Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.945
Filtrar
1.
Sci Total Environ ; 923: 171348, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438046

RESUMO

We report for the first-time higher zinc (Zn) solubilization efficiency and plant growth promotion by an entomopathogenic fungus (EPF), Metarhizium pingshaense IISR-EPF-14, which was earlier isolated from Conogethes punctiferalis, a pest of global importance. The Zn solubilizing efficiency of the fungus varied depending on the type of insoluble source of Zn used, which was observed to be 1.6 times higher in Zn3(PO4)2-amended media compared to ZnO media. In liquid media, there was a 6.2-fold increase in available Zn in ZnO-amended media, whereas a 20.2-fold increase in available Zn was recorded in Zn3(PO4)2 medium. We ascribe the production of various organic acids such as gluconic, keto-gluconic, oxalic, tartaric, malonic, succinic and formic acids, which in general, interact with insoluble Zn sources and make them soluble by forming metal cations and displacing anions as the major mechanism for Zn solubilization by M. pingshaense. However, the type and amount of organic acid produced in the media varied depending on the source of Zn used and the incubation period. Application of the fungus alone and in combination with insoluble Zn sources enhanced various plant growth parameters in rice and cardamom plants. Moreover, the uptake of Zn in rice plants was enhanced up to ~2.5-fold by fungal application. The fungus also exhibited various other plant growth-promoting traits, such as production of Indole-3-acetic acid, ammonia, siderophores, solubilization of mineral phosphate, and production of hydrolytic enzymes such as α-amylase, protease, and pectinase. Hence, apart from its use as a biological control agent, M. pingshaense has the potential to be used as a bio-fortifier to enhance the solubilization and uptake of Zn from nutrient poor soils under field conditions. Our findings shed light on the broader ecological role played by this fungus and widen its scope for utilization in sustainable agriculture.


Assuntos
Metarhizium , Óxido de Zinco , Zinco , Formiatos , Fungos , Microbiologia do Solo
2.
Fa Yi Xue Za Zhi ; 40(1): 30-36, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500458

RESUMO

OBJECTIVES: To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS). METHODS: The pretreatment conditions of solid phase extraction (SPE) were optimized by orthogonal experimental design and the surface water samples were concentrated and extracted by Oasis® HLB and Oasis® MCX SPE columns in series. The extracts were separated by Kinetex® EVO C18 column, with gradient elution of 0.1% formic acid aqueous solution and 0.1% formic acid methanol solution. Q-TOF-MS 'fullscan' and 'targeted MS/MS' modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion, product ion and retention times. RESULTS: The 34 emerging contaminants exhibited good linearity in the concentration range respectively and the correlation coefficients (r) were higher than 0.97. The limit of detection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%. The intra-day precision was 0.78%-18.70%. The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected, with a concentration range of 1.93-157.71 ng/L. CONCLUSIONS: The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.


Assuntos
Espectrometria de Massas em Tandem , Água , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Formiatos , Extração em Fase Sólida/métodos
3.
Shokuhin Eiseigaku Zasshi ; 65(1): 15-19, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432897

RESUMO

The present study verified that it is possible to analyze melengesterol acetate using the existing multi-residue method. Melengestrol acetate was extracted from livestock products using acidic acetonitrile acidified with acetic acid in the presence of n-hexane and anhydrous sodium sulfate. The crude extracts were cleaned up using an octadecylsilanized silica gel cartridge column. Separation by HPLC was performed using an octadecylsilanized silica gel column with linear gradient elution of 0.1 vol% formic acid and acetonitrile containing 0.1 vol% formic acid. For the determination of the analyte, tandem mass spectrometry with positive ion electrospray ionization was used. In recovery tests using four livestock products fortified with maximum residue limits levels of melengestrol acetate (0.001-0.02 mg/kg), the truenesses ranged from 82% to 100%, and the repeatabilities for the entire procedure ranged from 0.5 RSD% to 5.6 RSD%. In recovery tests using 11 livestock products fortified with 0.0005 mg/kg of melengestrol acetate, the truenesses ranged from 88% to 99%, and the repeatabilities ranged from 1.3 RSD% to 5.4 RSD%. The limit of quantification for melengestrol acetate in livestock products was 0.0005 mg/kg.


Assuntos
Formiatos , Acetato de Melengestrol , Animais , Cromatografia Líquida , Gado , Sílica Gel , Espectrometria de Massas em Tandem , Acetonitrilas
4.
Sci Rep ; 14(1): 6095, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480804

RESUMO

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microbiota/genética , Microbioma Gastrointestinal/genética , Genômica , Formiatos
5.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474516

RESUMO

FAF1 (FAS-associated factor 1) is involved in the activation of Fas cell surface death receptors and plays a role in apoptosis and necrosis. In patients with Parkinson's disease, FAF1 is overexpressed in dopaminergic neurons in the substantia nigra. KM-819, an FAF1 inhibitor, has shown potential for preventing dopaminergic neuronal cell death, promoting the degradation of α-synuclein and preventing its accumulation. This study aimed to develop and validate a quantitative analytical method for determining KM-819 levels in rat plasma using liquid chromatography-tandem mass spectrometry. This method was then applied to pharmacokinetic (PK) studies in rats. The metabolic stability of KM-819 was assessed in rat, dog, and human hepatocytes. In vitro metabolite identification and metabolic pathways were investigated in rat, dog, and human hepatocytes. The structural analog of KM-819, namely N-[1-(4-bromobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl]-2-(phenylsulfanyl) acetamide, served as the internal standard (IS). Proteins were precipitated from plasma samples using acetonitrile. Analysis was carried out using a reverse-phase C18 column with a mobile phase consisting of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile. The analytical method developed for KM-819 exhibited linearity within the concentration range of 0.002-10 µg/mL in rat plasma. The precision and accuracy of the intra- and inter-day measurements were <15% for the lower limit of quantification (LLOQ) and all quality control samples. KM-819 demonstrated stability under various sample storage conditions (6 h at room temperature (25 °C), four weeks at -20 °C, three freeze-thaw cycles, and pretreated samples in the autosampler). The matrix effect and dilution integrity met the criteria set by the Food and Drug Administration and the European Medicines Agency. This sensitive, rapid, and reliable analytical method was successfully applied in pharmacokinetic studies in rats. Pharmacokinetic analysis revealed the dose-independent kinetics of KM-819 at 0.5-5 mg/kg, with a moderate oral bioavailability of ~20% in rats. The metabolic stability of KM-819 was also found to be moderate in rat, dog, and human hepatocytes. Metabolite identification in rat, dog, and human hepatocytes resulted in the discovery of six, six, and eight metabolites, respectively. Glucuronidation and mono-oxidation have been proposed as the major metabolic pathways. Overall, these findings contribute to a better understanding of the pharmacokinetic characteristics of KM-819, thereby aiding future clinical studies.


Assuntos
Formiatos , Compostos Orgânicos , Doença de Parkinson , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Cães , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Acetonitrilas , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
6.
Anal Bioanal Chem ; 416(8): 1867-1881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349535

RESUMO

The sample preparation step is pivotal in glycoproteomic analysis. An effective approach in glycoprotein sample preparation involves enriching glycopeptides by solid-phase extraction (SPE) using polar stationary phases in hydrophilic interaction liquid chromatography (HILIC) mode. The aim of this work is to show how different experimental conditions influence the enrichment efficiency of glycopeptides from human immunoglobulin G (IgG) on an aminopropyl-modified SPE column. Different compositions of the elution solvent (acetonitrile, methanol, and isopropanol), along with varying concentrations of elution solvent acidifiers (formic and acetic acid), and different concentrations of acetonitrile for the conditioning and washing solvents (65%, 75%, and 85% acetonitrile) were tested to observe their effects on the glycopeptide enrichment process. Isopropanol proved less effective in enriching glycopeptides, while acetonitrile was the most efficient, with methanol in between. Higher formic acid concentrations in the elution solvent weakened the ionic interactions, particularly with sialylated glycopeptides. Substituting formic acid with acetic acid led to earlier elution of more glycopeptides. The acetonitrile concentration in conditioning and washing solutions played a key role; at 65% acetonitrile, glycopeptides were not retained on the SPE column and were detected in the flow-through fraction. Ultimately, it was proven that the enrichment method was applicable to human plasma samples, resulting in a significant decrease in the abundances of non-glycosylated peptides. To the best of our knowledge, this study represents the first systematic investigation into the impact of the mobile phase on glycopeptide enrichment using an aminopropyl-modified SPE column in HILIC mode. This study demonstrates the substantial impact of even minor variations in experimental conditions, which have not yet been considered in the literature, on SPE-HILIC glycopeptide enrichment. Consequently, meticulous optimization of these conditions is imperative to enhance the specificity and selectivity of glycoproteomic analysis, ensuring accurate and reliable quantification.


Assuntos
Formiatos , Glicopeptídeos , Metanol , Humanos , Glicopeptídeos/química , 2-Propanol , Cromatografia Líquida/métodos , Solventes , Imunoglobulina G/química , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida/métodos , Acetonitrilas , Acetatos
7.
J Environ Sci (China) ; 140: 331-340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331512

RESUMO

Bi2O3 catalyst with Bi-O bond crystal structure has more active sites, which shows better CO2 catalytic performance than pure Bi catalysts in many catalytic reactions. How to strengthen the Bi-O bond in Bi2O3 to obtain higher selectivity and catalytic activity is a problem worthy of consideration. Here, we develop a N2 pre-reduced spherical Bi2O3/ATO catalyst that has a high formate Faradaic efficiency of 92.7%, which is superior to the existing tin oxide catalyst. Detailed electrocatalytic analysis shows that N2 pre-reduction and spherical structure are helpful for Sn to stabilize the oxidation state of Bi, thus retaining part of the Bi-O structure. The existence of the Bi-O structure can reduce the energy barrier of the CO2 production *OCHO reaction and promote the reaction rate of the CO2-*OCHO-HCOOH path, thus promoting the formation of formate.


Assuntos
Dióxido de Carbono , Formiatos , Catálise
8.
Biotechnol J ; 19(2): e2300495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403407

RESUMO

The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using 1 H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing 1 H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.


Assuntos
Cobre , Histidina , Cricetinae , Animais , Glicerol , Metabolômica/métodos , Cricetulus , Fenilalanina , Formiatos , Suplementos Nutricionais
9.
J Chromatogr A ; 1718: 464714, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359688

RESUMO

The development of a peptide retention prediction model for reversed-phase chromatography applications in proteomics is reported for peptides carrying phosphorylated Ser, Thr and Tyr-residues. The major retention features have been assessed using a collection of over 10,000 phosphorylated/non-phosphorylated peptide pairs identified in a series 1D and 2D LC-MS/MS acquisitions using formic acid as ion pairing modifier. Single modification event on average results in increased peptide retention for phosphorylation of Ser (+ 1.46), Thr (+1.33), Tyr (+0.93% acetonitrile, ACN) on gradient elution scale for Luna C18(2) stationary phase. We established several composition and sequence specific features, which drive deviations from these average values. Thus, single phosphorylation of serine results in retention shifts ranging from -2.4 to 5.5% ACN depending on position of the residue, nature of nearest neighbour residues, peptide length, hydrophobicity and pI value, and its propensity to form amphipathic helical structures. We established that the altered ion-pairing environment upon phosphorylation is detrimental for this variability. Hydrophobicity of ion-pairing modifier directly informs the magnitude of expected shifts: (most hydrophilic) 0.5 % acetic acid (larger positive shift upon phosphorylation) > 0.1 % formic acid (positive) > 0.1 % trifluoroacetic (negative) > 0.1 % heptafluorobutyric acid (larger negative shift). The effect of phosphorylation has been also evaluated for several separation conditions used in the first dimension of 2D LC applications: high pH reversed-phase (RP), hydrophilic interaction liquid chromatography (HILIC), strong cation- and strong anion exchange separations.


Assuntos
Formiatos , Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Fosforilação , Peptídeos/química
10.
J Chromatogr A ; 1717: 464656, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301332

RESUMO

Metabolomics has become an essential discipline in the study of microbiome, emerging gas chromatography coupled to mass spectrometry as the most mature, robust, and reproducible analytical technique. Silylation is the most widely used chemical derivatization strategy, although it has some limitations. In this regard, alkylation by alkyl chloroformate offers some advantages, such as a rapid reaction, milder conditions, better reproducibility, and the generation of more stable derivatives. However, commercial spectral libraries do not include many of the alkyl derivatives, mainly for polyfunctional metabolites, which can form multiple derivatives. That introduces a huge bias in untargeted metabolomics leading to common errors such as duplicates, unknowns, misidentifications, wrong assignations, and incomplete results from which non-reliable findings and conclusions will be retrieved. For this reason, the purpose of this study is to overcome these shortcomings and to expand the knowledge of metabolites in general and especially those closely related to the gut microbiota through the thorough study of the reactivity of the different functional groups in real matrix derivatized by methyl chloroformate, a common representative alkylation reagent. To this end, a systematic workflow has been developed based on exhaustive structural elucidation, along with computational simulation, and taking advantage of the high sensitivity and high-resolution gas chromatography-mass spectrometry. Several empirical rules have been established according to chemically different entities (free fatty acids, amino acids, polyols, sugars, amines, and polyfunctional groups, etc.) to predict the number of derivatives formed from a single metabolite, as well as their elution order and structure. In this work, some methyl chloroformate derivatives not previously reported as well as the mechanisms to explain them are given. Extremely important is the interconversion of E- and Z- geometric isomers of unsaturated dicarboxylic acids (case of fumaric-maleic and case of citraconic-mesaconic acids), or the formation of cycled derivatives for amino acids, as well as common metabolites, as in the case of serine and cysteine, and many others.


Assuntos
Aminoácidos , Formiatos , Microbioma Gastrointestinal , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Aminoácidos/química , Aminas/análise
11.
J Inorg Biochem ; 253: 112487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306887

RESUMO

Metal-dependent, nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO2 reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.


Assuntos
Formiato Desidrogenases , NAD , NAD/química , Formiato Desidrogenases/química , Elétrons , Oxirredução , Ferro/química , Enxofre/química , Formiatos
12.
J Chromatogr A ; 1717: 464694, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306921

RESUMO

A routine multiresidue method developed for the detection and quantification of veterinary drug residues in animal-based food was used to analyze sheep (ovine) liver. Unlike when working with previously validated matrices (e.g., bovine liver), some of the analytes of interest chromatographed in the form of split- or even fully baseline separated peaks. In other cases a significantly longer retention times (tR) was observed. A detailed investigation led to the elucidation of taurocholic acid as the causative agent. This compound is present in sheep liver at significantly higher concentrations than in most other animal tissues. Taurocholic acid is a zwitterionic compound and likely acts as an ion pairing agent, which modifies the selectivity of the stationary phase in a highly spatial and dynamic way. Injecting smaller volumes of matrix extract or the use of a significantly higher formic acid concentration in the mobile phase reduced or even completely eliminated the peak splitting. A more detailed examination led to the observation that the problem is not restricted to this particular matrix and extraction procedure or the used stationary phase. In fact, a higher formic acid concentration (e.g., 1.0 % versus 0.1 %) significantly improves the peak shape of many analytes present in fortified matrix samples as well as in pure standard solutions. In addition, analytical column aging was observed as being slower with a higher formic acid concentration. Finally the peak shape of analytes interacting with the metallic parts along the flow path of the liquid chromatograph was also significantly improved. Use of 0.1 % acid in mobile phases is often taken for granted in LC-MS. Regardless of the stationary phase, a higher ionic strength better stabilizes the pH and reduces unwanted interactions, which ultimately improves the method robustness. Flow injection experiments often show that 0.1 % acid concentrations produce the highest analyte signals. Yet, the use of 1 % acid in the mobile phase often leads to narrower and therefore taller chromatographic peaks, which may lead to lower detection limits for many analytes and to an improved separation efficiency.


Assuntos
Formiatos , Ácido Taurocólico , Animais , Bovinos , Ovinos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
13.
Biomed Pharmacother ; 172: 116272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354570

RESUMO

Interest in multifunctional polymer nanoparticles for targeted delivery of anti-cancer drugs has grown significantly in recent years. In this study, tumor-targeting echogenic polymer micelles were prepared from poly(ethylene glycol) methyl ether-alkyl carbonate (mPEG-AC) derivatives, and their potential in cancer therapy was assessed. Various mPEG derivatives with carbonate linkages were synthesized via an alkyl halide reaction between mPEG and alkyl chloroformate. Micelle formation using polymer amphiphiles in aqueous media and the subsequent carbon dioxide (CO2) gas generation from the micelles was confirmed. Their ability to target neuroblastoma was substantially enhanced by incorporating the rabies virus glycoprotein (RVG) peptide. RVG-modified gas-generating micelles significantly inhibited tumor growth in a tumor-bearing mouse model owing to CO2 gas generation within tumor cells and resultant cytolytic effects, showing minimal side effects. The development of multifunctional polymer micelles may offer a promising therapeutic approach for various diseases, including cancer.


Assuntos
Formiatos , Neuroblastoma , Polímeros , Animais , Camundongos , Micelas , Dióxido de Carbono , Polietilenoglicóis , Peptídeos , Carbonatos
14.
Int J Biol Macromol ; 261(Pt 1): 129777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286364

RESUMO

In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.


Assuntos
Celulose , Formiatos , Nanofibras , Celulose/química , Solventes Eutéticos Profundos , Nanofibras/química , Solventes/química , Ureia/química
15.
J Environ Manage ; 352: 120021, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183916

RESUMO

The global response to lithium scarcity is overstretched, and it is imperative to explore a green process to sustainably and selectively recover lithium from spent lithium-ion battery (LIB) cathodes. This work investigates the distinct leaching behaviors between lithium and transition metals in pure formic acid and the auxiliary effect of acetic acid as a solvent in the leaching reaction. A formic acid-acetic acid (FA-AA) synergistic system was constructed to selectively recycle 96.81% of lithium from spent LIB cathodes by regulating the conditions of the reaction environment to inhibit the leaching of non-target metals. Meanwhile, the transition metals generate carboxylate precipitates enriched in the leaching residue. The inhibition mechanism of manganese leaching by acetic acid and the leaching behavior of nickel or cobalt being precipitated after release was revealed by characterizations such as XPS, SEM, and FTIR. After the reaction, 90.50% of the acid can be recycled by distillation, and small amounts of the residual Li-containing concentrated solution are converted to battery-grade lithium carbonate by roasting and washing (91.62% recovery rate). This recycling process possesses four significant advantages: i) no additional chemicals are required, ii) the lithium sinking step is eliminated, iii) no waste liquid is discharged, and iv) there is the potential for profitability. Overall, this study provides a novel approach to the waste management technology of lithium batteries and sustainable recycling of lithium resources.


Assuntos
Formiatos , Lítio , Metais , Lítio/química , Metais/química , Reciclagem , Eletrodos , Fontes de Energia Elétrica , Ácido Acético
16.
J Pharm Biomed Anal ; 240: 115937, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198885

RESUMO

Mirabegron and vibegron, both newly identified beta-3 adrenergic agonists, have significantly improved the quality of life for patients suffering from overactive bladder. In order to comprehensively assess the plasma exposure levels of these agents, the development of a rapid and highly sensitive bioanalytical method becomes imperative. The primary objective of this study was to establish a robust high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the concurrent quantification of mirabegron and vibegron in human plasma. The analytes were extracted from a 100 µL plasma sample through protein precipitation, employing 300 µL of methanol. Subsequently, samples underwent separation and quantification using a Waters XBridge C18 column (2.1 × 100 mm, 3.5 µm), with a mobile phase consisting of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. The mass analysis was conducted using positive electrospray ionization (ESI+) operated in a multiple reaction monitoring (MRM) mode. The proposed method was meticulously validated in accordance with the guidelines set forth by the U.S. Food and Drug Administration (FDA) for bioanalytical method validation. The regression equations demonstrated exceptional linearity for both mirabegron (r² ≥ 0.994) and vibegron (r² ≥ 0.996) across the concentration range of 0.5 - 200 ng/mL. Furthermore, the assay exhibited accuracy (inter-day relative error ≤ 6.90%) and precision (inter-day coefficient of variation ≤ 8.88%). The average recoveries of the analytes were found to range from 81.94% to 102.02%, with mean matrix effects falling within the range of 89.77% to 110.58%. As a result, this method was deemed highly suitable for the precise determination of the concentrations of both mirabegron and vibegron in the context of therapeutic drug monitoring and bioequivalence studies.


Assuntos
Acetanilidas , Formiatos , Neoplasias , Pirimidinonas , Pirrolidinas , Tiazóis , Bexiga Urinária Hiperativa , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Bexiga Urinária Hiperativa/tratamento farmacológico , Qualidade de Vida , Reprodutibilidade dos Testes
17.
J Pharm Biomed Anal ; 240: 115962, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211518

RESUMO

DO-2 is a highly selective MNNG HOS transforming (MET) inhibitor. This deuterated drug is thought to diminish the formation of the Aldehyde Oxidase 1 inactive metabolite M3. For various reasons, quantification of DO-2 and its metabolites M3 and DO-5 is highly relevant. In this study, we present an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to quantify DO-2, M3 and DO-5. Rolipram served as the internal standard. Aliquots of 25 µL were mixed with 100 µL internal standard consisting of 10 ng/mL rolipram in acetonitrile. Separation of the analytes was achieved on an Acquity UPLC ® HSS T3 column, utilizing gradient elution with water/formic acid and acetonitrile/formic acid at a flow-rate of 0.400 mL/min. Calibration curves were linear in the range of 1.00 - 1000 ng/mL for DO-2 and DO-5, and 2.00 - 2000 ng/mL for M3 in human plasma. The within-run and between-run precisions of DO-2, DO-5 and M3, also at the level of the LLQ, were within 12.1%, while the accuracy ranged from 89.5 to 108.7%. All values for accuracy, within-run and between-run precisions met the criteria set by the Food and Drug Administration. The method was effectively employed in the analysis of samples obtained from a clinical trial.


Assuntos
Formiatos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Rolipram , Acetonitrilas , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
18.
Angew Chem Int Ed Engl ; 63(9): e202317711, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38206808

RESUMO

The 14α-demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three-step reaction terminates in a C-C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2 - ) or Compound I (perferryl oxygen, FeO3+ ) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18 O incorporation into formic acid from 18 O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18 O (one atom) into formic acid, consistent with a major but not exclusive FeO2 - mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both mechanisms. An X-ray crystal structure of the human enzyme showed the aldehyde oxygen atom 3.5 Šaway from the heme iron atom. Experiments with human P450 51A1 and H2 18 O yielded primarily one 18 O atom but 14 % of the formic acid product with two 18 O atoms, indicative of a minor contribution of a Compound I mechanism. LC-MS evidence for a Compound 0-derived Baeyer-Villiger reaction product (a 14α-formyl ester) was also found.


Assuntos
Sistema Enzimático do Citocromo P-450 , Formiatos , Isótopos de Oxigênio , Esteróis , Animais , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigênio/química , Saccharomyces cerevisiae/metabolismo , Aldeídos , Desmetilação , Mamíferos/metabolismo
19.
mSystems ; 9(2): e0107723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38180324

RESUMO

A genome scale metabolic model of the bacterium Paracoccus denitrificans has been constructed. The model containing 972 metabolic genes, 1,371 reactions, and 1,388 unique metabolites has been reconstructed. The model was used to carry out quantitative predictions of biomass yields on 10 different carbon sources under aerobic conditions. Yields on C1 compounds suggest that formate is oxidized by a formate dehydrogenase O, which uses ubiquinone as redox co-factor. The model also predicted the threshold methanol/mannitol uptake ratio, above which ribulose biphosphate carboxylase has to be expressed in order to optimize biomass yields. Biomass yields on acetate, formate, and succinate, when NO3- is used as electron acceptor, were also predicted correctly. The model reconstruction revealed the capability of P. denitrificans to grow on several non-conventional substrates such as adipic acid, 1,4-butanediol, 1,3-butanediol, and ethylene glycol. The capacity to grow on these substrates was tested experimentally, and the experimental biomass yields on these substrates were accurately predicted by the model.IMPORTANCEParacoccus denitrificans has been broadly used as a model denitrifying organism. It grows on a large portfolio of carbon sources, under aerobic and anoxic conditions. These characteristics, together with its amenability to genetic manipulations, make P. denitrificans a promising cell factory for industrial biotechnology. This paper presents and validates the first functional genome-scale metabolic model for P. denitrificans, which is a key tool to enable P. denitrificans as a platform for metabolic engineering and industrial biotechnology. Optimization of the biomass yield led to accurate predictions in a broad scope of substrates.


Assuntos
Paracoccus denitrificans , Paracoccus denitrificans/genética , Bactérias/metabolismo , Oxirredução , Carbono/metabolismo , Formiatos/metabolismo
20.
Biomed Chromatogr ; 38(3): e5812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228470

RESUMO

A systematic and novel quality by design-enabled, rapid, simple, and economic stability-indicating HPLC method for quantifying nirmatrelvir (NMT) was successfully developed and validated. An analytical target profile (ATP) was established, and critical analytical attributes (CAAs) were allocated to meet the ATP requirements. The method used chromatographic separation using a Purosphere column with a 4.6 mm inner diameter × 250 mm (2.5 µm). The analysis occurred at 50°C with a flow rate of 1.2 mL/min and detection at 220 nm. A 10 µL sample was injected, and the mobile phase consisted of two components: mobile phase A, containing 0.1% formic acid in water (20%), and mobile phase B, containing 0.1% formic acid in acetonitrile (80%). The diluent was prepared by mixing acetonitrile and water at a 90:10 v/v ratio. The retention time for the analyte was determined to be 2.78 min. Accuracy exceeded 99%, and the correlation coefficient was greater than 0.999. The validated HPLC method was characterized as precise, accurate, and robust. Significantly, NMT was found to be susceptible to alkaline, acidic, and peroxide conditions during forced degradation testing. The stability-indicating method developed effectively separated the degradation products formed during stress testing, underlining its effectiveness in stability testing and offering accuracy, reliability, and sensitivity in determining NMT.


Assuntos
Trifosfato de Adenosina , Formiatos , Água , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Estabilidade de Medicamentos , Acetonitrilas , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...