Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(8): e202300773, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384873

RESUMO

In this study, twenty new anthranilic acid hydrazones 6-9 (a-e) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR - 13 C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200-0.32 µM and compounds 6e, 8d, 8e, 9b, 9c, and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50 : 8.68±0.16 µM for Hep-G2, 55.29±0.56 µM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 µM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-ßII). The docking scores were calculated in the range of -10.609--6.705 kcal/mol for COX-II, -8.652--7.743 kcal/mol for EGFR, and -10.708--8.596 kcal/mol for TGF-ßII.


Assuntos
Antineoplásicos , Fenamatos , Humanos , Simulação de Acoplamento Molecular , Hidrazonas/farmacologia , Hidrazonas/química , Estrutura Molecular , Relação Estrutura-Atividade , Fenamatos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptores ErbB , Anti-Inflamatórios/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
2.
Ther Deliv ; 14(3): 183-192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37158260

RESUMO

Aim: To develop controlled-release tablets based on aminated starch. Materials & methods: Aminated starch was characterized with Fourier transform infrared and x-ray diffraction. Thermogravimetric analysis confirmed the preferential oxidation of crystalline region of starch. Results: The tablets achieved an initial fast release of fenamates, which slows down after 12 h. Drug release was not completed in the simulated intestinal media, which may be due to the stability of imine bond in aminated starch at weakly acidic pH. Drug release was completed in simulated acidic media due to the hydrolysis of imine functionality at strongly acidic pH. Conclusion: Aminated starch with an imine functionality may serve as intestine targeted, controlled drug-delivery system. Mucoadhesive potential of tablets further supports this observation.


Assuntos
Fenamatos , Amido , Amido/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Difração de Raios X , Comprimidos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Org Biomol Chem ; 20(25): 5076-5085, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35697330

RESUMO

Human serum albumin (HSA) can bind with numerous drugs, leading to a significant influence on drug pharmacokinetics as well as undesirable drug-drug interactions due to competitive binding. Probing the HSA drug binding site thus offers great opportunities to reveal drug-HSA binding profiles. In the present study, a fluorescent probe (E)-4-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1-propylpyridin-1-ium (TTPy) has been prepared, which exhibits enhancement of deep-red to near-infrared (NIR) fluorescence upon HSA binding. The competitive binding assay indicated that TTPy can target the HSA binding site of fenamates, a group of non-steroidal anti-inflammatory drugs (NSAIDs), with moderate binding affinity (1.95 × 106 M-1 at 303 K). More interestingly, TTPy enables fluorescent labeling of HSA upon visible light irradiation. This study provides promising ways for HSA drug binding site identification and photochemical protein labeling.


Assuntos
Fenamatos , Albumina Sérica , Sítios de Ligação , Corantes Fluorescentes/química , Humanos , Processos Fotoquímicos , Ligação Proteica , Albumina Sérica/química , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência
4.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013790

RESUMO

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fenamatos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adulto , Animais , COVID-19/metabolismo , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
5.
J Inorg Biochem ; 228: 111696, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35030390

RESUMO

Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.


Assuntos
Anti-Inflamatórios não Esteroides/química , Complexos de Coordenação/química , Cobre/química , DNA/química , Niacinamida/química , Soroalbumina Bovina/química , Células A549 , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Etídio/química , Fenamatos/química , Humanos , Substâncias Intercalantes/química , Oxirredução
6.
Cells ; 10(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809987

RESUMO

Neurodegenerative disorders are desperately lacking treatment options. It is imperative that drug repurposing be considered in the fight against neurodegenerative diseases. Fenamates have been studied for efficacy in treating several neurodegenerative diseases. The purpose of this review is to comprehensively present the past and current research on fenamates in the context of neurodegenerative diseases with a special emphasis on tolfenamic acid and Alzheimer's disease. Furthermore, this review discusses the major molecular pathways modulated by fenamates.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Fenamatos/uso terapêutico , Degeneração Neural , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacocinética , Fenamatos/efeitos adversos , Fenamatos/farmacocinética , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacocinética
7.
J Inorg Biochem ; 218: 111410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721718

RESUMO

The interaction of FeCl3 with the fenamate non-steroidal anti-inflammatory drugs has led to the formation and isolation of trinuclear iron(III) complexes, while in the presence of the nitrogen-donors 2,2'-bipyridine or pyridine tetranuclear iron(III) complexes were derived. The five resultant complexes were characterized by diverse techniques (including infrared, electronic and Mössbauer spectroscopy) and their crystal structures were determined by single-crystal X-ray crystallography. These complexes are the first structurally characterized Fe(III)-fenamato complexes. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid). The in vitro binding affinity of the complexes to calf-thymus (CT) DNA was examined and their interaction with serum albumins was also investigated. In total, the complexes present promising activity against the radicals tested, and they may bind tightly to CT DNA possibly via intercalation and reversibly to serum albumins.


Assuntos
Complexos de Coordenação/metabolismo , DNA/metabolismo , Fenamatos/metabolismo , Ferro/química , Ferro/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Complexos de Coordenação/química , Cristalografia por Raios X , Fenamatos/química , Humanos , Substâncias Intercalantes/metabolismo , Estrutura Molecular
8.
Eur Biophys J ; 49(7): 591-607, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32940715

RESUMO

GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1ß GlyR based on the cryo-EM structure of open α1 GlyR, used the α1ß3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane ß( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the ß( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.


Assuntos
Etomidato/química , Ácido Mefenâmico/química , Neurônios/metabolismo , Proteínas Nucleares/química , Oxirredutases/química , Receptores de GABA-A/química , Anestésicos Gerais/farmacologia , Animais , Sítios de Ligação , Simulação por Computador , Bases de Dados de Proteínas , Eletrofisiologia , Fenamatos/química , Glicina/química , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Método de Monte Carlo , Ligação Proteica , Ratos , Ratos Wistar , Receptores de Glicina/química , Transmissão Sináptica
9.
Antiviral Res ; 178: 104806, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304723

RESUMO

Antiviral therapies against influenza are required, especially for high-risk patients, severe influenza and in case of highly pathogenic influenza virus (IV) strains. However, currently, licensed drugs that target the virus directly are not very effective and often lead to the development of resistant IV variants. This may be overcome by targeting host cell factors that are required for IV propagation. IV induces a variety of host cell signaling cascades, such as the Raf/MEK/ERK kinase pathway. The activation of this pathway is necessary for IV propagation. MEK-inhibitors block the activation of the pathway on the bottleneck of the signaling cascade leading to impaired virus propagation. In the present study, we aimed to compare the antiviral potency and bioavailability of the MEK-inhibitor CI-1040 versus its major active metabolite ATR-002, in vitro as well as in the mouse model. In cell culture assays, an approximately 10-fold higher concentration of ATR-002 is required to generate the same antiviral activity as for CI-1040. Interestingly, we observed that considerably lower concentrations of ATR-002 were required to achieve a reduction of the viral load in vivo. Pharmacokinetic studies with ATR-002 and CI-1040 in mice have found the Cmax and AUC to be far higher for ATR-002 than for CI-1040. Our results thereby demonstrate the in vivo superiority of the active metabolite ATR-002 over CI-1040 as an antiviral agent despite its weaker cell membrane permeability. Therefore, ATR-002 is an attractive candidate for development as an efficient antiviral agent, especially given the fact that a treatment based on cellular pathway inhibition would be far less likely to lead to viral drug resistance.


Assuntos
Antivirais/farmacologia , Fenamatos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Benzamidas/farmacocinética , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenamatos/farmacocinética , Fenamatos/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Leucócitos Mononucleares , Pulmão/virologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
Cell Mol Neurobiol ; 40(8): 1405-1416, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32162200

RESUMO

Voltage-gated sodium channels are crucial mediators of neuronal damage in ischemic and excitotoxicity disease models. Fenamates have been reported to have anti-inflammatory properties following a decrease in prostaglandin synthesis. Several researches showed that fenamates appear to be ion channel modulators and potential neuroprotectants. In this study, the neuroprotective effects of tolfenamic acid, flufenamic acid, and mefenamic acid were tested by glutamate-induced injury in SH-SY5Y cells. Following this, fenamates' effects were examined on both the expression level and the function of hNav1.1 and hNav1.2, which were closely associated with neuroprotection, using Western blot and patch clamp. Finally, the effect of fenamates on the expression of apoptosis-related proteins in SH-SY5Y cells was examined. The results showed that both flufenamic acid and mefenamic acid exhibited neuroprotective effects against glutamate-induced injury in SH-SY5Y cells. They inhibited peak currents of both hNav1.1 and hNav1.2. However, fenamates exhibited decreased inhibitory effects on hNav1.1 when compared to hNav1.2. Correspondingly, the inhibitory effect of fenamates was found to be consistent with the level of neuroprotective effects in vitro. Fenamates inhibited glutamate-induced apoptosis through the modulation of the Bcl-2/Bax-dependent cell death pathways. Taken together, Nav1.2 might play a part in fenamates' neuroprotection mechanism. Nav1.2 and NMDAR might take part in the neuroprotection mechanism of the fenamates. The fenamates inhibited glutamate-induced apoptosis through modulation of the Bcl-2/Bax-dependent cell death pathways.


Assuntos
Fenamatos/farmacologia , Ácido Glutâmico/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , ortoaminobenzoatos/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Fármacos Neuroprotetores , Técnicas de Patch-Clamp/métodos , Canais de Sódio Disparados por Voltagem/metabolismo
11.
J Med Chem ; 62(17): 8274-8283, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31393717

RESUMO

The wild type protein, transthyretin (TTR), and over 120 genetic TTR variants are amyloidogenic and cause, respectively, sporadic and hereditary systemic TTR amyloidosis. The homotetrameric TTR contains two identical thyroxine binding pockets, occupation of which by specific ligands can inhibit TTR amyloidogenesis in vitro. Ligand binding stabilizes the tetramer, inhibiting its proteolytic cleavage and its dissociation. Here, we show with solution-state NMR that ligand binding induces long-distance conformational changes in the TTR that have not previously been detected by X-ray crystallography, consistently with the inhibition of the cleavage of the DE loop. The NMR findings, coupled with surface plasmon resonance measurements, have identified dynamic exchange processes underlying the negative cooperativity of binding of "monovalent" ligand tafamidis. In contrast, mds84, our prototypic "bivalent" ligand, which is a more potent stabilizer of TTR in vitro that occupies both thyroxine pockets and the intramolecular channel between them, has greater structural effects.


Assuntos
Fenamatos/química , Pré-Albumina/química , Sítios de Ligação , Fenamatos/síntese química , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pré-Albumina/síntese química , Relação Estrutura-Atividade
12.
Eur J Pharmacol ; 853: 247-255, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930251

RESUMO

The nonsteroidal anti-inflammatory drug (NSAID) niflumic acid, a fenamate in structure, has many molecular targets, one of them being specific subtypes of the main inhibitory ligand-gated anion channel, the GABAA receptor. Here, we report on the effects of other fenamates and other classes of NSAIDs on brain picrotoxinin-sensitive GABAA receptors, using an autoradiographic assay with [35S]TBPS as a ligand on mouse brain sections. We found that the other fenamates studied (flufenamic acid, meclofenamic acid, mefenamic acid and tolfenamic acid) affected the autoradiographic signal at low micromolar concentrations in a facilitatory-like allosteric fashion, i.e., without having affinity to the [35S]TBPS binding site. Unlike niflumic acid that shows clear preference for inhibiting cerebellar granule cell layer GABAA receptors, the other fenamates showed little brain regional selectivity, indicating that their actions are not receptor-subtype selective. Of the non-fenamate NSAIDs studied at 100 µM concentration, diclofenac induced the greatest inhibition of the binding, which is not surprising as it has close structural similarity with the potent fenamate meclofenamic acid. Using two-electrode voltage-clamp assays on Xenopus oocytes, the effect of niflumic acid was found to be dependent on the ß subunit variant and the presence of γ2 subunit in rat recombinant α1ß and α1ßγ2 GABAA receptors, with the ß1 allowing the niflumic acid inhibition and ß3 the stimulation of the receptor-mediated currents. In summary, the fenamate NSAIDs constitute an interesting class of compounds that could be used for development of potent GABAA receptor allosteric agonists with other targets to moderate inflammation, pain and associated anxiety/depression.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fenamatos/farmacologia , Receptores de GABA-A/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenamatos/metabolismo , Masculino , Ratos
13.
Org Biomol Chem ; 17(13): 3409-3415, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869715

RESUMO

Rare multiple fluorescence properties including aggregation-induced emission and polymorphism/shape/size-dependent emission were found coexisting in a class of typical non-steroidal anti-inflammatory analgesic drugs, fenamates, which could provide a new approach toward future drug evaluation. Different from the complexity and biological incompatibility of the traditional AIE molecular design, this work opens new avenues to the development of new AIE systems.


Assuntos
Analgésicos/química , Anti-Inflamatórios não Esteroides/química , Fenamatos/química , Corantes Fluorescentes/química , Avaliação de Medicamentos , Fluorescência , Estrutura Molecular , Tamanho da Partícula , Teoria Quântica
14.
J Inorg Biochem ; 194: 97-113, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849593

RESUMO

Copper(II) complexes containing non-steroidal anti-inflammatory drugs (NSAIDs) have been the subject of many research papers and reviews. Here we report the synthesis, spectroscopic study and biological activity of novel mixed copper(II) complexes with NSAIDs: tolfenamic (tolf), mefenamic (mef) and flufenamic (fluf) acids and phenanthroline (phen): [Cu(tolf-O,O')2(phen)] (1), [Cu(mef-O,O')2(phen)] (2), [Cu(fluf-O,O')2(phen)] (3). Complexes were characterized by X-ray analysis and EPR spectroscopy. Complexes 1-3 are monomeric, six-coordinate and crystallize in a monoclinic space group. Interaction of Cu(II) complexes with DNA was studied by means of absorption titrations, viscosity measurements and gel electrophoresis. The relative ability of the complexes to cleave DNA even in the absence of hydrogen peroxide is in the order 3 > 2 > 1. Application of the reactive oxygen species (ROS) scavengers, L-histidine, DMSO and SOD confirmed that singlet oxygen, hydroxyl radicals (Fenton reaction) and superoxide radical were formed, respectively. Thus, in addition to mechanism of intercalation, redox-cycling mechanism which in turn lead to the formation of ROS contribute to DNA damage. Cu(II) complexes exhibit excellent SOD-mimetic activity in the order 3~1 > 2. The fluorescence spectroscopy revealed that albumin may act as a targeted drug delivery vehicle for Cu(II) complexes (K~106). The anticancer activities of complexes 1-3 were investigated using an MTS assay (reduction of the tetrazolium compound) against three cancer cell lines (HT-29 human colon adenocarcinoma, HeLa and T-47D breast cancer cells) and mesenchymal stromal cells (MSC). The most promising compound, from the viewpoint of its NSAID biological activity is 3, due to the presence of the three fluorine atoms participating in the formation of weak hydrogen-bonds at the DNA surface.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , Fenamatos/farmacologia , Substâncias Intercalantes/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Cobre/química , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Escherichia coli/química , Fenamatos/síntese química , Fenamatos/metabolismo , Ácido Flufenâmico/síntese química , Ácido Flufenâmico/metabolismo , Ácido Flufenâmico/farmacologia , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Ácido Mefenâmico/síntese química , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/farmacologia , Oxirredução , Fenantrolinas/síntese química , Fenantrolinas/metabolismo , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Albumina Sérica Humana , Superóxido Dismutase/química , ortoaminobenzoatos/síntese química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
15.
Plant Physiol ; 180(1): 480-496, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737267

RESUMO

Many signal perception mechanisms are connected to Ca2+-based second messenger signaling to modulate specific cellular responses. The well-characterized plant hormone auxin elicits a very rapid Ca2+ signal. However, the cellular targets of auxin-induced Ca2+ are largely unknown. Here, we screened a biologically annotated chemical library for inhibitors of auxin-induced Ca2+ entry in plant cell suspensions to better understand the molecular mechanism of auxin-induced Ca2+ and to explore the physiological relevance of Ca2+ in auxin signal transduction. Using this approach, we defined a set of diverse, small molecules that interfere with auxin-induced Ca2+ entry. Based on annotated biological activities of the hit molecules, we found that auxin-induced Ca2+ signaling is, among others, highly sensitive to disruption of membrane proton gradients and the mammalian Ca2+ channel inhibitor bepridil. Whereas protonophores nonselectively inhibited auxin-induced and osmotic stress-induced Ca2+ signals, bepridil specifically inhibited auxin-induced Ca2+ We found evidence that bepridil severely alters vacuolar morphology and antagonized auxin-induced vacuolar remodeling. Further exploration of this plant-tailored collection of inhibitors will lead to a better understanding of auxin-induced Ca2+ entry and its relevance for auxin responses.


Assuntos
Arabidopsis/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Bepridil/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Fenamatos/farmacologia , Ácidos Indolacéticos/antagonistas & inibidores , Medições Luminescentes , Proteínas Luminescentes/genética , Niclosamida/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
16.
Neurosci Lett ; 696: 67-73, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30528877

RESUMO

Fenamates are N-substituted anthranilic acid derivatives, clinically used as nonsteroidal anti-inflammatory drugs (NSAIDs) in fever, pain and inflammation treatments. Previous studies have shown that they are also modulators of diverse ion channels, exhibiting either activation or inhibitory effects. However, the effects of fenamates on sodium channel subtypes are still unknown. In this study, fenamates, including mefenamic acid, flufenamic acid and tolfenamic acid, were examined by whole-cell patch clamp techniques on the sodium channels hNav1.7 and hNav1.8, which are closely associated with pain. The results showed that the mefenamic acid, flufenamic acid, and tolfenamic acid inhibited the peak currents of hNav1.7 and hNav1.8 in CHO cells stably expressing hNav1.7 and hNav1.8. However, much lighter inhibition effects of hNav1.8 were registered in the experimental system. Furthermore, the mefenamic acid, flufenamic acid and tolfenamic acid significantly affected the inactivation processes of hNav1.7 and hNav1.8 with I-V curves left-shifted to hyperpolarized direction. These data indicate that the inhibition effects of Nav1.7 and Nav1.8 by mefenamic acid, flufenamic acid and tolfenamic acid might contribute to their analgesic activity in addition to their inhibition of cyclooxygenase. These findings provide a basis for further studies in the discovery of other potential targets for NSAIDs.


Assuntos
Fenamatos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus/metabolismo , Humanos , ortoaminobenzoatos/farmacologia
17.
Environ Sci Process Impacts ; 19(5): 656-665, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28401228

RESUMO

Fenamates are a class of nonsteroidal anti-inflammatory drugs (NSAIDs) that are not fully removed during wastewater treatment and can be released to surface waters. Here, near-surface photochemical half-lives were evaluated to range from minutes to hours of four fenamates and the closely related diclofenac. While quantum yields for direct photochemical reactions at the water surface vary widely from 0.071 for diclofenac to <0.001 for mefenamic acid, all fenamates showed significant reactivity towards singlet oxygen and hydroxyl radical with bimolecular reaction rate constants of 1.3-2.8 × 107 M-1 s-1 and 1.1-2.7 × 1010 M-1 s-1, respectively. Photodecay rates increased in the presence of dissolved organic matter (DOM) for diclofenac (+19%), tolfenamic acid (+9%), and mefenamic acid (+95%), but decreased for flufenamic acid (-2%) and meclofenamic acid (-14%) after accounting for light screening effects. Fast reaction rate constants of all NSAIDs with model triplet sensitizers were quantified by laser flash photolysis. Here, the direct observation of diphenylamine radical intermediates by transient absorption spectroscopy demonstrates one-electron oxidation of all fenamates. Quenching rate constants of these radical intermediates by ascorbic acid, a model antioxidant, were also quantified. These observations suggest that the balance of oxidation by photoexcited triplet DOM and quenching of the formed radical intermediates by antioxidant moieties determines whether net sensitization or net quenching by DOM occurs in the photochemical degradation of fenamates.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Fenamatos/análise , Substâncias Húmicas/análise , Luz , Poluentes Químicos da Água/análise , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/efeitos da radiação , Recuperação e Remediação Ambiental , Fenamatos/química , Fenamatos/efeitos da radiação , Água Doce/química , Radical Hidroxila/química , Modelos Teóricos , Oxirredução , Fotoquímica , Oxigênio Singlete/química , Análise Espectral , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
18.
Sci Rep ; 7(1): 182, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298647

RESUMO

Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloid fibrillogenesis. It is modelled by exposure of the protein to non-physiological low pH in vitro and is inhibited by small molecule compounds, such as the drug tafamidis. We have recently identified a new mechano-enzymatic pathway of TTR fibrillogenesis in vitro, catalysed by selective proteolytic cleavage, which produces a high yield of genuine amyloid fibrils. This pathway is efficiently inhibited only by ligands that occupy both binding sites in TTR. Tolcapone, which is bound with similar high affinity in both TTR binding sites without the usual negative cooperativity, is therefore of interest. Here we show that TTR fibrillogenesis by the mechano-enzymatic pathway is indeed more potently inhibited by tolcapone than by tafamidis but neither, even in large molar excess, completely prevents amyloid fibril formation. In contrast, mds84, the prototype of our previously reported bivalent ligand TTR 'superstabiliser' family, is notably more potent than the monovalent ligands and we show here that this apparently reflects the critical additional interactions of its linker within the TTR central channel. Our findings have major implications for therapeutic approaches in TTR amyloidosis.


Assuntos
Amiloide/metabolismo , Benzofenonas/farmacologia , Benzoxazóis/farmacologia , Nitrofenóis/farmacologia , Pré-Albumina/química , Pré-Albumina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Fenamatos/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Pré-Albumina/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Proteólise , Tolcapona
19.
J Biol Chem ; 291(29): 15069-81, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226593

RESUMO

Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid (AA) and endocannabinoid substrates, placing the enzyme at a unique junction between the eicosanoid and endocannabinoid signaling pathways. COX-2 is a sequence homodimer, but the enzyme displays half-of-site reactivity, such that only one monomer of the dimer is active at a given time. Certain rapid reversible, competitive nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit COX-2 in a substrate-selective manner, with the binding of inhibitor to a single monomer sufficient to inhibit the oxygenation of endocannabinoids but not arachidonic acid. The underlying mechanism responsible for substrate-selective inhibition has remained elusive. We utilized structural and biophysical methods to evaluate flufenamic acid, meclofenamic acid, mefenamic acid, and tolfenamic acid for their ability to act as substrate-selective inhibitors. Crystal structures of each drug in complex with human COX-2 revealed that the inhibitor binds within the cyclooxygenase channel in an inverted orientation, with the carboxylate group interacting with Tyr-385 and Ser-530 at the top of the channel. Tryptophan fluorescence quenching, continuous-wave electron spin resonance, and UV-visible spectroscopy demonstrate that flufenamic acid, mefenamic acid, and tolfenamic acid are substrate-selective inhibitors that bind rapidly to COX-2, quench tyrosyl radicals, and reduce higher oxidation states of the heme moiety. Substrate-selective inhibition was attenuated by the addition of the lipid peroxide 15-hydroperoxyeicosatertaenoic acid. Collectively, these studies implicate peroxide tone as an important mechanistic component of substrate-selective inhibition by flufenamic acid, mefenamic acid, and tolfenamic acid.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Fenamatos/farmacologia , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Endocanabinoides/metabolismo , Fenamatos/química , Heme/química , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peróxidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Triptofano/química
20.
Pharm Res ; 32(10): 3432-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248795

RESUMO

PURPOSE: To examine the expression of fatty acid binding proteins (FABPs) at the human blood-brain barrier (BBB) and to assess their ability to bind lipophilic drugs. METHODS: mRNA and protein expression of FABP subtypes in immortalized human brain endothelial (hCMEC/D3) cells were examined by RT-qPCR and Western blot, respectively. FABPs that were found in hCMEC/D3 cells (hFABPs) were recombinantly expressed and purified from Escherichia coli C41(DE3) cells. Drug binding to these hFABPs was assessed using a fluorescence assay, which measured the ability of a panel of lipophilic drugs to displace the fluorescent probe compound 1-anilinonaphthalene-8-sulfonic acid (ANS). RESULTS: hFABP3, 4 and 5 were expressed in hCMEC/D3 cells at the mRNA and protein level. The competitive ANS displacement assay demonstrated that, in general, glitazones preferentially bound to hFABP5 (Ki: 1.0-28 µM) and fibrates and fenamates preferentially bound to hFABP4 (Ki: 0.100-17 µM). In general, lipophilic drugs appeared to show weaker affinities for hFABP3 relative to hFABP4 and hFABP5. No clear correlation was observed between the molecular structure or physicochemical properties of the drugs and their ability to displace ANS from hFABP3, 4 and 5. CONCLUSIONS: hFABP3, 4 and 5 are expressed at the human BBB and bind differentially to a diverse range of lipophilic drugs. The unique expression and binding patterns of hFABPs at the BBB may therefore influence drug disposition into the brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Preparações Farmacêuticas/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Fenamatos/metabolismo , Ácidos Fíbricos/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , RNA Mensageiro/metabolismo , Tiazolidinedionas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...