Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.408
Filtrar
1.
J Bras Nefrol ; 46(1): 99-106, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-38427579

RESUMO

We present a case of a 69-year-old man who presented for routine check-up and was incidentally found to have kidney failure with an initially unrevealing history and bland urinary sediment. He was diagnosed with oxalate nephropathy in the setting of chronic turmeric supplementation and chronic antibiotic therapy with associated diarrhea. Our case provides several key insights into oxalate nephropathy. First, the diagnosis requires a high index of clinical suspicion. It is uncommonly suspected clinically unless there is an obvious clue in the history such as Roux-en-Y gastric bypass or ethylene glycol poisoning. Diagnosis can be confirmed by histopathologic findings and corroborated by serum levels of oxalate and 24-hour urinary excretion. Second, the diagnosis can often be missed by the pathologist because of the characteristics of the crystals unless the renal pathologist has made it a rule to examine routinely all H&E sections under polarized light. This must be done on H&E, as the other stains dissolve the crystals. Third, one oxalate crystal in a routine needle biopsy is considered pathologic and potentially contributing to the AKI or to the CKD in an important way. Fourth, secondary oxalosis can be largely mitigated or prevented in many cases, especially iatrogenic cases. This can come through the surgeon or the gastroenterologist providing proper instructions to patients on an oxalate-restricted diet or other specific dietary measures. Lastly, this case highlights the success that results from cooperation and communication between the pathologist and the treating physician.


Assuntos
Hiperoxalúria , Insuficiência Renal , Masculino , Humanos , Idoso , Curcuma , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/complicações , Insuficiência Renal/complicações , Oxalatos , Suplementos Nutricionais/efeitos adversos
2.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526056

RESUMO

Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.


Assuntos
Quitosana , Cloretos , Hemostáticos , Orchidaceae , Oxalatos , Camundongos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Hemostasia , Polissacarídeos/farmacologia , Polissacarídeos/química , Orchidaceae/química
3.
Urolithiasis ; 52(1): 46, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520518

RESUMO

This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-ß/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-ß/SMAD pathway related proteins (TGF-ß1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-ß1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-ß/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-ß/SMAD axis.


Assuntos
Hiperoxalúria , Oxalatos , Masculino , Ratos , Animais , Oxalatos/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Oxalato de Cálcio/metabolismo , Ratos Sprague-Dawley , Células Epiteliais/metabolismo , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
4.
BMC Nephrol ; 25(1): 106, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500054

RESUMO

A 75-year-old male developed acute kidney injury KDIGO stage 3 a few weeks after Whipple surgery was performed for a distal cholangiocarcinoma. Kidney biopsy revealed oxalate nephropathy. This was attributed to post-Whipple malabsorption, poor compliance with pancreatic enzyme replacement therapy, and daily intake of vitamin C supplements. Pancreatic enzyme replacement therapy was resumed and calcium carbonate initiated, with an improvement in glomerular filtration rate. Unfortunately, due to oncological progression, best supportive care was initiated.We review the pathophysiology and conditions predisposing to secondary hyperoxaluria and oxalate nephropathy. This diagnosis should be considered among the main causes of acute kidney injury following pancreatectomy, with important therapeutic implications.


Assuntos
Injúria Renal Aguda , Hiperoxalúria , Masculino , Humanos , Idoso , Pancreaticoduodenectomia/efeitos adversos , Hiperoxalúria/complicações , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Oxalatos
6.
Clin Nutr ESPEN ; 60: 320-326, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479930

RESUMO

BACKGROUND AND AIMS: Previous studies have demonstrated associations between the Dietary Inflammatory Index (DII®), an analytical tool which evaluates the inflammatory potential of the diet according to the pro- and anti-inflammatory properties of its components, and renal stone formation. However, these have not comprehensively addressed important parameters such as stone type, gender, DII scores in stone formers (SFs) and healthy controls (Cs) and associations of DII with urine and blood chemistries. These were adopted as the survey parameters for the present study, the purpose of which was to test whether the contributory role of an inflammatory diet on stone formation could be further confirmed. METHODS: 97 calcium oxalate (CaOx) SFs and 63 Cs, matched for age and gender each completed a semi-quantitative food frequency questionnaire from which nutrient composition was computed. These data were used to calculate the DII® score. To control the effect of energy intake, energy-adjusted DII scores were calculated per 1000 kcal consumed (E-DII™). A single blood sample and two consecutive overnight (8h) urine samples were collected from a subset (n = 59 SFs and n = 54 Cs) of the overall number of particpants (n = 160). These were analysed for renal stone risk factors. Data were analysed using regression models fit in R software. RESULTS: E-DII scores were found to fit the data better than DII, so they were used throughout. E-DII scores were significantly more positive (more pro-inflammatory) in SFs than in controls in the combined gender group (-0.34 vs. -1.73, p < 0.0001) and separately in males (-0.43 vs. -1.78, p = 0.01) and females (-0.26 vs. - 1.61, p = 0.05). In blood, a significant negative correlation was seen between E-DII and HDL cholesterol. In urine significant positive correlations were seen between E-DII and each of calcium (ρ = 0.25, p = 0.02), phosphate (ρ = 0.48, p < 0.001), magnesium (ρ = 0.33, p < 0.0001) and uric acid (ρ = 0.27, p = 0.004) concentrations. A significant negative correlation was seen between E-DII and urinary volume ρ = -0.27, p = 0.003). There was no correlation between E-DII scores and the relative supersaturations of urinary CaOx, calcium phosphate (brushite) and uric acid. CONCLUSIONS: Our findings provide hitherto unreported quantitative evidence in support of the notion that the diet of calcium oxalate renal stone patients is significantly more pro-inflammatory than that of healthy controls.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Masculino , Feminino , Humanos , Oxalato de Cálcio/urina , Oxalatos , Ácido Úrico/urina , Cálculos Renais/etiologia , Cálculos Renais/urina , Dieta , Fatores de Risco
7.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407354

RESUMO

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Medula Renal/patologia , Cristalização , Cálcio , Microfluídica , Cálculos Renais/química , Cálculos Renais/patologia , Apatitas , Oxalatos , Íons , Hidroxiapatitas
8.
PLoS One ; 19(2): e0294068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381727

RESUMO

Optimal nutrition in early childhood increases growth and development while preventing morbidity and mortality in later life. This study focused on the quality and safety of 32 commercially produced complementary foods collected from supermarkets in Addis Ababa, Ethiopia. The proximate composition (moisture, protein, fat, crude fibre, and ash); and the mineral profile (calcium, iron, zinc, manganese, and magnesium) were determined using the AOAC method. The determination of antinutritional factors (Condensed tannin and oxalate) was done using a UV spectrophotometer. A rapid visco analyzer was used to measure the rheological property. The microbial load of commercially produced complimentary foods was identified using aerobic colony counts for mold and yeast. Labeling practice was evaluated using the WHO and Ethiopian standard tools. The results of proximate compositions were: protein (0.92-18.16 g/100g), fat (0.63-6.44 g/100g), crude fiber (1.04-13.2 g/100g), energy (410-337 kcal/100g), moisture (0.03-17 g/100g), and ash (0.60-4.67 g/100g). The protein and fat content of all the products is below international standards. Only three products met the standards for energy. Moisture and ash contents partially met the requirement, while all of the carbohydrate contents of the products fell under the specified standard. The lowest and highest mineral contents of the products were: Fe (1.38 to 15.10 mg/100g), Zn (0.64 to 6.78 mg/100g), Ca (30.55 to 364.45 mg/100g), Mg (1.2 to 34.2 mg/100g), and Mn (0.80 to 32 mg/100g). Based on these, 21.5% of the foods met the Fe standard, and 31.5% didn't meet the Zn standard. The Ca and Mg of all the products met the requirement. Except for one product, all met standards. The highest and lowest results for the tannin and oxalate content of the products were 49.20 to 90.09 mg/100g and 0.47 to 30.10 mg/100g, respectively and this shows that the products are below the permissible range for tannin and oxalate. The counts of yeast and mold were 0.00-2.95 log10 cfu/g and 0.00-2.91 log10 cfu/g, respectively. Only one product fell below the standard for yeast count, and none of the products showed a mold count that exceeded the standard. The final viscosity was 63.5-3476 RVU, and only 31.25% of the samples fell under the permissible peak viscosity range, of 83-250 RVU. Thus, regular monitoring of the raw material and processing trends and the inclusion of animal sources in the raw material are suggested for having well-enriched complementary foods. Regulatory bodies should also conduct frequent market surveillance to safeguard the health of the consumer.


Assuntos
Saccharomyces cerevisiae , Taninos , Animais , Pré-Escolar , Humanos , Etiópia , Nutrientes/análise , Minerais , Oxalatos
9.
Genes (Basel) ; 15(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397162

RESUMO

Spinach is a significant source of vitamins, minerals, and antioxidants. These nutrients make it delicious and beneficial for human health. However, the genetic mechanism underlying the accumulation of nutrients in spinach remains unclear. In this study, we analyzed the content of chlorophyll a, chlorophyll b, oxalate, nitrate, crude fiber, soluble sugars, manganese, copper, and iron in 62 different spinach accessions. Additionally, 3,356,182 high-quality, single-nucleotide polymorphisms were found using resequencing and used in a genome-wide association study. A total of 2077 loci were discovered that significantly correlated with the concentrations of the nutritional elements. Data mining identified key genes in these intervals for four traits: chlorophyll, oxalate, soluble sugar, and Fe. Our study provides insights into the genetic architecture of nutrient variation and facilitates spinach breeding for good nutrition.


Assuntos
Estudo de Associação Genômica Ampla , Spinacia oleracea , Humanos , Spinacia oleracea/genética , Clorofila A , Melhoramento Vegetal , Nutrientes , Oxalatos
10.
Urolithiasis ; 52(1): 38, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413462

RESUMO

Intestinal microbiome dysbiosis is a known risk factor for recurrent kidney stone disease (KSD) with prior data suggesting a role for dysfunctional metabolic pathways other than those directly utilizing oxalate. To identify alternative mechanisms, the current study analyzed differences in the metabolic potential of intestinal microbiomes of patients (n = 17) and live-in controls (n = 17) and determined their relevance to increased risk for KSD using shotgun metagenomic sequencing. We found no differences in the abundance of genes associated with known oxalate degradation pathways, supporting the notion that dysfunction in other metabolic pathways plays a role in KSD. Further analysis showed decreased abundance of key enzymes involved in butyrate biosynthesis in patient intestinal microbiomes. Furthermore, de novo construction of microbial genomes showed that the majority of genes significantly enriched in non-stone formers are affiliated with Faecalibacterium prausnitzii, a major butyrate producer. Specifically pertaining to butyrate metabolism, the majority of abundant genes mapped back to F. prausnitzii, Alistipes spp., and Akkermansia muciniphila. No differences were observed in ascorbate or glyoxylate metabolic pathways. Collectively, these data suggest that impaired bacterial-associated butyrate metabolism may be an oxalate-independent mechanism that contributes to an increased risk for recurrent KSD. This indicates that the role of the intestinal microbiome in recurrent KSD is multi-factorial, which is representative of the highly intertwined metabolic nature of this complex environment. Future bacteria-based treatments must not be restricted to targeting only oxalate metabolism.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Humanos , Oxalatos/metabolismo , Fatores de Risco , Bactérias/genética , Butiratos , Cálculos Renais/microbiologia
11.
Water Res ; 253: 121256, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335843

RESUMO

Hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and peroxydisulfate (PDS) are key bulk oxidants in many advanced oxidation processes (AOPs) for treating chemically contaminated water. In some systems these peroxides may coexist in solution either through intentional co-addition or their inadvertent formation (especially H2O2) due to reaction chemistry. While many analytical methods to determine these peroxides individually have been established, mutual interference among the peroxides in such methods has seldom been evaluated, and new methods or variants of established methods to selectively determine peroxides in binary mixtures are lacking. We re-examined five established colorimetric methods-the Permanganate, Titanium Oxalate (Ti-oxalate), Iodide, N.N­diethyl-p-phenylenediamine (DPD), and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS) methods-for mutual interference among peroxides and devised variants of these methods for selectively quantifying one peroxide in the presence of another. Hydrogen peroxide can be selectively determined by the Permanganate method at short reaction time; by the Ti-oxalate method; by the DPD method with added peroxidase (POD); or by the ABTS method with added POD. PMS can be selectively determined by the Iodide method; by the DPD or ABTS methods with added iodide ion as catalyst; or by the DPD method with added catalase (CAT) (with co-existing H2O2 but not PDS). The DPD method can be used to determine PDS without interference by H2O2 and-provided the sample is pretreated with l-histidine-without interference by PMS. The recommended methods were successfully applied to binary peroxide mixtures in complex waters, including a tap water and a synthetic water. Overall, the new selective methods will assist mechanistic investigation of AOPs based on these peroxides and support efforts to apply them commercially.


Assuntos
Benzotiazóis , Peróxido de Hidrogênio , Compostos de Manganês , Óxidos , Ácidos Sulfônicos , Poluentes Químicos da Água , Iodetos , Peróxidos , Oxirredução , Água , Oxalatos , Poluentes Químicos da Água/análise
12.
Microbiol Res ; 282: 127663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422861

RESUMO

Formation of calcium oxalate (CaOx) crystal, the most common composition in kidney stones, occurs following supersaturation of calcium and oxalate ions in the urine. In addition to endogenous source, another main source of calcium and oxalate ions is dietary intake. In the intestinal lumen, calcium can bind with oxalate to form precipitates to be eliminated with feces. High intake of oxalate-rich foods, inappropriate amount of daily calcium intake, defective intestinal transporters for oxalate secretion and absorption, and gastrointestinal (GI) malabsorption (i.e., from gastric bypass surgery) can enhance intestinal oxalate absorption, thereby increasing urinary oxalate level and risk of kidney stone disease (KSD). The GI microbiome rich with oxalate-degrading bacteria can reduce intestinal oxalate absorption and urinary oxalate level. In addition to the oxalate-degrading ability, the GI microbiome also affects expression of oxalate transporters and net intestinal oxalate transport, cholesterol level, and short-chain fatty acids (SCFAs) production, leading to lower KSD risk. Recent evidence also shows beneficial effects of urinary microbiome in KSD prevention. This review summarizes the current knowledge on the aforementioned aspects. Potential benefits of the GI and urinary microbiomes as probiotics for KSD prevention are emphasized. Finally, challenges and future perspectives of probiotic treatment in KSD are discussed.


Assuntos
Cálculos Renais , Microbiota , Humanos , Oxalatos/metabolismo , Cálcio/urina , Cálculos Renais/prevenção & controle , Cálculos Renais/urina , Oxalato de Cálcio/metabolismo , Íons
13.
Dalton Trans ; 53(10): 4580-4597, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349214

RESUMO

Liver cancer is one of the leading causes of death that motivating scientists worldwide to synthesize novel chemotherapeutics. Ru(II)-polypyridyl complexes are extensively studied for possible therapeutic and cellular applications due to their tunable coordination chemistry, structural diversity, ligand-exchange kinetics, accessible redox states, and rich photophysical or photochemical properties. Herein, we have synthesized a series of Ru(II) polypyridyl complexes [RuII(N^N)2(ox)] (1-3), where ox is oxalate (C2O42-) and N^N is 1,10-phenanthroline (phen) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and dipyrido[3,2,-a:2',3'-c]phenazine (dppz) (3). Oxalate (ox2-) was opted as a bioactive dioxo ligand to prevent facile hydrolysis in aqueous media, thereby increasing the stability of the Ru(II)-polypyridyl complexes in physiological media. We thoroughly characterized all the complexes using ESI-MS, FT-IR, UV-vis, and 1H NMR spectroscopy and other physicochemical methods. The complexes were stable under physiological conditions and under low-energy green LED light (λirr = 530 nm). However, the photoirradiation of complexes resulted in the efficient generation of singlet oxygen (1O2) as a major reactive oxygen species (ROS). The role of the extended aromatic conjugation of the N^N-donor ligands in the complexes was demonstrated by their binding propensities with CT-DNA and bovine serum albumin (BSA). Both DNA intercalation and groove binding were evidenced, while tryptophan (Trp) and tyrosine (Tyr) binding site preferences were revealed from the synchronous fluorescence spectra (SFS) of BSA. The cytotoxic profiling of the complexes performed on hepatocellular carcinoma cells (HepG2) in the dark and in the presence of green light indicated their dose-dependent cytotoxicity. The [RuII(N^N)2(ox)] complexes exhibited enhanced photocytotoxicity mediated by efficient generation of cytotoxic 1O2 and effective interaction with DNA. All the complexes were internalized by the HepG2 liver cancer cells efficiently and localized to the cytoplasm and nucleus. The complexes exhibited potent anti-proliferative, anti-clonogenic, and anti-migratory effects on the cancer cells, suggesting their potential for therapeutic applications.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Rutênio/farmacologia , Rutênio/química , Ligantes , Oxalatos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
14.
Int J Biol Macromol ; 261(Pt 2): 129912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309384

RESUMO

Stone modulators are various kinds of molecules that play crucial roles in promoting/inhibiting kidney stone formation. Several recent studies have extensively characterized the stone modulatory proteins with the ultimate goal of preventing kidney stone formation. Herein, we introduce the StoneMod 2.0 database (https://www.stonemod.org), which has been dramatically improved from the previous version by expanding the number of the modulatory proteins in the list (from 32 in the initial version to 17,130 in this updated version). The stone modulatory proteins were recruited from solid experimental evidence (via PubMed) and/or predicted evidence (via UniProtKB, QuickGO, ProRule, STITCH and OxaBIND to retrieve calcium-binding and oxalate-binding proteins). Additionally, StoneMod 2.0 has implemented a scoring system that can be used to determine the likelihood and to classify the potential stone modulatory proteins as either "solid" (modulator score ≥ 50) or "weak" (modulator score < 50) modulators. Furthermore, the updated version has been designed with more user-friendly interfaces and advanced visualization tools. In addition to the monthly scheduled update, the users can directly submit their experimental evidence online anytime. Therefore, StoneMod 2.0 is a powerful database with prediction scores that will be very useful for many future studies on the stone modulatory proteins.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Oxalato de Cálcio/química , Cálculos Renais/química , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Oxalatos/metabolismo , Rim/metabolismo
15.
Dermatologie (Heidelb) ; 75(4): 321-324, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38167780

RESUMO

Livedo racemosa is characterized by a bizarrely configurated lightning figure-like appearance with striated to reticulated, livid erythematous macules and results from a reduced perfusion of the respective skin area, which can have different underlying pathophysiologies. A rare but relevant cause, especially in young patients with end-stage kidney failure, is primary hyperoxaluria type 1 (PH1), a hereditary metabolic disorder in which oxalate accumulates in the body.


Assuntos
Hiperoxalúria Primária , Falência Renal Crônica , Livedo Reticular , Humanos , Livedo Reticular/complicações , Hiperoxalúria Primária/complicações , Falência Renal Crônica/etiologia , Oxalatos
16.
NanoImpact ; 33: 100492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195029

RESUMO

Recently CuO nanoparticles (n-CuO) have been proposed as an alternative method to deliver a Cu-based pesticide for controlling fungal infestations. With the concomitant use of glyphosate as an herbicide, the interactions between n-CuO and this strong ligand need to be assessed. We investigated the dissolution kinetics of n-CuO and bulk-CuO (b-CuO) particles in the presence of a commercial glyphosate product and compared it to oxalate, a natural ligand present in soil water. We performed experiments at concentration levels representative of the conditions under which n-CuO and glyphosate would be used (∼0.9 mg/L n-CuO and 50 µM of glyphosate). As tenorite (CuO) dissolution kinetics are known to be surface controlled, we determined that at pH 6.5, T âˆ¼ 20 °C, using KNO3 as background electrolyte, the presence of glyphosate leads to a dissolution rate of 9.3 ± 0.7 ×10-3 h-1. In contrast, in absence of glyphosate, and under the same conditions, it is 2 orders of magnitude less: 8.9 ± 3.6 ×10-5 h-1. In a more complex multi-electrolyte aqueous solution the same effect is observed; glyphosate promotes the dissolution rates of n-CuO and b-CuO within the first 10 h of reaction by a factor of ∼2 to ∼15. In the simple KNO3 electrolyte, oxalate leads to dissolution rates of CuO about two times faster than glyphosate. However, the kinetic rates within the first 10 h of reaction are about the same for the two ligands when the reaction takes place in the multi-electrolyte solution as oxalate is mostly bound to Ca2+ and Mg2+.


Assuntos
Cobre , Nanopartículas , Ligantes , Água , Oxalatos
17.
Sci Rep ; 14(1): 460, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172143

RESUMO

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Assuntos
Eleusine , Selênio , Humanos , Eleusine/genética , Etiópia , Valor Nutritivo , Oxalatos , Ácido Fítico/análise , Selênio/análise , Taninos/análise
18.
Analyst ; 149(4): 1238-1249, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224241

RESUMO

Background: Metabolite profiling of blood by nuclear magnetic resonance (NMR) is invaluable to clinical biomarker discovery. To ensure robustness, biomarkers require validation in large cohorts and across multiple centres. However, collection procedures are known to impact on the stability of biofluids that may, in turn, degrade biomarker signals. We trialled three blood collection tubes with the aim of solving technical challenges due to preanalytical variation in blood metabolite levels that are common in cohort studies. Methods: We first investigated global NMR-based metabolite variability between biobanks, including the large-scale UK Biobank and TwinsUK biobank of the general UK population, and more targeted biobanks derived from multicentre clinical trials relating to inflammatory bowel disease. We then compared the blood metabolome of 12 healthy adult volunteers when collected into either sodium fluoride/potassium oxalate, lithium heparin, or serum blood tubes using different pre-processing parameters. Results: Preanalytical variation in the method of blood collection strongly influences metabolite composition within and between biobanks. This variability can largely be attributed to glucose and lactate. In the healthy control cohort, the fluoride oxalate collection tube prevented fluctuation in glucose and lactate levels for 24 hours at either 4 °C or room temperature (20 °C). Conclusions: Blood collection into a fluoride oxalate collection tube appears to preserve the blood metabolome with delayed processing up to 24 hours at 4 °C. This method may be considered as an alternative when rapid processing is not feasible.


Assuntos
Fluoretos , Fluoreto de Sódio , Adulto , Humanos , Fluoreto de Sódio/química , Metabolômica/métodos , Glucose , Lactatos , Biomarcadores , Oxalatos
19.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256222

RESUMO

The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sementes , Arabidopsis/genética , Germinação/genética , Oxalatos , Fenótipo , Polissacarídeos , Sementes/genética , Proteínas de Arabidopsis/genética
20.
Environ Sci Pollut Res Int ; 31(9): 13489-13500, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261225

RESUMO

This work aimed to investigate the impact of hydrogen peroxide (HP) punctual dosage on paracetamol (PCT) degradation, through Fenton and photo-Fenton processes under near-neutral pH conditions, using ferrioxalate and artificial sunlight. The assays were performed using a D-optimal experimental design, to statistically evaluate the influence of radiation (ON or OFF), HP concentration (94.5-756 mg L-1), and HP dosage (YES or NO), on PCT conversion. The optimal conditions determined from the study were: HP = 378 mg L-1, DOS = YES, and RAD = ON, achieving a predicted PCT conversion of 99.68% in 180 min. This result obtained from the model was very close to the experimental one (98.80%). It was verified that HP dosage positively influenced the iron catalytic cycle since higher Fe2+ concentrations were reached at shorter reaction times, accelerating not only PCT conversion but also its by-products hydroquinone and 1,4-benzoquinone, leading to better performances of Fenton and photo-Fenton reactions. Under optimal conditions and employing real water matrices (an artificial matrix with inorganic anions, a real groundwater sample, and a synthetic industrial wastewater), HP dosage demonstrated the ability to mitigate the negative effects caused by the content of different ions and other organic compounds and significantly improve HP consumption in challenging wastewater conditions.


Assuntos
Acetaminofen , Oxalatos , Poluentes Químicos da Água , Acetaminofen/química , Peróxido de Hidrogênio/química , Águas Residuárias , Poluentes Químicos da Água/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...