Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.122
Filtrar
1.
Front Immunol ; 15: 1167362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476240

RESUMO

Introduction: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods: Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results: We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion: Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Armadilhas Extracelulares , Humanos , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Autoanticorpos , Proteína-Arginina Desiminase do Tipo 4 , Ionomicina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo
2.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326830

RESUMO

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Galactosídeos , Fatores de Transcrição , Animais , Camundongos , Humanos , Fator de Ligação a CCCTC , Anticorpos Antiproteína Citrulinada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Knockout , Sialiltransferases/genética
3.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37610274

RESUMO

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Desiminases de Arginina em Proteínas , Fibrinogênio/metabolismo , Colágeno
4.
Biomolecules ; 13(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37189377

RESUMO

BACKGROUND: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. METHODS: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. RESULTS: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. CONCLUSIONS: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Camundongos , Animais , Anticorpos Antiproteína Citrulinada/metabolismo , Neutrófilos/metabolismo , Ácidos Aminossalicílicos , Artrite Reumatoide/metabolismo , Células Clonais
5.
Eur J Pharmacol ; 949: 175719, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054942

RESUMO

GPR35, a class A G-protein-coupled receptor, is considered an orphan receptor; the endogenous ligand and precise physiological function of GPR35 remain obscure. GPR35 is expressed relatively highly in the gastrointestinal tract and immune cells. It plays a role in colorectal diseases like inflammatory bowel diseases (IBDs) and colon cancer. More recently, the development of GPR35 targeting anti-IBD drugs is in solid request. Nevertheless, the development process is in stagnation due to the lack of a highly potent GPR35 agonist that is also active comparably in both human and mouse orthologs. Therefore, we proposed to find compounds for GPR35 agonist development, especially for the human ortholog of GPR35. As an efficient way to pick up a safe and effective GPR35 targeting anti-IBD drug, we screened Food and Drug Administration (FDA)-approved 1850 drugs using a two-step DMR assay. Interestingly, we found aminosalicylates, first-line medicine for IBDs whose precise target remains unknown, exhibited activity on both human and mouse GPR35. Among these, pro-drug olsalazine showed the most potency on GPR35 agonism, inducing ERK phosphorylation and ß-arrestin2 translocation. In dextran sodium sulfate (DSS)-induced colitis, the protective effect on disease progression and inhibitory effect on TNFα mRNA expression, NF-κB and JAK-STAT3 pathway of olsalazine are compromised in GPR35 knock-out mice. The present study identified a target for first-line medicine aminosalicylates, highlighted that uncleaved pro-drug olsalazine is effective, and provided a new concept for the design of aminosalicylic GPR35 targeting anti-IBD drug.


Assuntos
Ácido Aminossalicílico , Colite , Doenças Inflamatórias Intestinais , Pró-Fármacos , Camundongos , Humanos , Animais , Pró-Fármacos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Ácidos Aminossalicílicos/efeitos adversos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Ácido Aminossalicílico/efeitos adversos , NF-kappa B/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colo , Modelos Animais de Doenças , Receptores Acoplados a Proteínas G/metabolismo
6.
Rheumatology (Oxford) ; 62(12): 3968-3977, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944270

RESUMO

OBJECTIVES: The variable region of most ACPA IgG molecules in the serum of RA patients carries N-glycan (N-glycanV). To analyse the pathogenicity of N-glycanV of ACPAs, we analysed the pathogenicity of a monoclonal ACPA, CCP-Ab1, with or without N-glycanV, which had been isolated from a patient with RA. METHODS: CCP-Ab1 with no N-glycosylation site in the variable region (CCP-Ab1 N-rev) was generated, and antigen binding, the effect on in vitro differentiation of osteoclasts from bone marrow mononuclear cells of autoimmune arthritis-prone SKG mice (the cell size of TRAP+ cells and bone resorption capacity) and the in vivo effect on the onset or exacerbation of autoimmune arthritis in SKG mice were evaluated in comparison with glycosylated CCP-Ab1. RESULTS: Amino acid residues in citrullinated peptide (cfc1), which are essential for binding to CCP-Ab1 N-rev and original CCP-Ab1, were almost identical. The size of TRAP+ cells was significantly larger and osteoclast bone resorption capacity was enhanced in the presence of CCP-Ab1, but not with CCP-Ab1 N-rev. This enhancing activity required the sialic acid of the N-glycan and Fc region of CCP-Ab1. CCP-Ab1, but not CCP-Ab1 N-rev, induced the exacerbation of experimental arthritis in the SKG mouse model. CONCLUSIONS: These data showed that N-glycanV was required for promoting osteoclast differentiation and bone resorption activity in both in vitro and in vivo assays. The present study demonstrated the important role of N-glycanV in the exacerbation of experimental arthritis by ACPAs.


Assuntos
Artrite Experimental , Artrite Reumatoide , Reabsorção Óssea , Humanos , Animais , Camundongos , Ácidos Aminossalicílicos , Mieloblastina , Polissacarídeos/metabolismo , Autoanticorpos , Peptídeos Cíclicos
7.
Future Med Chem ; 15(1): 9-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655571

RESUMO

Background: Mining of novel scaffolds as potential DPP-IV inhibitors for future development of potential candidates as antidiabetic agents to address global issues. Methodology: The identified hit KB-10 from a previously reported study was taken as a lead for designing a library of analogues and screened initially based on in silico parameters and docking score. A series of selected (2[4-(1-acetyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy]-1-phenylethanone derivatives were synthesized and evaluated through in vitro studies. Compounds KB-23, KB-22 and KB-06 were found to be as potent, with IC50 values of 0.10 µM, 0.12 µM and 0.35 µM, respectively. They also showed promising antihyperglycemic potential in in vivo studies (oral glucose tolerance tests) in Wistar rats. Conclusion: This work establishes pyrazoline analogues KB-23, KB-22 and KB-06 as promising starting points for the development of potential antidiabetic agents.


Assuntos
Ácidos Aminossalicílicos , Hipoglicemiantes , Ratos , Animais , Hipoglicemiantes/farmacologia , Ratos Wistar , Teste de Tolerância a Glucose , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
8.
Am J Ther ; 29(6): e625-e631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301538

RESUMO

BACKGROUND: Advances in drug therapy for pulmonary tuberculosis have had an extraordinary impact on the incidence of tuberculosis in the United States in the past century, which has decreased from 113/100,000 persons in 1920 to 2.2/100,000 in 2020. Modern treatments have contributed to a remarkable decrease in hospitalizations and mortality and have had a significant impact on the duration and severity of illness, quality of life, and work potential of affected persons. STUDY QUESTION: What are the milestones of the changes in the expert approach to the pharmacological management of pulmonary tuberculosis in the past century? STUDY DESIGN: To determine the changes in the experts' approach to the management of pulmonary tuberculosis, as presented in a widely used textbook in the United States. DATA SOURCES: The chapters describing the management of pulmonary tuberculosis in the 26 editions of Cecil Textbook of Medicine published from 1927 through 2020. RESULTS: In the preantibiotic era (1927-1943), the Cecil authors emphasized rest, good food, and fresh air as the treatment pillars for pulmonary tuberculosis. The modern era (1947-1971) recorded the discovery of all the drugs that are still used for the initial treatment, in the following order: streptomycin, para-aminosalicylic acid, isoniazid, pyrazinamide, ethambutol, cycloserine, kanamycin, ethionamide, capreomycin, and rifampin. In the postmodern era (1975-2020), therapeutic advances continued with trials of many drug combinations aimed at ameliorating the duration of treatment, drug resistance adverse effects, and poor the recent addition of fluoroquinolones, bedaquiline, and clofazimine. CONCLUSIONS: The pharmacological management of tuberculosis has remained archaic until the middle of the 20th century. Fundamental progress occurred in a very short period (1947-1971) and was because of the recognition of the antituberculous effect of many antibiotics and chemotherapy agents. The challenges created by mycobacterial infections resistant to multiple drugs remain and have prompted the addition of new drugs in the past decade.


Assuntos
Tuberculose Pulmonar , Tuberculose , Viomicina , Humanos , Prova Pericial , Qualidade de Vida , Ácidos Aminossalicílicos , Resistência a Medicamentos , Resistência Microbiana a Medicamentos , Tuberculose Pulmonar/tratamento farmacológico , Estreptomicina , Pirazinamida , Isoniazida , Antituberculosos/uso terapêutico
9.
Acta Biomater ; 152: 495-506, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087871

RESUMO

Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.


Assuntos
Neoplasias Colorretais , Estruturas Metalorgânicas , Nanopartículas , Ácidos Aminossalicílicos , Animais , Antibacterianos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Cobre/farmacologia , Ciclo-Oxigenase 2 , Epigênese Genética , Ácido Hialurônico , Peróxido de Hidrogênio/farmacologia , Ligantes , Estruturas Metalorgânicas/farmacologia , Camundongos
10.
Bioorg Med Chem ; 71: 116941, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944386

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a key regulator of many human cancers and has been widely recognized as a promising target for cancer therapy. A variety of small-molecule inhibitors have been developed for targeting STAT3, and some of them are now undergoing clinical trials. S3I-201, a known STAT3 inhibitor, may block STAT3 function in cancer cells by binding to the STAT3 SH2 domain to disrupt STAT3 protein complex formation. Using S3I-201 as a starting point for drug development, we synthesized a series of new STAT3 inhibitors 9a-x in this study by introducing naphthoquinone unit, a privileged fragment in STAT3 inhibitors. Most of the compounds exhibited strong anti-proliferation activity of gastric cancer cells (MGC803, MKN28, MNK1, and AGS). The representative compound 9n (SIL-14) could effectively inhibit the colony formation and migration of gastric cancer cells MGC803, arrest the cell cycle and induce MGC803 cell apoptosis at low micromolar concentrations in vitro. In addition, SIL-14 can also inhibit the phosphorylation of STAT3 protein and significantly decrease the expression of total STAT3, suggesting that it may exert anticancer effects by blocking the STAT3 signaling pathway. These results support that SIL-14 may be a promising STAT3 inhibitor for the further development of potential anti-gastric cancer candidates.


Assuntos
Naftoquinonas , Neoplasias Gástricas , Ácidos Aminossalicílicos/farmacologia , Ácidos Aminossalicílicos/uso terapêutico , Benzenossulfonatos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
11.
Cell Biochem Biophys ; 80(4): 723-735, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35994220

RESUMO

Malignant glioma, especially glioblastoma (GBM), has historically been associated with a low survival rate. The hyperactivation of STAT3 played a key role in GBM initiation and resistance to therapy; thus, there is an urgent requirement for novel STAT3 inhibitors. BP-1-102 was recently reported as a biochemical inhibitor of STAT3, but its roles and mechanism in biological behavior of glioma cells were still unclear. In this study, the effects of BP-1-102 on proliferation, apoptosis, invasion and neurosphere formation of glioma cell were investigated. Our results indicated that BP-1-102 inhibited the proliferation of U251 and A172 cells, and their IC50 values were 10.51 and 8.534 µM, respectively. Furthermore, BP-1-102 inhibited the invasion and migration abilities of U251 and A172 cells by decreasing the expression of matrix metallopeptidase 9, and induced glioma cell apoptosis by decreasing the expression of B-cell lymphoma-2. BP-1-102 also inhibited the formation of neurosphere. Mechanically, BP-1-102 reduced the phosphorylation of STAT3 and the p-STAT3's nuclear translocation in glioma cells. Thus, this study herein provided a potential drug for glioma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Ácidos Aminossalicílicos , Apoptose , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glioma/metabolismo , Humanos , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Invasividade Neoplásica/prevenção & controle , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas
12.
Eur J Pharm Sci ; 175: 106235, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697287

RESUMO

Olsalazine is a typical 5-aminosalicylic acid (5-ASA) drug that depends on gut microbiota to liberate its anti-inflammatory moiety 5-ASA in the treatment of ulcerative colitis (UC). In recent decades, 5-ASA drugs combined with probiotics have achieved a better effective treatment for UC. Mechanisms of combination therapy have been widely discussed from a pharmacodynamic perspective. However, it is still unclear whether the better therapeutic efficacy of combination therapy was made by changing the metabolism of 5-ASA drugs in the colon under the regulation of probiotics. In the present study, combined with pharmacokinetic and gut microbiota analyses, we systematically evaluated the potential effect of Lactobacillus acidophilus (L. acidophilus) on the metabolism of Olsalazine at three levels (pharmacokinetic characteristics, metabolic microbiota, and metabolic enzymes) to offer some insights into this issue. As pharmacokinetic results showed, L. acidophilus barely had an influence on the pharmacokinetic parameters of Olsalazine, 5-ASA, and N-Ac-5-ASA. Notably, the colonic exposure of 5-ASA was not affected by L. acidophilus. Gut microbiota results also illustrated that L. acidophilus did not change the total abundance of azoreductase (azoR) and N-acetyltransferase (NAT) associated gut microbiota and enzymes, which are involved in the metabolism of Olsalazine. Both pharmacokinetic and gut microbiota results revealed that L. acidophilus did not increase the colonic exposure of 5-ASA to improve the efficacy of combination therapy. L. acidophilus played its role in UC treatment by regulating gut microbiota composition and amino acid, phenolic acid, oligosaccharide, and peptidoglycan metabolic pathways. There was no potential medication risk of combination therapy of Olsalazine and L. acidophilus. In summary, this research provided strong evidence of medication safety and a comprehensive understanding of therapeutic advantages for combination therapy of probiotics and 5-ASA drugs from the pharmacokinetic and gut microbiota perspectives.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Probióticos , Ácidos Aminossalicílicos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Lactobacillus acidophilus , Mesalamina/uso terapêutico , Ratos
13.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563493

RESUMO

Ailanthoidol (ATD) has been isolated from the barks of Zanthoxylum ailanthoides and displays anti-inflammatory, antioxidant, antiadipogenic, and antitumor promotion activities. Recently, we found that ATD suppressed TGF-ß1-induced migration and invasion of HepG2 cells. In this report, we found that ATD exhibited more potent cytotoxicity in Huh7 hepatoma cells (mutant p53: Y220C) than in HepG2 cells (wild-type p53). A trypan blue dye exclusion assay and colony assay showed ATD inhibited the growth of Huh7 cells. ATD also induced G1 arrest and reduced the expression of cyclin D1 and CDK2. Flow cytometry analysis with Annexin-V/PI staining demonstrated that ATD induced significant apoptosis in Huh7 cells. Moreover, ATD increased the expression of cleaved PARP and Bax and decreased the expression of procaspase 3/8 and Bcl-xL/Bcl-2. In addition, ATD decreased the expression of mutant p53 protein (mutp53), which is associated with cell proliferation with the exploration of p53 siRNA transfection. Furthermore, ATD suppressed the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and the expression of mevalonate kinase (MVK). Consistent with ATD, the administration of S3I201 (STAT 3 inhibitor) reduced the expression of Bcl-2/Bcl-xL, cyclin D1, mutp53, and MVK. These results demonstrated ATD's selectivity against mutp53 hepatoma cells involving the downregulation of mutp53 and inactivation of STAT3.


Assuntos
Benzofuranos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácidos Aminossalicílicos , Apoptose/fisiologia , Benzenossulfonatos , Benzofuranos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Regulação para Baixo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
14.
Psychopharmacology (Berl) ; 239(1): 267-276, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661719

RESUMO

RATIONALE: Deregulated attack behaviors have devastating social consequences; however, satisfactory clinical management for the behavior is still an unmet need so far. Social isolation (SI) has been common during the COVID-19 pandemic and may have detrimental effects on mental health, including eliciting heightened attack behavior. OBJECTIVES: This study aims to explore whether injection of ZL006 can alleviate SI-induced escalation of attack behavior in mice. METHODS: Pharmacological tools, biochemical methods, and behavioral tests were used to explore the potential therapeutic effects of ZL006 targeting postsynaptic density 95 (PSD95)/neuronal nitric oxide synthase (nNOS) pathway on escalation of attack behavior induced by SI in mice. RESULTS: ZL006 mitigated SI-induced escalated attack behaviors and elevated nitric oxide (NO) level in the cortex of the SI mice. The beneficial effects of ZL006 lasted for at least 72 h after a single injection of ZL006. Potentiation of NO levels by L-arginine blocked the effects of ZL006. Moreover, a sub-effective dose of 7-NI in combination with a sub-effective dose of ZL006 decreased both SI-induced escalated attack behaviors and NO levels in mice subjected to SI. CONCLUSIONS: Our study highlights the importance of the PSD95/nNOS pathway in mediating SI-induced escalation of attack behavior. ZL006 may be a promising therapeutic strategy for treating aggressive behaviors.


Assuntos
Agressão , Ácidos Aminossalicílicos/farmacologia , Benzilaminas/farmacologia , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Isolamento Social , Animais , Camundongos
15.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833894

RESUMO

Compound 5-{[(2E)-3-bromo-3-carboxyprop-2-enoyl]amino}-2-hydroxybenzoic acid (C1), a new 5-aminosalicylic acid (5-ASA) derivative, has proven to be an antioxidant in vitro and an anti-inflammatory agent in mice. The in vivo inhibition of myeloperoxidase was comparable to that of indomethacin. The aim of this study was to take another step in the preclinical evaluation of C1 by examining acute toxicity with the up-and-down OECD method and pharmacokinetic profiles by administration of the compound to Wistar rats through intravenous (i.v.), oral (p.o.), and intraperitoneal (i.p.) routes. According to the Globally Harmonized System, C1 belongs to categories 4 and 5 for the i.p. and p.o. routes, respectively. An RP-HPLC method for C1 quantification in plasma was successfully validated. Regarding the pharmacokinetic profile, the elimination half-life was approximately 0.9 h with a clearance of 24 mL/min after i.v. administration of C1 (50 mg/kg). After p.o. administration (50 mg/kg), the maximum plasma concentration was reached at 33 min, the oral bioavailability was about 77%, and the compound was amply distributed to all tissues evaluated. Therefore, C1 administered p.o. in rats is suitable for reaching the colon where it can exert its effect, suggesting an important advantage over 5-ASA and indomethacin in treating ulcerative colitis and Crohn's disease.


Assuntos
Ácidos Aminossalicílicos/farmacocinética , Ácidos Aminossalicílicos/toxicidade , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/toxicidade , Ácidos Aminossalicílicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Feminino , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacocinética , Hidroxibenzoatos/toxicidade , Dose Letal Mediana , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
16.
Life Sci ; 285: 119946, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34516993

RESUMO

AIMS: Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD), where hyperuricemia is a key independent risk factor. Considerable evidence indicated that STAT3 is one of the crucial signaling pathways in the progression of kidney fibrosis. Here, we investigated that pharmacological blockade of STAT3 delayed the progression of renal fibrosis in hyperuricemia-induced CKD. MAIN METHODS: In the study, we used the mixture of adenine and potassium oxonate to perform kidney injury and fibrosis in hyperuricemic mice, accompanied by STAT3 activation in tubular and interstitial cells. KEY FINDINGS: Treatment with STAT3 inhibitor S3I-201 improved renal dysfunction, reduced serum uric acid level, and delayed the progression of kidney fibrosis. Furthermore, S3I-201 could suppress fibrotic signaling pathway of TGF-ß/Smads, JAK/STAT and NF-κB, as well as inhibit the expression of multiple profibrogenic cytokines/chemokines in the kidneys of hyperuricemic mice. SIGNIFICANCE: These data suggested that STAT3 inhibition was a potent anti-fibrotic strategy in hyperuricemia-related CKD.


Assuntos
Benzenossulfonatos/farmacologia , Hiperuricemia/complicações , Rim/efeitos dos fármacos , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Ácidos Aminossalicílicos/farmacologia , Ácidos Aminossalicílicos/uso terapêutico , Animais , Benzenossulfonatos/uso terapêutico , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Fator de Transcrição STAT3/metabolismo , Ácido Úrico/sangue
17.
Immunol Lett ; 239: 88-95, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480980

RESUMO

Leptin is over-secreted in many autoimmune diseases, which can promote dendritic cells (DCs) maturation and up-regulate the expression of inflammatory cytokines, but the underlying mechanisms are not fully elucidated. Considering the major role of leptin in maintaining energy balance and the significant role of glycolysis in DCs activation, our study aims to investigate whether leptin promotes the activation of DCs via glycolysis and its underlying mechanisms. We demonstrated that leptin promoted the activation of DCs, including up-regulating the expression of co-stimulatory molecules and inflammatory cytokines, enhancing the proliferation and T helper 17 (Th17) cell ratio in peripheral blood mononuclear cells (PBMC) co-cultured with leptin-stimulated DCs. Leptin also enhanced DCs glycolysis with increased glucose consumption, lactate production, and the expression of hexokinase 2 (HK2). In addition, the activation of DCs stimulated by leptin could be inhibited by the glycolysis inhibitor 2-deoxy-d-glucose (2-DG). To explore the signaling pathways involved in leptin-induced HK2 expression, we observed that the inhibitors of STAT3 (NSC74859) could repress the enhancement of HK2 triggered by leptin stimulation. Therefore, our results indicated that leptin promoted glycolytic metabolism to induce DCs activation via STAT3-HK2 pathway.


Assuntos
Células Dendríticas/imunologia , Glicólise/imunologia , Leptina/metabolismo , Ácidos Aminossalicílicos/farmacologia , Benzenossulfonatos/farmacologia , Comunicação Celular/imunologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células Dendríticas/metabolismo , Voluntários Saudáveis , Hexoquinase/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Cultura Primária de Células , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Regulação para Cima/imunologia
18.
Am J Physiol Cell Physiol ; 321(3): C415-C428, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260299

RESUMO

Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-ß (TGF-ß) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.


Assuntos
Queimaduras Químicas/genética , Quimiotaxia/efeitos dos fármacos , Queimaduras Oculares/genética , Glicoproteínas/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Álcalis , Ácidos Aminossalicílicos/farmacologia , Animais , Benzenossulfonatos/farmacologia , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Linhagem Celular , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Fibrose/prevenção & controle , Regulação da Expressão Gênica , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
Mar Drugs ; 19(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065505

RESUMO

Intestinal organoids can be used as an ex vivo epithelial model to study different drug delivery effects on epithelial cells' luminal surface. In this study, the impact of surface charge on the delivery of 5-ASA loaded PLGA nanoparticles into the lumen of organoids was investigated. Alginate and chitosan were used to coat the nanoparticles and provide negative and positive charges on the particles, respectively. The organoid growth and viability were not affected by the presence of either alginate- or chitosan-coated nanoparticles. It was shown that nanoparticles could be transported from the serosal side of the organoids to the lumen as the dye gradually accumulated in the lumen by day 2-3 after adding the nanoparticles to the Matrigel. By day 5, the dye was eliminated from the lumen of the organoids. It was concluded that the positively charged nanoparticles were more readily transported across the epithelium into the lumen. It may be attributed to the affinity of epithelial cells to the positive charge. Thus, the organoid can be utilized as an appropriate model to mimic the functions of the intestinal epithelium and can be used as a model to evaluate the benefits of nanoparticle-based drug delivery.


Assuntos
Alginatos/química , Quitosana/química , Intestino Delgado/citologia , Nanopartículas/química , Organoides/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ácidos Aminossalicílicos/química , Ácidos Aminossalicílicos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Técnicas In Vitro , Intestino Delgado/efeitos dos fármacos , Laminina , Camundongos , Microscopia , Microscopia Confocal , Microscopia de Fluorescência , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , Tamanho da Partícula , Proteoglicanas
20.
Mol Carcinog ; 60(7): 481-496, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018249

RESUMO

c-Hepatocyte growth factor receptor (Met) inhibitors have demonstrated clinical benefits in some types of solid tumors. However, the efficacy of c-Met inhibitors in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we discovered that c-Met inhibitors induced "Signal Transducer and Activator of Transcription (STAT3)-addiction" in ESCC cells, and the feedback activation of STAT3 in ESCC cells limits the tumor response to c-Met inhibition. Mechanistically, c-Met inhibition increased the autocrine of several cytokines, including CCL2, interleukin 8, or leukemia inhibitory factor, and facilitated the interactions between the receptors of these cytokines and Janus Kinase1/2 (JAK1/2) to resultantly activate JAKs/STAT3 signaling. Pharmacological inhibition of c-Met together with cytokines/JAKs/STAT3 axis enhanced cancer cells regression in vitro. Importantly, combined c-Met and STAT3 inhibitors synergistically suppressed tumor growth and promoted the apoptosis of tumor cells without producing systematic toxicity. These findings suggest that inhibition of the STAT3 feedback loop may augment the response to c-Met inhibitors via the STAT3-mediated oncogene addiction in ESCC cells.


Assuntos
Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Ácidos Aminossalicílicos/administração & dosagem , Ácidos Aminossalicílicos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...