Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623566

RESUMO

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Assuntos
Antioxidantes , Proteínas Tirosina Fosfatases , Ácidos Tricarboxílicos , Humanos , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
2.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
3.
Appl Environ Microbiol ; 90(2): e0211123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289138

RESUMO

Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.


Assuntos
Acinetobacter , Ácido Aconítico , Ácido Aconítico/metabolismo , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo
4.
Bioresour Technol ; 393: 130122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040309

RESUMO

Aureobasidium pullulans produced poly-L-malic acid (PMA) as the main metabolite in fermentation but with relatively low productivity and yield limiting its industrial application. In this study, A. pullulans ZX-10 was engineered to overexpress cytosolic malate dehydrogenase (MDH) and pyruvate carboxylase (PYC) and PMA synthetase (PMS) using a high-copy yeast episomal plasmid with the gpdA promoter from Aspergillus nidulans. Overexpressing endogenous PMS and heterologous MDH and PYC from Aspergillus oryzae respectively increased PMA production by 19 % - 37 % (0.64 - 0.74 g/g vs. 0.54 g/g for wild type) in shake-flask fermentations, demonstrating the importance of the reductive tricarboxylic acid (rTCA) pathway in PMA biosynthesis. A. pullulans co-expressing MDH and PYC produced 96.7 g/L PMA at 0.90 g/L∙h and 0.68 g/g glucose in fed-batch fermentation, which were among the highest yield and productivity reported. The engineered A. pullulans with enhanced rTCA pathway is advantageous and promising for PMA production.


Assuntos
Aureobasidium , Ácidos Tricarboxílicos , Aureobasidium/metabolismo , Fermentação , Malatos/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
mBio ; 15(2): e0308823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126768

RESUMO

Biological nitrogen fixation, the conversion of inert N2 to metabolically tractable NH3, is only performed by certain microorganisms called diazotrophs and is catalyzed by the nitrogenases. A [7Fe-9S-C-Mo-R-homocitrate]-cofactor, designated FeMo-co, provides the catalytic site for N2 reduction in the Mo-dependent nitrogenase. Thus, achieving FeMo-co formation in model eukaryotic organisms, such as Saccharomyces cerevisiae, represents an important milestone toward endowing them with a capacity for Mo-dependent biological nitrogen fixation. A central player in FeMo-co assembly is the scaffold protein NifEN upon which processing of NifB-co, an [8Fe-9S-C] precursor produced by NifB, occurs. Prior work established that NifB-co can be produced in S. cerevisiae mitochondria. In the present work, a library of nifEN genes from diverse diazotrophs was expressed in S. cerevisiae, targeted to mitochondria, and surveyed for their ability to produce soluble NifEN protein complexes. Many such NifEN variants supported FeMo-co formation when heterologously produced in the diazotroph A. vinelandii. However, only three of them accumulated in soluble forms in mitochondria of aerobically cultured S. cerevisiae. Of these, two variants were active in the in vitro FeMo-co synthesis assay. NifEN, NifB, and NifH proteins from different species, all of them produced in and purified from S. cerevisiae mitochondria, were combined to establish successful FeMo-co biosynthetic pathways. These findings demonstrate that combining diverse interspecies nitrogenase FeMo-co assembly components could be an effective and, perhaps, the only approach to achieve and optimize nitrogen fixation in a eukaryotic organism.IMPORTANCEBiological nitrogen fixation, the conversion of inert N2 to metabolically usable NH3, is a process exclusive to diazotrophic microorganisms and relies on the activity of nitrogenases. The assembly of the nitrogenase [7Fe-9S-C-Mo-R-homocitrate]-cofactor (FeMo-co) in a eukaryotic cell is a pivotal milestone that will pave the way to engineer cereals with nitrogen fixing capabilities and therefore independent of nitrogen fertilizers. In this study, we identified NifEN protein complexes that were functional in the model eukaryotic organism Saccharomyces cerevisiae. NifEN is an essential component of the FeMo-co biosynthesis pathway. Furthermore, the FeMo-co biosynthetic pathway was recapitulated in vitro using only proteins expressed in S. cerevisiae. FeMo-co biosynthesis was achieved by combining nitrogenase FeMo-co assembly components from different species, a promising strategy to engineer nitrogen fixation in eukaryotic organisms.


Assuntos
Compostos de Ferro , Nitrogenase , Saccharomyces cerevisiae , Ácidos Tricarboxílicos , Nitrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Molibdoferredoxina/metabolismo , Proteínas de Bactérias/metabolismo , Mitocôndrias/metabolismo , Nitrogênio/metabolismo
6.
Wiad Lek ; 76(11): 2510-2516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112373

RESUMO

OBJECTIVE: The aim: To determine the efficacy of the original hormone-vitamin complex in terms of biochemical activity enhancement and muscle system functional activity restoration in the irradiated rat's descendents. PATIENTS AND METHODS: Materials and methods: The activity of NADP-dependent malatedehydrogenase and the content of ATP, ADP and AMP were determined in the blood, myocardium and thigh muscles of rats exposed to ionizing gamma-radiation. The rats were also checked in the forced swimming test. The efficacy of the hormone-vitamin complex was determined in all mentioned indexes. RESULTS: Results: Our results testify the expressed changes in muscle tissue functioning in an irradiated person, which was expressed by the dysfunction of biochemical reactions aimed at synthetic energy processes, and by the macroergic compounds level depletion together with physical performance minimization. Our data showed the hormone-vitamin complex injection to irradiated animals and their descendants improved the muscle energy resources due to glycolytic substrate phosphorylation enhancement and due to tricarboxylic acids cycle oxidative potential strengthening. CONCLUSION: Conclusions: Original scheme of post-radiation lesions complex pharmacological correction prevented the development of tissues providing with macroergic compounds, anaerobic processes strengthening, metabolic acidosis, weakening of both substrate phosphorylation and tricarboxylic acids cycle. The original scheme of ionizing radiation-induced energetic disorders pharmacological corrections in the irradiated animals' descendents we consider as an experimental basis for the reasonability of these compound radioprotective effects testing during the physiotherapeutic treatment of persons exposed to ionizing radiation.


Assuntos
Radiação Ionizante , Vitaminas , Humanos , Ratos , Animais , Músculo Esquelético , Hormônios , Ácidos Tricarboxílicos
7.
Inorg Chem ; 62(48): 19433-19445, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37987624

RESUMO

Nitrogenase is the only enzyme that can cleave the strong triple bond in N2, making nitrogen available for biological life. There are three isozymes of nitrogenase, differing in the composition of the active site, viz., Mo, V, and Fe-nitrogenase. Recently, the first crystal structure of Fe-nitrogenase was presented. We have performed the first combined quantum mechanical and molecular mechanical (QM/MM) study of Fe-nitrogenase. We show with QM/MM and quantum-refinement calculations that the homocitrate ligand is most likely protonated on the alcohol oxygen in the resting E0 state. The most stable broken-symmetry (BS) states are the same as for Mo-nitrogenase, i.e., the three Noodleman BS7-type states (with a surplus of ß spin on the eighth Fe ion), which maximize the number of nearby antiferromagnetically coupled Fe-Fe pairs. For the E1 state, we find that protonation of the S2B µ2 belt sulfide ion is most favorable, 14-117 kJ/mol more stable than structures with a Fe-bound hydride ion (the best has a hydride ion on the Fe2 ion) calculated with four different density-functional theory methods. This is similar to what was found for Mo-nitrogenase, but it does not explain the recent EPR observation that the E1 state of Fe-nitrogenase should contain a photolyzable hydride ion. For the E1 state, many BS states are close in energy, and the preferred BS state differs depending on the position of the extra proton and which density functional is used.


Assuntos
Nitrogenase , Ácidos Tricarboxílicos , Nitrogenase/química , Prótons , Domínio Catalítico
8.
Nat Ecol Evol ; 7(9): 1398-1407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537385

RESUMO

The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.


Assuntos
Chlorobi , Cianobactérias , Chlorobi/química , Chlorobi/metabolismo , Ácidos Tricarboxílicos/metabolismo , Ecossistema , Isótopos de Carbono , Ciclo do Carbono , Carotenoides/metabolismo
9.
Crit Rev Biochem Mol Biol ; 58(1): 81-97, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37125817

RESUMO

The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.


Assuntos
Ciclo do Ácido Cítrico , Redes e Vias Metabólicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Ácidos Tricarboxílicos
10.
Nat Commun ; 14(1): 2567, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142569

RESUMO

Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Ácidos Tricarboxílicos , Espectrometria de Massas por Ionização por Electrospray/métodos , Ciclo do Ácido Cítrico , Diagnóstico por Imagem , Crescimento e Desenvolvimento
11.
Nat Commun ; 14(1): 1091, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841829

RESUMO

Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation that is essential for sustaining life. The active site FeMo-cofactor contains a [7Fe:1Mo:9S:1C] metallocluster coordinated with an R-homocitrate (HCA) molecule. Here, we establish through single particle cryoEM and chemical analysis of two forms of the Azotobacter vinelandii MoFe-protein - a high pH turnover inactivated species and a ∆NifV variant that cannot synthesize HCA - that loss of HCA is coupled to α-subunit domain and FeMo-cofactor disordering, and formation of a histidine coordination site. We further find a population of the ∆NifV variant complexed to an endogenous protein identified through structural and proteomic approaches as the uncharacterized protein NafT. Recognition by endogenous NafT demonstrates the physiological relevance of the HCA-compromised form, perhaps for cofactor insertion or repair. Our results point towards a dynamic active site in which HCA plays a role in enabling nitrogenase catalysis by facilitating activation of the FeMo-cofactor from a relatively stable form to a state capable of reducing dinitrogen under ambient conditions.


Assuntos
Azotobacter vinelandii , Nitrogenase , Nitrogenase/metabolismo , Proteômica , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Ácidos Tricarboxílicos , Azotobacter vinelandii/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674898

RESUMO

Exposure to the toxin thioacetamide (TAA) causes acute hepatic encephalopathy (HE), changes in the functioning of systemic organs, and an imbalance in a number of energy metabolites. The deferred effects after acute HE development are poorly understood. The study considers the balance of the tricarboxylic acid (TCA) cycle metabolites in the blood plasma, liver, kidneys, and brain tissues of rats in the post-rehabilitation period. The samples of the control (n = 3) and TAA-induced groups of rats (n = 13) were collected six days after the administration of a single intraperitoneal TAA injection at doses of 200, 400, and 600 mg/kg. Despite the complete physiological recovery of rats by this date, a residual imbalance of metabolites in all the vital organs was noted. The results obtained showed a trend of stabilizing processes in the main organs of the animals and permit the use of these data both for prognostic purposes and the choice of potential therapeutic agents.


Assuntos
Encefalopatias , Encefalopatia Hepática , Falência Hepática Aguda , Ratos , Animais , Encefalopatia Hepática/induzido quimicamente , Tioacetamida/toxicidade , Ácidos Tricarboxílicos/metabolismo , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Encefalopatias/metabolismo
13.
Int J Biol Macromol ; 227: 685-697, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535355

RESUMO

In this work, a novel and efficient magnetic biocatalyst was designed, prepared and identified using cherry tree gum as a biopolymer functionalized with 1,3,5-benzenetricarboxylic acid (gum@Fe3O4@BTA). The obtained biocatalyst was prepared using available and cheap materials in an easy process. This biocatalyst was used as an efficient catalyst with high catalytic activity for the synthesis of a three-component one-pot protocol and four-component one-pot protocol of tetrahydro-4H-chromene derivatives and polyhydroquinoline derivatives in EtOH green solvent under reflux conditions, respectively. The synthesized heterogeneous biocatalysts were identified and analyzed by FT-IR, EDS, FESEM, TGA and XRD techniques. The synthesis of tetrahydro-4H-chromene and polyhydroquinoline derivatives by using this biocatalyst has advantages such as high efficiency, short reaction time, simple work method, absence of dangerous solvents, environmentally friendly conditions, easy separation of the biocatalyst by an external magnet, and the ability reuse for five periods without significant decrease in catalytic activity.


Assuntos
Benzopiranos , Ácidos Tricarboxílicos , Espectroscopia de Infravermelho com Transformada de Fourier , Solventes , Fenômenos Magnéticos
14.
Mol Cell Biochem ; 478(8): 1669-1687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36495372

RESUMO

The sodium dependent SLC13 family transporters comprise of five genes SLC13A1, SLC13A2 (NaDC1), SLC13A3 (NaDC3), SLC13A4 and SLC13A5 (NaCT). Among them, NaDC1, NaDC3 and NaCT are sodium dependent transporters belonging to family of dicarboxylates (succinate, malate, α-ketoglutarate) and tricarboxylates (citrate). The mouse and the human NaCT structures have still not been crystallized, therefore structural information is taken from the related bacterial transporter of VcINDY. Citrate in the cytosol works as a precursor for the fatty acid synthesis, cholesterol, and low-density lipoproteins. The excess citrate from the matrix is translocated to the cytosol for fatty acid synthesis through these transporters and thus controls the energy balance by downregulating the glycolysis, tricarboxylic acid (TCA), and fatty acid breakdown. These transporters play an important role in regulating various metabolic diseases including cancer, diabetes, obesity, fatty liver diseases and CNS disorders. These di and tricarboxylate transporters are emerging as new targets for metabolic disorders such as obesity and diabetes. The mutation in the function of the NaCT causes several neurological diseases including neonatal epilepsy and impaired brain development whereas mutation of genes coding for citrate transport present in the liver may provide positive effect. Therefore, continued efforts from the earlier work on citrate transporters are required for the development of citrate inhibitors. This review discusses the structure, function, and regulation of the NaCT transporter. The review also highlights citrate role in diagnosing diseases such as cancer, diabetes, fatty liver, and diabetes. The therapeutic perspective of synthetic inhibitors against NaCT transporters is succinctly summarized.


Assuntos
Doenças Metabólicas , Simportadores , Animais , Camundongos , Humanos , Sódio , Citratos , Ácido Cítrico/metabolismo , Proteínas de Membrana Transportadoras , Ácidos Tricarboxílicos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Obesidade , Ácidos Graxos , Simportadores/genética , Transportadores de Sulfato
15.
Appl Biochem Biotechnol ; 195(2): 1216-1230, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342624

RESUMO

Metal-organic frameworks (MOFs) can be used as the immobilization carriers to protect the physicochemical properties of enzymes and improve their catalytic performance. Herein, we report an in situ co-precipitation method to immobilize lipase from Candida sp. 99-125 in Cu-BTC MOF (BTC = 1, 3, 5-benzene tricarboxylic acid, H3BTC). Characterizations of the immobilized lipase (lipase@Cu-BTC) have confirmed the entrapment of lipase molecules in Cu-BTC MOF. The immobilized lipase has been successfully applied for resolving N-hydroxymethyl vince lactam (N-HMVL) and its catalytic activity is five times that of native enzyme. More importantly, we found that Cu-BTC MOF can afford powerful protection for enzyme in nearly dry organic solvent and endow the immobilized lipase with excellent reusability and storage stability. Our present study may widen the application of immobilized enzyme with MOF as the immobilized carrier.


Assuntos
Lipase , Estruturas Metalorgânicas , Lipase/química , Estruturas Metalorgânicas/química , Catálise , Enzimas Imobilizadas/química , Ácidos Tricarboxílicos/química
16.
J Bacteriol ; 204(12): e0028422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321838

RESUMO

Tricarboxylates such as citrate are the preferred carbon sources for Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic human infections. However, the membrane transport process for the tricarboxylic acid cycle intermediates citrate and cis-aconitate is poorly characterized. Transport is thought to be controlled by the TctDE two-component system, which mediates transcription of the putative major transporter OpdH. Here, we search for previously unidentified transporters of citrate and cis-aconitate using both protein homology and RNA sequencing approaches. We uncover new transporters and show that OpdH is not the major citrate importer; instead, citrate transport primarily relies on the tripartite TctCBA system, which is encoded in the opdH operon. Deletion of tctA causes a growth lag on citrate and loss of growth on cis-aconitate. Combinatorial deletion of newly discovered transporters can fully block citrate utilization. We then characterize transcriptional control of the opdH operon in tctDE mutants and show that loss of tctD blocks citrate utilization due to an inability to express opdH-tctCBA. However, tctE and tctDE mutants evolve heritable adaptations that restore growth on citrate as the sole carbon source. IMPORTANCE Pseudomonas aeruginosa is a bacterium that infects hospitalized patients and is often highly resistant to antibiotic treatment. It preferentially uses small organic acids called tricarboxylates rather than sugars as a source of carbon for growth. The transport of many of these molecules from outside the cell to the interior occurs through unknown channels. Here, we examined how the tricarboxylates citrate and cis-aconitate are transported in P. aeruginosa. We then sought to understand how production of proteins that permit citrate and cis-aconitate transport is regulated by a signaling system called TctDE. We identified new transporters for these molecules, clarified the function of a known transport system, and directly tied transporter expression to the presence of an intact TctDE system.


Assuntos
Ácido Cítrico , Pseudomonas aeruginosa , Ácido Aconítico/metabolismo , Carbono/metabolismo , Citratos/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Tricarboxílicos/metabolismo
17.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291051

RESUMO

Mutations in the RB1 locus leading to a loss of functional Rb protein cause intraocular tumors, which uniquely affect children worldwide. These tumors demonstrate rapid proliferation, which has recently been shown to be associated with an altered metabolic signature. We found that retinoblastoma tumors and in-vitro models lack Hexokinase 1 (HK1) and exhibit elevated fatty acid oxidation. We show that ectopic expression of RB1 induces HK1 protein in Rb null cells, and both RB1 and HK1 can mediate a metabolic switch from OXPHOS to glycolysis with increased pyruvate levels, reduced ATP production and reduced mitochondrial mass. Further, cells lacking Rb or HK1 can flexibly utilize glutamine and fatty acids to enhance oxidative phosphorylation-dependent ATP generation, as revealed by metabolic and biochemical assays. Thus, loss of Rb and HK1 in retinoblastoma reprograms tumor metabolic circuits to enhance the glucose-independent TCA (tricarboxylic acid) cycle and the intermediate NAD+/NADH ratios, with a subsequent increase in fatty-acid derived L-carnitine to enhance mitochondrial OXPHOS for ATP production instead of glycolysis dependence. We also demonstrate that modulation of the Rb-regulated transcription factor E2F2 does not result in any of these metabolic perturbations. In conclusion, we demonstrate RB1 or HK1 as critical regulators of the cellular bioenergetic profile and identify the altered tumor metabolism as a potential therapeutic target for cancers lacking functional Rb protein.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Proteína do Retinoblastoma/genética , NAD/metabolismo , Hexoquinase/metabolismo , Glutamina/metabolismo , Glicólise/genética , Glucose/metabolismo , Ácidos Graxos/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores de Transcrição/metabolismo , Carnitina , Ácidos Tricarboxílicos , Piruvatos
18.
Front Endocrinol (Lausanne) ; 13: 1021263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237186

RESUMO

In recent years, the impact of lipotoxicity on male fertility has received extensive attention, especially on Sertoli cells (SCs). In SCs, energy metabolism is important as disorders of energy metabolism result in infertility eventually. However, the underlying mechanism of lipotoxicity on energy metabolism in SCs remains unknown. Advances in high-throughput metabolomics and lipidomics measurement platforms provide powerful tools to gain insights into complex biological systems. Here, we aimed to explore the potential molecular mechanisms of palmitic acid (PA) regulating energy metabolism in SCs based on metabolomics and lipidomics. The results showed that glucose metabolism-related metabolites were not significantly changed, which suggested that PA treatment had little effect on glucose metabolism and may not influence the normal energy supply from SCs to germ cells. However, fatty acid ß-oxidation was inhibited according to accumulation of medium- and long-chain acylcarnitines in cells. In addition, the pool of amino acids and the levels of most individual amino acids involved in the tricarboxylic acid (TCA) cycle were not changed after PA treatment in SCs. Moreover, PA treatment of SCs significantly altered the lipidome, including significant decreases in cardiolipin and glycolipids as well as remarkable increases in ceramide and lysophospholipids, which indicated that mitochondrial function was affected and apoptosis was triggered. The increased apoptosis rate of SCs was verified by elevated protein expression levels of Cleaved Caspase-3 and Bax as well as decreased Bcl-2 protein expression level. Together, these findings indicated that PA may result in mitochondrial dysfunction and increased apoptosis by inhibiting fatty acid ß-oxidation of SCs.


Assuntos
Ácido Palmítico , Células de Sertoli , Aminoácidos/metabolismo , Apoptose , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Ceramidas/metabolismo , Glucose/metabolismo , Glicolipídeos/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Masculino , Mitocôndrias/metabolismo , Ácido Palmítico/farmacologia , Ácidos Tricarboxílicos/metabolismo , Ácidos Tricarboxílicos/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
19.
PLoS One ; 17(10): e0275621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282866

RESUMO

Mitochondrial activity in cancer cells has been central to cancer research since Otto Warburg first published his thesis on the topic in 1956. Although Warburg proposed that oxidative phosphorylation in the tricarboxylic acid (TCA) cycle was perturbed in cancer, later research has shown that oxidative phosphorylation is activated in most cancers, including prostate cancer (PCa). However, more detailed knowledge on mitochondrial metabolism and metabolic pathways in cancers is still lacking. In this study we expand our previously developed method for analyzing functional homologous proteins (FunHoP), which can provide a more detailed view of metabolic pathways. FunHoP uses results from differential expression analysis of RNA-Seq data to improve pathway analysis. By adding information on subcellular localization based on experimental data and computational predictions we can use FunHoP to differentiate between mitochondrial and non-mitochondrial processes in cancerous and normal prostate cell lines. Our results show that mitochondrial pathways are upregulated in PCa and that splitting metabolic pathways into mitochondrial and non-mitochondrial counterparts using FunHoP adds to the interpretation of the metabolic properties of PCa cells.


Assuntos
Genes Mitocondriais , Neoplasias da Próstata , Masculino , Humanos , Regulação para Cima , Linhagem Celular Tumoral , Fosforilação Oxidativa , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ácidos Tricarboxílicos
20.
Front Immunol ; 13: 960226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275699

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.


Assuntos
Glutamina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Glutamina/metabolismo , Malatos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proliferação de Células , Ácidos Tricarboxílicos , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...