Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Food Chem ; 439: 138167, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071847

RESUMO

The work provided a method for synthesizing a simple fluorescent molecularly imprinted polymer by surface-initiated atom transfer radical polymerization (SI-ATRP) and its application in real sample. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres were selected as a matrix, 4-vinylpyridine, ethylene glycol dimethacrylate, 2,4-dichlorophenoxyacetic acid (2,4-D) as functional monomer, cross-linker and template molecule, respectively, to fabricate MAR@MIP with core-shell structure. For comparison, carbon dot (CD) as a fluorescence source was synthesized with o-phenylenediamine and tryptophan as precursors via hydrothermal method and integrated into MIP to acquire MAR@CD-MIP. MAR@CD-NIP was also prepared without adding the template molecule. The adsorption capacity of MAR@CD-MIP reached 104 mg g-1 for 2,4-D, which was higher than that of MAR@MIP (60 mg g-1). However, the adsorption capacity of MAR@CD-NIP was only 13.2 mg g-1. The linear range of fluorescence detection for 2,4-D was 18-72 µmol/L, and the limit of detection (LOD) was 0.35 µmol/L. The fluorescent MAR@CD-MIP was successfully applied in enrichment of lettuce samples. The recoveries of the three spiked concentrations of 2,4-D in lettuce were tested by fluorescence spectrophotometry and ranged in 97.3-101.7 %. Meanwhile, the results were also verified by HPLC. As a result, bi-functional molecularly imprinted resin was successfully fabricated to detect and enrich 2,4-D in real samples, and exhibited good selectivity, sensitivity and great application prospect in food detection.


Assuntos
Herbicidas , Impressão Molecular , Carbono , Polímeros/química , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Impressão Molecular/métodos
2.
Environ Pollut ; 344: 123213, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158010

RESUMO

Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 µg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.


Assuntos
Herbicidas , Microbiota , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Microplásticos/metabolismo , Plásticos/toxicidade , Oligoquetos/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/análise , Herbicidas/toxicidade , Herbicidas/metabolismo , Fenoxiacetatos/metabolismo , Metaboloma , Solo/química , Ácido 2,4-Diclorofenoxiacético/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-37659610

RESUMO

Excessive use of herbicides in agricultural fields has become a major environmental concern due to the negative effects on the ecosystem. Microbial degradation has been well-known as an effective approach for combating such non-natural substances in soil. In the present study, the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a result of metabolic activities of a cyanobacterium Nostoc muscorum Meg 1 was investigated using GC-MS analysis. After seven days of 2,4-D exposure, the main residue obtained was 2,4-dichlorophenol (2,4-DCP) at RT: 8.334 (confirmed using NIST library). The effects of 2,4-DCP were studied in a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field where 2,4-D is commonly used. Exposure to 2,4-DCP at 20, 40, and 80 ppm significantly increased ROS production in the cyanobacterium by 74, 107, and 211 % (p < 0.001). With rising 2,4-DCP concentrations in the surroundings, lipid peroxidation and protein oxidation in the organism correspondingly increased, indicating cellular injury. The mRNA and protein contents, and also the activities of different oxidant neutralizing enzymes such as CAT, SOD, GR, and GPx and the non-enzymatic antioxidants (proline, GSH, thiol and phytochelatin content) were found augmented in 20 ppm 2,4-DCP exposed cultures. However, in the presence of 40 and 80 ppm 2,4-DCP, most enzymatic and non-enzymatic antioxidants were severely compromised. At higher exposures, the organism's attempt to mitigate the oxidants was still visible, as both proline and TSH levels increased. SEM and TEM analysis aided in visualizing the effects of 2,4-DCP on the morphology and ultrastructures of the organism.


Assuntos
Herbicidas , Nostoc muscorum , Antioxidantes , Herbicidas/toxicidade , Ecossistema , Bactérias , Estresse Oxidativo , Oxidantes , Fenóis , Fenoxiacetatos , Prolina , Ácido 2,4-Diclorofenoxiacético/toxicidade
4.
J Environ Qual ; 52(6): 1092-1101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37689985

RESUMO

The use of the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been steadily increasing in recent years due to its selectivity against broad-leafed weeds and use on genetically modified crops resistant to 2,4-D. This increases the likelihood of 2,4-D persisting in agriculturally impacted soils, sediments, and aquatic systems. Aerobic microorganisms are capable of degrading 2,4-D enzymatically. Anaerobic degradation also occurs, though the enzymatic pathway is unclear. Iron-reducing bacteria (FeRB) have been hypothesized to augment anaerobic degradation through the production of a chemically reactive Fe(II) adsorbed to Fe(III) oxyhydroxides. To test whether this iron species can catalyze abiotic degradation of 2,4-D, an enrichment culture (BLA1) containing a photosynthetic Fe(II)-oxidizing bacterium (FeOB) "Candidatus Chlorobium masyuteum" and the FeRB "Candidatus Pseudopelobacter ferreus", both of which lacked known 2,4-D degradation genes was investigated. BLA1 produces Fe(II)-adsorbed to Fe(III) oxyhydroxides during alternating photoautotrophic iron oxidation and dark iron reduction (amended with acetate) cycles. No 2,4-D degradation occurred during iron oxidation by FeOB Ca. C. masyuteum or during iron reduction by FeRB Ca. P. ferreus under any incubation conditions tested (i.e., +/-Fe(II), +/-cells, and +/-light), or due to the presence of Fe(II) adsorbed to Fe(III) oxyhydroxides. Our results cast doubt on the hypothesis that the mineral-bound Fe(II) species augments the anaerobic degradation of 2,4-D in anoxic soils and waters by iron-cycling bacteria, and further justify the need to identify the genetic underpinnings of anaerobic 2,4-D degradation.


Assuntos
Herbicidas , Ferro , Anaerobiose , Produtos Agrícolas , Plantas Geneticamente Modificadas/metabolismo , Oxirredução , Bactérias/genética , Fenoxiacetatos/metabolismo , Compostos Férricos , Compostos Ferrosos/metabolismo , Ácido 2,4-Diclorofenoxiacético , Solo
5.
Environ Res ; 238(Pt 1): 117124, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716397

RESUMO

This study focused on modeling the removal of one of the widely used agricultural herbicides known as 2,4-Dichlorophenoxyacetic acid (2,4-D) using polypyrrole-coated Fe2O3 nanoparticles (Fe2O3@PPy). The Fe2O3@PPy nanocomposite was synthesized by surface-coating the Tabebuia aurea leaf extract synthesized Fe2O3 nanoparticles with polypyrrole. After characterization, the adsorptive potential of the nanocomposite for removing 2,4-D from aqueous solution was examined. Central composite design (CCD) was employed for optimizing the adsorption, revealing an adsorption efficiency of 90.65% at a 2,4-D concentration of 12 ppm, a dosage of 3.8 g/L, an agitation speed of 150 rpm, and 196 min. Adsorption dataset fitted satisfactorily to Langmuir isotherm (R2: 0.984 & χ2: 0.054) and pseudo-second-order kinetics (R2: 0.929 & χ2: 0.013) whereas the exothermic and spontaneous nature were confirmed via the thermodynamic study. The predictive models, including adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and response surface methodology (RSM), demonstrated good precision for the prediction of 2,4-D adsorption, with respective R2 of 0.9719, 0.9604, and 0.9528. Nevertheless, statistical analysis supported ANFIS as the better forecasting tool, while RSM was the least effective. The maximum adsorption capacity of 2,4-D onto the Fe2O3@PPy nanocomposite was 7.29 mg/g, significantly higher than a few reported values. Therefore, the Fe2O3@PPy nanocomposite could serve as a competent adsorbent to remove 2,4-D herbicide from aqueous streams.


Assuntos
Herbicidas , Nanocompostos , Poluentes Químicos da Água , Herbicidas/análise , Polímeros , Poluentes Químicos da Água/análise , Pirróis/análise , Termodinâmica , Adsorção , Água , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Fenômenos Magnéticos , Cinética , Concentração de Íons de Hidrogênio
6.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762674

RESUMO

The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.


Assuntos
Alphaproteobacteria , Herbicidas , Filogenia , Família Multigênica , Catecóis , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético
7.
Chemosphere ; 336: 139143, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285973

RESUMO

The usage of various herbicides in the agricultural field leads to water pollution which is a big threat to the environment. Herein, the pods of the Peltophorum pterocarpum tree were used as a cheap resource to synthesize activated carbon (AC) by low-temperature carbonization to remove 2,4-dichlorophenoxyacetic acid (2,4-D) - an abundantly used herbicide. The exceptional surface area (1078.34 m2/g), mesoporous structure, and the various functional groups of the prepared AC adsorbed 2,4-D effectively. The maximum adsorption capacity was 255.12 mg/g, significantly higher than the existing AC adsorbents. The adsorption data satisfactorily modelled using Langmuir and pseudo-second-order models. Also, the adsorption mechanism was studied using a statistical physics model which substantiated the multi-molecular interaction of 2,4-D with the AC. The adsorption energy (<20 kJ/mol) and thermodynamic studies (ΔH°: -19.50 kJ/mol) revealed the physisorption and exothermicity. The practical application of the AC was successfully tested in various waterbodies by spiking experiments. Hence, this work confirms that the AC prepared from the pods of P. pterocarpum can be applied as a potential adsorbent to remove herbicides from polluted waterbodies.


Assuntos
Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/química , Temperatura , Adsorção , Herbicidas/química , Fenoxiacetatos , Termodinâmica , Física , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Carvão Vegetal/química
8.
Aquat Toxicol ; 260: 106571, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207488

RESUMO

Aquatic herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D) formulations, are commonly used for invasive species management throughout the United States. Ecologically relevant concentrations of 2,4-D can impair essential behaviors, reduce survival, and act as an endocrine disruptor; however, there is limited knowledge of its effects on the health of non-target organisms. Here, we investigate the acute and chronic exposure impacts of 2,4-D on adult male and female fathead minnow (Pimephales promelas) innate immune function. We exposed both adult male and female fathead minnows to three different ecologically relevant concentrations of 2,4-D (0.00, 0.40, and 4.00 mg/L) and took blood samples at three acute time points (6, 24, and 96 h) and one chronic time point (30 days). We found that male fatheads had higher total white blood cell concentrations when exposed to 2,4-D at the acute time points. For the females, only proportions of specific cell types were altered when exposed to 2,4-D at the acute time points. However, we did not observe any significant impacts of chronic exposure to 2,4-D on any innate immune responses for either males or females. Overall, this study is the first step in answering an important question for game fisheries and management agencies while providing insight to future studies that investigate the impacts of herbicide exposure to freshwater fish health and immunity.


Assuntos
Cyprinidae , Herbicidas , Poluentes Químicos da Água , Animais , Feminino , Masculino , Poluentes Químicos da Água/toxicidade , Herbicidas/toxicidade , Herbicidas/metabolismo , Fenoxiacetatos/metabolismo , Cyprinidae/metabolismo , Ácido 2,4-Diclorofenoxiacético/toxicidade , Imunidade Inata
9.
J Chem Inf Model ; 63(9): 2759-2768, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100030

RESUMO

The AAD-1 enzyme belongs to the Fe(II) and α-ketoglutarate (Fe/αKG)-dependent nonheme aryloxyalkanoate dioxygenase family (AADs), which catalyzes the breakdown of 2,4-dichlorophenoxyacetic acid (2,4-D, an active ingredient of thousands of commercial herbicides) by using the highly active Fe(IV)═O complex. Multiple species of bacteria degrade 2,4-D via a pathway initiated by AADs; however, the detail of how they promote the cleavage of the ether C-O bond to generate 2,4-dichlorophenol (2,4-DCP) and glyoxylate is still unclear, which is the prerequisite for the further degradation of these halogenated aromatics. In this work, based on the crystal structure of AAD-1, the computational models were constructed, and a series of QM/MM and QM-only calculations were performed to explore the cleavage of the ether bond in 2,4-D with the catalysis of AAD-1. Our calculations reveal that AAD-1 may be only responsible for the hydroxylation of the substrate to generate the intermediate hemiacetal, which corresponds to an overall energy barrier of 14.2 kcal/mol on the quintet state surface, and the decomposition of the hemiacetal in the active site center of AAD-1 was calculated to be rather slow, corresponding to an energy barrier of 24.5 kcal/mol. In contrast, the decomposition of the free hemiacetal molecule in a solvent was calculated to be quite easy. Whether the decomposition of the hemiacetal occurs inside or outside the activation site is still worthy of experimental verification.


Assuntos
Dioxigenases , Herbicidas , Herbicidas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/metabolismo , Compostos Ferrosos/química
10.
Environ Sci Pollut Res Int ; 30(21): 60574-60589, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37032407

RESUMO

In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.


Assuntos
Herbicidas , Compostos Organometálicos , Poluentes Químicos da Água , Água , Adsorção , Fenoxiacetatos , Indicadores e Reagentes , Ácido 2,4-Diclorofenoxiacético , Poluentes Químicos da Água/química
11.
J Hazard Mater ; 451: 131099, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868133

RESUMO

After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.


Assuntos
Poluentes Ambientais , Herbicidas , Herbicidas/metabolismo , Biodegradação Ambiental , Ácido 2,4-Diclorofenoxiacético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenoxiacetatos , Bactérias/metabolismo
12.
Environ Sci Pollut Res Int ; 30(14): 42367-42377, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648727

RESUMO

A novel nanomaterial based on cationic surfactant-coated TiO2 nanoparticle (CCTN) was systematically fabricated in this work. Synthesized titania nanoparticles were thoroughly characterized by XRD, FT-IR, HR-TEM, TEM-EDX, SEM with EDX mapping, BET, and ζ potential measurements. The adsorption of cationic surfactant, cetyltrimethylammonium bromide (CTAB), on TiO2 was studied under various pH and ionic strength conditions. Adsorption of CTAB on TiO2 increased with ionic strength increment in the presence of hemimicelle monolayer structure, indicating that nonelectrostatic and electrostatic forces control CTAB uptake. CTAB adsorption isotherms on TiO2 were according to a two-step model. Potential application in pesticide removal of 2,4-dichorophenoxy acetic acid (2,4-D) using CCTN was also studied. Optimum parameters for 2,4-D treatment through adsorption technique were pH 5, adsorption time of 120 min, and CCTN dosage of 10 mg·mL-1. Very low 2,4-D removal efficiency using TiO2 without CTAB coating was found to be approximately 28.5% whereas the removal efficiency was up to about 90% by using CCTN under optimum conditions, and the maximum adsorption capacity of 12.79 mg·g-1 was found. Adsorption isotherms of 2,4-D on CCTN were more suitable with the Langmuir model than Freundlich. Adsorption mechanisms of 2,4-D on CCTN were mainly governed by Columbic attraction based on isotherms and surface charge changes.


Assuntos
Herbicidas , Nanopartículas , Cetrimônio , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Nanopartículas/química , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Cinética
13.
Sci Total Environ ; 858(Pt 2): 159594, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280050

RESUMO

The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (1H and 13C), XRD, mass spectrometry and FE-SEM spectral analyses. The prepared organosilane and its HSNPs have been utilized as an effective emission probe for the selective detection of 2,4 D with good linear relationship in the range of 0-160 µM and 0-115 µM and LOD value of 46 nM and 13.5 nM respectively. In the presence of other active species, the sensor shows minimal interference while the comparison with the previously reported techniques suggests it to be more desirable for the sensitive and selective detection of 2,4 D. Further, the real sample application for detection of 2,4 D was analyzed in field water and the HSNPs based sensing system gave recovery percentage of above 98 %.


Assuntos
Herbicidas , Nanocompostos , Compostos de Organossilício , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Herbicidas/análise , Nanocompostos/química , Ácido 2,4-Diclorofenoxiacético/análise , Água/química , Fenoxiacetatos
14.
Chemosphere ; 310: 136883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257398

RESUMO

In the present study, ferric oxide nanoparticles impregnated with activated carbon from Ulva prolifera biomass (UPAC-Fe2O3) were prepared and employed to remove 2,4-Dichlorophenoxyacetic acid (2,4-D) by adsorption. The UPAC-Fe2O3 nanocomposite was characterized for its structural and functional properties by a variety of techniques. The nanocomposite had a jagged, irregular surface with pores due to uneven scattering of Fe2O3 nanoparticles, whereas elemental analysis portrayed the incidence of carbon, oxygen, and iron. XRD analysis established the crystalline and amorphous planes corresponding to the iron oxide and carbon phase respectively. FT-IR analyzed the functional groups that confirmed the integration of Fe2O3 nanoparticles onto nanocomposite surfaces. VSM and XPS studies uncovered the superparamagnetic nature and presence of carbon and Fe2O3, respectively, in the UPAC-Fe2O3 nanocomposite. While the surface area was 292.51 m2/g, the size and volume of the pores were at 2.61 nm and 0.1906 cm3/g, respectively, indicating the mesoporous nature and suitability of the nanocomposites that could be used as adsorbents. Adsorptive removal of 2,4-D by nanocomposite for variations in process parameters like pH, dosage, agitation speed, adsorption time, and 2,4-D concentration was studied. The adsorption of 2,4-D by UPAC-Fe2O3 nanocomposite was monolayer chemisorption owing to Langmuir isotherm behavior along with a pseudo-second-order kinetic model. The maximum adsorption capacity and second order rate constant values were 60.61 mg/g and 0.0405 g/mg min respectively. Thermodynamic analysis revealed the spontaneous and feasible endothermic adsorption process. These findings confirm the suitability of the synthesized UPAC-Fe2O3 nanocomposite to be used as an adsorbent for toxic herbicide waste streams.


Assuntos
Herbicidas , Nanocompostos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Nanocompostos/química , Herbicidas/análise , Cinética , Termodinâmica , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
15.
Environ Sci Pollut Res Int ; 30(12): 34915-34931, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525191

RESUMO

Due to anthropogenic activities, various pollutants can be found in agricultural soil, such as cadmium (Cd) and 2,4-dichlorophenoxyacetic acid (2,4-D). They are highly toxic and can have a negative impact on soil fertility. For remediation strategies, biochar has acquired considerable attention due to its benefits for agriculture. However, we should recognize the ecological risk posed by biochar use. In addition, little is known about its non-desirable effects on soil organisms such as earthworms, especially in the case of soil remediation. In this study, earthworms (Eisenia andrei) were exposed to soil contaminated with Cd (0.7 mg/kg), (2,4-D) (7 mg/kg), and a mixture of the two in the presence and absence of biochar (2%). A 7- and 14-day incubation experiment was carried out for this purpose. Cd and 2,4-D uptakes in earthworms' tissues, oxidative stress, cytotoxic response, DNA damage, histopathological changes, and gene expression level were assessed. Results suggested that biochar increased the bioavailability of Cd and 2,4-D and the frequency of micronuclei (MNi) and decreased the lysosomal membrane stability (LMS) in earthworms. Also, histopathological examination detected numerous alterations in animals exposed to the contaminants without any amelioration when biochar was added. The biochemical response of earthworms in terms of oxidative stress demonstrates that in the presence of biochar, animals tend to alleviate the toxicity of Cd and 2,4-D. This was also supported by transcriptomic analyses where expression gene levels related to oxidative stress were upregulated in earthworms exposed to Cd and 2,4-D + biochar. The present investigation brought new insights concerning the use of biochar in agriculture.


Assuntos
Herbicidas , Oligoquetos , Poluentes do Solo , Animais , Cádmio/análise , Poluentes do Solo/análise , Herbicidas/análise , Carvão Vegetal/farmacologia , Fenoxiacetatos/metabolismo , Fenoxiacetatos/farmacologia , Solo/química , Ácido 2,4-Diclorofenoxiacético/toxicidade , Ácido 2,4-Diclorofenoxiacético/metabolismo
16.
Environ Pollut ; 316(Pt 2): 120612, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368550

RESUMO

Alarming rates of water contamination by toxic herbicides have prompted the need and attention for easy, efficient, and affordable treatment options with a touch of circular economy aspects. This study valorized date palm leaf (DPL) wastes into a valuable adsorbent for remediating agricultural wastewater polluted with 2,4-Dichlorophenoxyacetic acid (2,4-DPA) herbicide. The DPL precursor was modified with H2SO4 treatment and both biomass samples were characterized by various analytical techniques. Acid treatment modified the morphology, thermal, and textural properties of the final product (TDPL) while maintaining the structure and surface chemistry intact. Simulated wastewaters containing 2,4-DPA were subsequently treated using TDPL as an adsorbent. Optimum adsorption conditions of pH 2, dosage 0.95 g/L, shaking speed 200 rpm, time 120 min, and temperature 30 °C showed a good herbicide removal efficiency in the range of 55.1-72.6% for different initial feed concentrations (50-250 mg/L). Experimental kinetic data were better represented by the pseudo-second-order model, while the Freundlich isotherm was reliable in describing the equilibrium behavior of the adsorption system. Further, the thermodynamic analysis revealed that the adsorption occurred spontaneously, favorably, and exothermically. Plausible sorption mechanism involved electrostatic interactions, weak van der Waals forces, hydrogen bonds, and π-π interactions between the participating phases. Conspicuously, TDPL application to real-world situations of treating actual herbicide-polluted agricultural runoff resulted in a 69.4% remediation efficiency. Thus, the study demonstrated the valorization of date palm leaves into a valuable and industry-ready adsorbent that can sequester toxic 2,4-DPA herbicide contaminant from aqueous streams.


Assuntos
Herbicidas , Phoeniceae , Poluentes Químicos da Água , Adsorção , Herbicidas/análise , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/química , Folhas de Planta/química
17.
Sci Rep ; 12(1): 21822, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528649

RESUMO

In this study, the inheritance of 2,4-D resistance in a multiple herbicide-resistant Palmer amaranth (KCTR) was investigated. Direct and reciprocal crosses were performed using 2,4-D-resistant KCTR and susceptible KSS plants to generate F1 progenies. 2,4-D dose-response assays were conducted to evaluate the response of progenies from each F1 family along with KCTR and KSS plants in controlled environmental growth chambers. Additionally, 2,4-D-resistant male and female plants from each of the F1 families were used in pairwise crosses to generate pseudo-F2 families. Segregation (resistance or susceptibility) of progenies from the F2 families in response to a discriminatory rate of 2,4-D (i.e., 560 g ae ha-1) was evaluated. Dose-response analysis of F1 progenies derived from direct and reciprocal crosses suggested that the 2,4-D resistance in KCTR is a nuclear trait. Chi-square analyses of F2 segregation data implied that 2,4-D resistance in KCTR is controlled by multiple gene(s). Overall, our data suggest that the 2,4-D resistance in KCTR Palmer amaranth is a nuclear inherited trait controlled by multiple genes. Such resistance can spread both via pollen or seed-mediated gene flow. In future, efforts will be directed towards identifying genes mediating 2,4-D resistance in KCTR population.


Assuntos
Amaranthus , Herbicidas , Humanos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/farmacologia
18.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361980

RESUMO

The development of low-cost and eco-friendly materials for the removal of pollutants from water is one of the main modern challenges. For this purpose, molecularly imprinted polymers were prepared under optimized conditions starting from chitosan (CS), chemically or ionically modified with glycidyl methacrylate (GMA) or itaconic acid (ITA), respectively. 2,4-Dichlorophenoxyacetic acid (2,4-D) was used as a template, obtaining the CS_GMA and CS_ITA series. The influence of the template concentration on the MIPs' (molecularly imprinted polymers) morphology, thermal behaviour and swelling ability, as well as on the 2,4-D removal capacity, were analyzed. The amount of the template used for the imprinting, together with the different permeability of the matrices, were the key factors driving the analyte uptake process. Despite the good performance shown by the non-imprinted CS_GMA sample, the best results were obtained when CS_GMA was imprinted with the highest amount (5%) of template (CS_GMA_5). This system was also more efficient when consecutive adsorption experiments were carried out. In addition, CS_GMA_5 had a desorption efficiency of 90-100% when a low pesticide concentration was used. These findings suggest that the presence of imprinted cavities could be useful in improving the performance of sorbent materials making CS_GMA_5 a possible candidate for 2,4-D removal.


Assuntos
Quitosana , Herbicidas , Impressão Molecular , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Adsorção , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético
19.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431881

RESUMO

Brazil's production and consumption of açai pulp (Euterpe oleracea) occur on a large scale. Most of the fruit is formed by the pit, which generates countless tons of residual biomass. A new purpose for this biomass, making its consumption highly sustainable, was presented in this study, where activated carbon (AC) was produced with zinc chloride for later use as an adsorbent. AC carbon formed by carbon and with a yield of 28 % was satisfactorily used as an adsorbent in removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Removal efficiency was due to the highly porous surface (Vp = 0.467 cm3 g-1; Dp = 1.126 nm) and good surface área (SBET = 920.56 m2 g-1). The equilibrium data fit the Sips heterogeneous and homogeneous surface model better. It was observed that the increase in temperature favored adsorption, reaching a maximum experimental capacity of 218 mg g-1 at 328 K. The thermodynamic behavior indicated a spontaneous, favorable, and endothermic behavior. The magnitude of the enthalpy of adsorption was in agreement with the physical adsorption. Regardless of the herbicide concentration, the adsorbent displayed fast kinetics, reaching equilibrium within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. AC with zinc chloride (ZnCl2), created from leftover açai biomass, is a potential alternative as an adsorbent for treating effluents containing 2,4-D.


Assuntos
Euterpe , Herbicidas , Porosidade , Frutas , Carvão Vegetal , Fenoxiacetatos , Sementes , Ácido 2,4-Diclorofenoxiacético
20.
Biosensors (Basel) ; 12(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140145

RESUMO

The determination of plant growth regulators is of great importance for the quality monitoring of crops. In this work, 4-bromophenoxyacetic acid (4-BPA), one of the phenoxyacetic acids, was detected via the electrochemical method for the first time. A CeO2-decorated electrochemical exfoliated graphene (eGr) composite (CeO2/eGr) was constructed as the sensor for sensitive detection of 4-BPA due to the synergistic effect of the excellent catalytic active sites of CeO2 and good electron transference of the eGr. The developed CeO2/eGr sensor displayed a good linearity in a wide range from 0.3 to 150 µmol/L and the lowest detection limit of 0.06 µmol/L for 4-BPA detection. Electrochemical oxidation of 4-BPA follows a mix-controlled process on the CeO2/eGr electrode, which involves 2e in the transference process. This developed CeO2/eGr sensor has excellent repeatability with a relative standard deviation (RSD) of 2.35% in 10 continuous measurements. Moreover, the practical application of the sensor for 4-BPA detection in apple juice has recoveries in the range of 90-108%. This proposed CeO2/eGr sensor has great potential for detecting plant growth regulators in the agricultural industry.


Assuntos
Cério , Grafite , Cério/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Fenoxiacetatos , Reguladores de Crescimento de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...