory show the cardioprotective action of benzolamide (BZ, carbonic anhydrase inhibitor) against ischemia-reperfusion injury. However, the mechanisms involved have not been fully elucidated. OBJECTIVE: To examine the participation of the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) in the effects of BZ in a model of regional ischemia. METHODS: Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of coronary artery occlusion followed by 60 min of reperfusion (IC). Other hearts received BZ during the first 10 min of reperfusion in absence or presence of L-NAME, NOS inhibitor. The infarct size (IS) and the post-ischemic recovery of myocardial function were measured. Oxidative/nitrosative damage were assessed by reduced glutathione (GSH) content, thiobarbituric acid reactive substances (TBARS) and 3-nitrotyrosine levels. The expression of phosphorylated forms of Akt, p38MAPK and eNOS, and the concentration of inducible nitric oxide synthase (iNOS) were also determined. RESULTS: BZ significantly decreased IS (6.2 ±â€¯0.5% vs. 34 ±â€¯4%), improved post-ischemic contractility, preserved GSH levels and diminished TBARS and 3-nitrotyrosine. In IC hearts, P-Akt, P-p38MAPK and P-eNOS decreased and iNOS increased. After BZ addition the levels of P-kinases and P-eNOS increased and iNOS decreased. Except for P-Akt, P-p38MAPK and iNOS, the effects of BZ were abolished by L-NAME. CONCLUSIONS: Our data demonstrate that the treatment with BZ at the onset of reperfusion was effective to reduce cell death, contractile dysfunction and oxidative/nitrosative damage produced by coronary artery occlusion. These BZ-mediated beneficial actions appear mediated by eNOS/NO-dependent pathways.


Assuntos
Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Preparação de Coração Isolado , Masculino , Ratos , Ratos Wistar
6.
J Appl Physiol (1985) ; 125(2): 340-352, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357509

RESUMO

During ischemia, increased anaerobic glycolysis results in intracellular acidosis. Activation of alkalinizing transport mechanisms associated with carbonic anhydrases (CAs) leads to myocardial intracellular Ca2+ increase. We characterize the effects of inhibition of CA with benzolamide (BZ) during cardiac ischemia-reperfusion (I/R). Langendorff-perfused isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Other hearts were treated with BZ (5 µM) during the initial 10 min of reperfusion or perfused with acid solution (AR, pH 6.4) during the first 3 min of reperfusion. p38MAPK, a kinase linked to membrane transporters and involved in cardioprotection, was examined in hearts treated with BZ in presence of the p38MAPK inhibitor SB202190 (10 µM). Infarct size (IZ) and myocardial function were assessed, and phosphorylated forms of p38MAPK, Akt, and PKCε were evaluated by immunoblotting. We determined the rate of intracellular pH (pHi) normalization after transient acid loading in the absence and presence of BZ or BZ + SB202190 in heart papillary muscles (HPMs). Mitochondrial membrane potential (ΔΨm), Ca2+ retention capacity and Ca2+-mediated swelling after I/R were also measured. BZ, similarly to AR, reduced IZ, improved postischemic recovery of myocardial contractility, increased phosphorylation of Akt, PKCε, and p38MAPK, and normalized ΔΨm and Ca2+ homeostasis, effects abolished after p38MAPK inhibition. In HPMs, BZ slowed pHi recovery, an effect that was restored after p38MAPK inhibition. We conclude that prolongation of acidic conditions during reperfusion by BZ could be responsible for the cardioprotective benefits of reduced infarction and better myocontractile function, through p38MAPK-dependent pathways. NEW & NOTEWORTHY Carbonic anhydrase inhibition by benzolamide (BZ) maintains acidity, decreases infarct size, and improves postischemic myocardial dysfunction in ischemia-reperfusion (I/R) hearts. Protection afforded by BZ mimicked the beneficial effects elicited by an acidic solution (AR). Increased phosphorylation of p38MAPK occurs in I/R hearts reperfused with BZ or with AR. Mitochondria from I/R hearts possess abnormal Ca2+ handling and a more depolarized membrane potential compared with control hearts, and these changes were restored by treatment with BZ or AR.


Assuntos
Benzolamida/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Neurophysiol ; 118(6): 3132-3143, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855292

RESUMO

Self-referencing H+-selective electrodes were used to measure extracellular H+ fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H+-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H+ flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H+ flux. Barium at 6 mM also increased H+ flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 µM DIDS, 300 µM SITS, and 30 µM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 µM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H+ fluxes, and removal of the end foot region further decreased the H+ flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H+-selective electrodes can be used to monitor H+ fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell.NEW & NOTEWORTHY The present study uses self-referencing H+-selective electrodes for the first time to measure H+ fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.


Assuntos
Células Ependimogliais/fisiologia , Eletrodos Seletivos de Íons/normas , Microeletrodos/normas , Prótons , Ambystoma , Animais , Bário/farmacologia , Benzolamida/farmacologia , Sinalização do Cálcio , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Concentração de Íons de Hidrogênio , Potássio/farmacologia , Sódio/farmacologia
8.
Cardiovasc Pathol ; 25(6): 468-477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27614168

RESUMO

BACKGROUND: Two potent carbonic anhydrase (CA) inhibitors with widely differing membrane permeability, poorly diffusible benzolamide (BZ), and highly diffusible ethoxzolamide (ETZ) were assessed to determine whether they can reduce cardiac dysfunction in rats subjected to coronary artery ligation (CAL)-induced myocardial infarction. METHODS AND RESULTS: Rats with evidence of heart failure (HF) at 32 weeks following a permanent left anterior coronary artery occlusion were treated with placebo, BZ, or ETZ (4 mg kgday-1) for 4 weeks at which time left ventricular function and structure were evaluated. Lung weight/body weight (LW/BW) ratio increased in CAL rats by 17±1% vs. control, suggesting pulmonary edema. There was a trend for BZ and ETZ to ameliorate the increase in LW/BW by almost 50% (9±5% and 9±8%, respectively, versus CAL) (P=.16, NS). Echocardiographic assessment showed decreased left ventricular midwall shortening in HF rats, 21±1% vs. control 32±1%, which was improved by BZ to 29±1% and ETZ to 27±1%, and reduced endocardial shortening in HF rats 38±3% vs. control 62±1%, partially restored by BZ and ETZ to ~50%. Expression of the hypoxia-inducible membrane-associated CAIX isoform increased by ~60% in HF rat hearts, and this effect was blocked by ETZ. CONCLUSIONS: We conclude that CAL-induced myocardial interstitial fibrosis and associated decline in left ventricular function were diminished with BZ or ETZ treatment. The reductions in cardiac remodeling in HF with both ETZ and BZ CA inhibitors suggest that inhibition of a membrane-bound CA appears to be the critical site for this protection.


Assuntos
Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Etoxzolamida/farmacologia , Coração/efeitos dos fármacos , Infarto do Miocárdio/patologia , Animais , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Immunoblotting , Ligadura , Masculino , Ratos , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
9.
J Neurosci ; 35(3): 873-7, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609607

RESUMO

The plasma membrane Ca(2+)-ATPase (PMCA) is found near postsynaptic NMDARs. This transporter is a Ca(2+)-H(+) exchanger that raises cell surface pH. We tested whether the PMCA acts in an autocrine fashion to boost pH-sensitive, postsynaptic NMDAR currents. In mouse hippocampal slices, NMDAR EPSCs in a singly activated CA1 pyramidal neuron were reduced when buffering was augmented by exogenous carbonic anhydrase (XCAR). This effect was blocked by the enzyme inhibitor benzolamide and mimicked by the addition of HEPES buffer. Similar EPSC reduction occurred when PMCA activation was prevented by dialysis of BAPTA or the PMCA inhibitor carboxyeosin. Using HEPES, BAPTA, or carboxyeosin, the effect of XCAR was completely occluded. XCAR similarly curtailed NMDAR EPSCs of minimal amplitude, but had no effect on small AMPAR responses. These results indicate that a significant fraction of the postsynaptic NMDAR current is reliant on a perisynaptic extracellular alkaline shift generated by the PMCA.


Assuntos
Comunicação Autócrina/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comunicação Autócrina/efeitos dos fármacos , Benzolamida/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Anidrases Carbônicas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Células Piramidais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
10.
Proc Natl Acad Sci U S A ; 110(4): 1494-9, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297198

RESUMO

Soluble cytosolic carbonic anhydrases (CAs) are well known to participate in pH regulation of the cytoplasm of mammalian cells. Membrane-bound CA isoforms--such as isoforms IV, IX, XII, XIV, and XV--also catalyze the reversible conversion of carbon dioxide to protons and bicarbonate, but at the extracellular face of the cell membrane. When human CA isoform IV was heterologously expressed in Xenopus oocytes, we observed, by measuring H(+) at the outer face of the cell membrane and in the cytosol with ion-selective microelectrodes, not only extracellular catalytic CA activity but also robust intracellular activity. CA IV expression in oocytes was confirmed by immunocytochemistry, and CA IV activity measured by mass spectrometry. Extra- and intracellular catalytic activity of CA IV could be pharmacologically dissected using benzolamide, the CA inhibitor, which is relatively slowly membrane-permeable. In acute cerebellar slices of mutant mice lacking CA IV, cytosolic H(+) shifts of granule cells following CO(2) removal/addition were significantly slower than in wild-type mice. Our results suggest that membrane-associated CA IV contributes robust catalytic activity intracellularly, and that this activity participates in regulating H(+) dynamics in the cytosol, both in injected oocytes and in mouse neurons.


Assuntos
Anidrase Carbônica IV/metabolismo , Animais , Benzolamida/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/genética , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica IV/deficiência , Anidrase Carbônica IV/genética , Inibidores da Anidrase Carbônica/farmacologia , Cerebelo/citologia , Cerebelo/enzimologia , Citosol/enzimologia , Líquido Extracelular/enzimologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Líquido Intracelular/enzimologia , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Oócitos/enzimologia , RNA Complementar/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
11.
J Enzyme Inhib Med Chem ; 28(2): 384-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22214209

RESUMO

A series of halogenated sulfanilamides and halogenated benzolamide derivatives have been investigated as inhibitors of three ß-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the substitution pattern at the sulfanilamide moiety/fragment of the molecule. Best inhibitors were the halogenated benzolamides (K(I)s in the range of 0.12-0.45 µM) whereas the halogenated sulfanilamides were slightly less inhibitory (K(I)s in the range of 0.41-4.74 µM). This class of ß-CA inhibitors may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug/extensive multi-drug resistance.


Assuntos
Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Mycobacterium tuberculosis/enzimologia , Sulfanilamidas/farmacologia , Benzolamida/síntese química , Benzolamida/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/isolamento & purificação , Relação Dose-Resposta a Droga , Estrutura Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Sulfanilamidas/síntese química , Sulfanilamidas/química
12.
Science ; 326(5951): 443-5, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19833970

RESUMO

Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.


Assuntos
Dióxido de Carbono/metabolismo , Bebidas Gaseificadas , Anidrase Carbônica IV/metabolismo , Papilas Gustativas/fisiologia , Percepção Gustatória , Paladar/fisiologia , Potenciais de Ação , Animais , Benzolamida/farmacologia , Bicarbonatos/metabolismo , Canais de Cálcio/metabolismo , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica IV/genética , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Nervo da Corda do Tímpano/fisiologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Prótons , Receptores de Superfície Celular/metabolismo , Papilas Gustativas/enzimologia
13.
J Neurosci ; 29(10): 3252-8, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19279262

RESUMO

Carbonic anhydrase (CA) activity in the brain extracellular space is attributable mainly to isoforms CA4 and CA14. In brain, these enzymes have been studied mostly in the context of buffering activity-dependent extracellular pH transients. Yet evidence from others has suggested that CA4 acts in a complex with anion exchangers (AEs) to facilitate Cl(-)-HCO(3)(-) exchange in cotransfected cells. To investigate whether CA4 or CA14 plays such a role in hippocampal neurons, we studied NH(4)(+)-induced alkalinization of the cytosol, which is mitigated by Cl(-) entry and HCO(3)(-) exit. The NH(4)(+)-induced alkalinization was enhanced when the extracellular CAs were inhibited by the poorly permeant CA blocker, benzolamide, or by inhibitory antibodies specific for either CA4 or CA14. The NH(4)(+)-induced alkalinization was also increased with inhibition of anion exchange by 4,4*-diisothiocyanostilbene-2,2*-disulfonic acid, or by eliminating Cl(-) from the medium. No effect of benzolamide was seen under these conditions, in which no Cl(-)-HCO(3)(-) exchange was possible. Quantitative PCR on RNA from the neuronal cultures indicated that AE3 was the predominant AE isoform. Single-cell PCR also showed that Slc4a3 (AE3) transcripts were abundant in isolated neurons. In hippocampal neurons dissociated from AE3-null mice, the NH(4)(+)-induced alkalinization was much larger than that seen in neurons from wild-type mice, suggesting little or no Cl(-)-HCO(3)(-) exchange in the absence of AE3. Benzolamide had no effect on the NH(4)(+)-induced alkalinization in the AE3 knock-out neurons. Our results indicate that CA4 and CA14 both play important roles in the regulation of intracellular pH in hippocampal neurons, by facilitating AE3-mediated Cl(-)-HCO(3)(-) exchange.


Assuntos
Antiporters/fisiologia , Anidrase Carbônica IV/metabolismo , Anidrases Carbônicas/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Hipocampo/enzimologia , Neurônios/enzimologia , Animais , Benzolamida/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Gravidez
14.
Gut ; 57(12): 1654-64, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18682519

RESUMO

BACKGROUND: Acid in the oesophageal lumen is often sensed as heartburn. It was hypothesised that luminal CO(2), a permeant gas, rather than H(+), permeates through the epithelium, and is converted to H(+), producing an afferent neural signal by activating chemosensors. METHODS: The rat lower oesophageal mucosa was superfused with pH 7.0 buffer, and pH 1.0 or pH 6.4 high CO(2) (P(CO2) = 260 Torr) solutions with or without the cell-permeant carbonic anhydrase (CA) inhibitor methazolamide (MTZ, 1 mM), the cell-impermeant CA inhibitor benzolamide (BNZ, 0.1 mM), the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (CPZ, 0.5 mM) or the acid-sensing ion channel (ASIC) inhibitor amiloride (0.1 mM). Interstitial pH (pH(int)) was measured with 5',6'-carboxyfluorescein (5 mg/kg intravenously) loaded into the interstitial space, and blood flow was measured with laser-Doppler. RESULTS: Perfusion of a high CO(2) solution induced hyperaemia without changing pH(int), mimicking the effect of pH 1.0 perfusion. Perfused MTZ, BNZ, CPZ and amiloride all inhibited CO(2)-induced hyperaemia. CA XIV was expressed in the prickle cells, with CA XII in the basal cells. TRPV1 was expressed in the stratum granulosum and in the muscularis mucosa, whereas all ASICs were expressed in the prickle cells, with ASIC3 additionally in the muscularis mucosa. CONCLUSIONS: The response to CO(2) perfusion suggests that CO(2) diffuses through the stratum epithelium, interacting with TRPV1 and ASICs in the epithelium or in the submucosa. Inhibition of the hyperaemic response to luminal CO(2) by CA, TRPV1 and ASIC inhibitors implicates CA and these chemosensors in transduction of the luminal acid signal. Transepithelial CO(2) permeation may explain how luminal H(+) equivalents can rapidly be transduced into hyperaemia, and the sensation of heartburn.


Assuntos
Dióxido de Carbono/metabolismo , Esôfago/metabolismo , Refluxo Gastroesofágico/metabolismo , Hiperemia/metabolismo , Canais de Cátion TRPV/metabolismo , Canais Iônicos Sensíveis a Ácido , Amilorida/farmacologia , Animais , Benzolamida/farmacologia , Capsaicina/análogos & derivados , Capsaicina/antagonistas & inibidores , Dióxido de Carbono/farmacocinética , Inibidores da Anidrase Carbônica/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Monitoramento do pH Esofágico , Esôfago/irrigação sanguínea , Refluxo Gastroesofágico/complicações , Hiperemia/induzido quimicamente , Masculino , Metazolamida/farmacologia , Mucosa/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores
15.
Invest Ophthalmol Vis Sci ; 49(3): 1048-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18326729

RESUMO

PURPOSE: Carbonic anhydrase activity has a central role in corneal endothelial function. The authors examined the role of carbonic anhydrase IV (CAIV) in facilitating CO(2) flux, HCO(3)(-) permeability, and HCO(3)(-) flux across the apical membrane. METHODS: Primary cultures of bovine corneal endothelial cells were established on membrane-permeable filters. Apical CAIV was inhibited by benzolamide or siRNA knockdown of CAIV. Apical CO(2) fluxes and HCO(3)(-) permeability were determined by measuring pH(i) changes in response to altering the CO(2) or HCO(3)(-) gradient across the apical membrane. Basolateral to apical (B-to-A) HCO(3)(-) flux was determined by measuring the pH of a weakly buffered apical bath in the presence of basolateral bicarbonate-rich Ringer solution. In addition, the effects of benzolamide and CAIV knockdown on steady state DeltapH (apical-basolateral compartment pH) after 4-hour incubation in DMEM were measured. RESULTS: CAIV expression was confirmed, and CAIV was localized exclusively to the apical membrane by confocal microscopy. Both 10 microM benzolamide and CAIV siRNA reduced apparent apical CO(2) flux by approximately 20%; however, they had no effect on HCO(3)(-) permeability or HCO(3)(-) flux. The steady state apical-basolateral pH gradient at 4 hours was reduced by 0.12 and 0.09 pH units in benzolamide- and siRNA-treated cells, respectively, inconsistent with a net cell-to-apical compartment CO(2) flux. CONCLUSIONS: CAIV does not facilitate steady state cell-to-apical CO(2) flux, apical HCO(3)(-) permeability, or B-to-A HCO(3)(-) flux. Steady state pH changes, however, suggest that CAIV may have a role in buffering the apical surface.


Assuntos
Bicarbonatos/metabolismo , Anidrase Carbônica IV/fisiologia , Endotélio Corneano/enzimologia , Animais , Membrana Basal/metabolismo , Benzolamida/farmacologia , Transporte Biológico , Dióxido de Carbono/metabolismo , Anidrase Carbônica IV/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Bovinos , Permeabilidade da Membrana Celular , Células Cultivadas , Endotélio Corneano/citologia , Técnica Indireta de Fluorescência para Anticorpo , Concentração de Íons de Hidrogênio , Immunoblotting , Membranas Intracelulares , Microscopia Confocal , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores de Sódio-Bicarbonato/metabolismo , Transfecção
16.
Kidney Blood Press Res ; 30(6): 388-99, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17890869

RESUMO

BACKGROUND: Carbonic anhydrase inhibitors (CAI) reduce proximal reabsorption, activating tubuloglomerular feedback (TGF) and reducing glomerular filtration rate (GFR). Adenosine A(1) receptors (A(1)R) mediate the TGF response and stimulate proximal reabsorption. METHODS: Clearance and micropuncture studies were performed in Wistar rats to determine whether blockade of A(1)R (KW3902 0.3 mg/kg i.v.) would prevent CAI (benzolamide 5 mg/kg i.v.) from lowering GFR, whether CAI and KW3902 exert additive effects on sodium excretion, and to what extent such interactions depend on events in the glomerulus, proximal tubule, or distal nephron. RESULTS: KW3902 raised GFR and prevented CAI from lowering GFR. KW3902 and CAI caused additive diuresis and natriuresis. KW3902 and CAI increased lithium clearance, but their effects were redundant. CAI increased the dependence of proximal reabsorption on active chloride transport. KW3902, alone, did likewise, but to a lesser extent than CAI. Adding KW3902 to CAI lessened the shift toward active chloride transport. CONCLUSIONS: The data reveal that A(1)R mediate glomerular vascular resistance whether or not TGF is activated, that additive effects of CAI and KW3902 on salt excretion occur, in part, because KW3902 inhibits reabsorption downstream from the macula densa, and that KW3902 likely inhibits proximal reabsorption by interfering with apical sodium-hydrogen exchange.


Assuntos
Antagonistas do Receptor A1 de Adenosina , Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Túbulos Renais/irrigação sanguínea , Túbulos Renais/fisiologia , Vasoconstrição/efeitos dos fármacos , Xantinas/farmacologia , Animais , Diuréticos/farmacologia , Sinergismo Farmacológico , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Túbulos Renais/efeitos dos fármacos , Lítio/urina , Masculino , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Sódio/urina
17.
J Neurosci ; 27(28): 7438-46, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17626204

RESUMO

In hippocampus, activation of the Schaffer collaterals generates an extracellular alkaline transient both in vitro and in vivo. This pH change may provide relief of the H+ block of NMDA receptors (NMDARs) and thereby increase excitability. To test this hypothesis, we augmented extracellular buffering in mouse hippocampal slices by adding 2 microM bovine type II carbonic anhydrase to the superfusate. With addition of enzyme, the alkaline transient elicited by a 10 pulse, 100 Hz stimulus train was reduced by 33%. At a holding potential (V(H)) of -30 mV, the enzyme decreased the half-time of decay and charge transfer of EPSCs by 32 and 39%, respectively, but had no effect at a V(H) of -80 mV. In current clamp, a 10 pulse, 100 Hz stimulus train gave rise to an NMDAR-dependent afterdepolarization (ADP). Exogenous enzyme curtailed the ADP half-width and voltage integral by 20 and 25%, respectively. Similar reduction of the ADP was noted with a brief 12 Hz stimulus train. The effect persisted in the presence of GABAergic antagonists or the L-type Ca2+ channel blocker methoxyverapamil hydrochloride but was absent in the presence of the carbonic anhydrase inhibitor benzolamide or when the exogenous enzyme was heat inactivated. The effects of the enzyme in voltage and current clamp were noted in 0 Mg2+ media but were abolished when (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate was included in the patch pipette. These results provide strong evidence that endogenous alkaline transients are sufficiently large in the vicinity of the synapse to augment NMDAR responses.


Assuntos
Álcalis/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Álcalis/antagonistas & inibidores , Animais , Benzolamida/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/farmacologia , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Galopamil/farmacologia , Hipocampo/fisiologia , Técnicas In Vitro , Isoenzimas/farmacologia , Masculino , Camundongos , Técnicas de Patch-Clamp , Células Piramidais/fisiologia
18.
Am J Physiol Lung Cell Mol Physiol ; 292(4): L1002-12, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17209136

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ also has direct effects on systemic vascular smooth muscle, including modulation of pH and membrane potential; however, the effect of AZ on pulmonary arterial smooth muscle cells (PASMCs) is unknown. Since HPV requires Ca2+ influx into PASMCs and can be modulated by pH, we hypothesized that AZ alters hypoxia-induced changes in PASMC intracellular pH (pH(i)) or Ca2+ concentration ([Ca2+](i)). Using fluorescent microscopy, we tested the effect of AZ as well as two other potent CA inhibitors, benzolamide and ethoxzolamide, which exhibit low and high membrane permeability, respectively, on hypoxia-induced responses in PASMCs. Hypoxia caused a significant increase in [Ca2+](i) but no change in pH(i). All three CA inhibitors slightly decreased basal pH(i), but only AZ caused a concentration-dependent decrease in the [Ca2+](i) response to hypoxia. AZ had no effect on the KCl-induced increase in [Ca2+](i) or membrane potential. N-methyl-AZ, a synthesized compound lacking the unsubstituted sulfonamide group required for CA inhibition, had no effect on pH(i) but inhibited hypoxia-induced Ca2+ responses. These results suggest that AZ attenuates HPV by selectively inhibiting hypoxia-induced Ca2+ responses via a mechanism independent of CA inhibition, changes in pH(i), or membrane potential.


Assuntos
Acetazolamida/farmacologia , Cálcio/fisiologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiologia , Artéria Pulmonar/fisiologia , Benzolamida/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Etoxzolamida/farmacologia , Concentração de Íons de Hidrogênio , Metazolamida/farmacologia
19.
Am J Physiol Lung Cell Mol Physiol ; 292(1): L178-84, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16936246

RESUMO

Acute hypoxic pulmonary vasoconstriction can be inhibited by high doses of the carbonic anhydrase inhibitor acetazolamide. This study aimed to determine whether acetazolamide is effective at dosing relevant to human use at high altitude and to investigate whether its efficacy against hypoxic pulmonary vasoconstriction is dependent on carbonic anhydrase inhibition by testing other potent heterocyclic sulfonamide carbonic anhydrase inhibitors. Six conscious dogs were studied in five protocols: 1) controls, 2) low-dose intravenous acetazolamide (2 mg.kg(-1).h(-1)), 3) oral acetazolamide (5 mg/kg), 4) benzolamide, a membrane-impermeant inhibitor, and 5) ethoxzolamide, a membrane-permeant inhibitor. In all protocols, unanesthetized dogs breathed spontaneously during the first hour (normoxia) and then breathed 9-10% O(2) for the next 2 h. Arterial oxygen tension ranged between 35 and 39 mmHg during hypoxia in all protocols. In controls, mean pulmonary artery pressure increased by 8 mmHg and pulmonary vascular resistance by 200 dyn.s.cm(-5) (P <0.05). With intravenous acetazolamide, mean pulmonary artery pressure and pulmonary vascular resistance remained unchanged during hypoxia. With oral acetazolamide, mean pulmonary artery pressure increased by 5 mmHg (P < 0.05), but pulmonary vascular resistance did not change during hypoxia. With benzolamide and ethoxzolamide, mean pulmonary artery pressure increased by 6-7 mmHg and pulmonary vascular resistance by 150-200 dyn.s.cm(-5) during hypoxia (P < 0.05). Low-dose acetazolamide is effective against acute hypoxic pulmonary vasoconstriction in vivo. The lack of effect with two other potent carbonic anhydrase inhibitors suggests that carbonic anhydrase is not involved in the mediation of hypoxic pulmonary vasoconstriction and that acetazolamide acts on a different receptor or channel.


Assuntos
Acetazolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Acetazolamida/administração & dosagem , Equilíbrio Ácido-Base/efeitos dos fármacos , Doença da Altitude/tratamento farmacológico , Doença da Altitude/fisiopatologia , Animais , Benzolamida/farmacologia , Inibidores da Anidrase Carbônica/administração & dosagem , Modelos Animais de Doenças , Cães , Etoxzolamida/farmacologia , Feminino , Humanos , Rim/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
20.
Gastroenterology ; 131(1): 142-52, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16831598

RESUMO

BACKGROUND & AIMS: The duodenal mucosa is exposed to PCO(2) >200 mm Hg due to the luminal mixture of gastric acid with secreted bicarbonate, which augments mucosal protective mechanisms. We examined the hyperemic response to elevated luminal PCO(2) in the duodenum of anesthetized rats luminally exposed to high CO(2) saline to help elucidate luminal acid-sensing mechanisms. METHODS: Blood flow was measured by laser Doppler, and intracellular pH of epithelial cells by measured by ratio microimaging. The permeant carbonic anhydrase (CA) inhibitor methazolamide, relatively impermeant CA inhibitor benzolamide, vanilloid receptor antagonist capsazepine, or sodium-hydrogen exchanger 1 (NHE-1) inhibitor dimethyl amiloride were perfused with or without the high CO(2) solution. RESULTS: The high CO(2) solution increased duodenal blood flow, which was abolished by pretreatment with methazolamide or capsazepine or by dimethyl amiloride coperfusion. Sensory denervation with capsaicin also abolished the CO(2) effects. Benzolamide dose-dependently inhibited CO(2)-induced hyperemia and at 100 nmol/L inhibited CO(2)-induced intracellular acidification. The membrane-bound CA isoforms IV, IX, XII, and XIV and cytosolic CA II and the vanilloid receptor 1 (TRPV1) were expressed in duodenum and stomach. Dorsal root ganglion and nodose ganglion expressed all isoforms except for CA IX. CONCLUSIONS: The duodenal hyperemic response to luminal CO(2) is dependent on cytosolic and membrane-bound CA isoforms, NHE-1, and TRPV1. CO(2)-induced intracellular acidification was inhibited by selective extracellular CA inhibition, suggesting that CO(2) diffusion across the epithelial apical membrane is mediated by extracellular CA. NHE-1 activation preceding TRPV1 stimulation suggests that luminal CO(2) is sensed as H(+) in the subepithelium.


Assuntos
Anidrases Carbônicas/metabolismo , Duodeno/metabolismo , Hiperemia/metabolismo , Canais de Cátion TRPV/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Benzolamida/farmacologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Dióxido de Carbono/toxicidade , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/efeitos dos fármacos , Anidrases Carbônicas/genética , Modelos Animais de Doenças , Duodeno/irrigação sanguínea , Duodeno/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Hiperemia/induzido quimicamente , Hiperemia/fisiopatologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Líquido Intracelular/metabolismo , Fluxometria por Laser-Doppler , Masculino , Metazolamida/farmacologia , RNA/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocador de Sódio e Cálcio/antagonistas & inibidores , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...