Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.891
Filtrar
1.
Water Environ Res ; 96(3): e11011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477462

RESUMO

The current study focuses on the degradation of Procion brilliant yellow H-E6G, an azo dye, using ultrasonic and hydrodynamic cavitation (HC), evaluating the impact of various parameters on the extent of degradation. The use of only ultrasound showed less oxidation capacity as indicated by only 19.1% degradation at an optimized power of 140 W, pH of 2.5, temperature of 40°C, and initial dye concentration of 15 ppm. The effectiveness of hybrid approaches involving US + H2 O2 , US + Fenton, and US + H2 O2 + potassium persulfate (KPS) was subsequently evaluated under optimized conditions. A notable enhancement in decolorization extent was observed for combined operations, including US + H2 O2 , US + Fenton, and US + H2 O2 + KPS (dual oxidant scheme) with the actual decolorization extents as 80.6%, 85%, and 92.2% respectively. An optimized scheme of US + H2 O2 + KPS was also utilized to decolorize the dye at a pilot scale using a US flow cell and also an HC reactor that yielded 91.8% and 88% reductions in initial concentration. The dye decolorization was elucidated to follow first-order kinetics for all the individual and combination approaches. The obtained values of the rate constants were also utilized for the evaluation of the synergistic index. A toxicity analysis was also performed on the dye, both before and following treatment, utilizing two bacterial strains. A comparative analysis of various treatment approaches has been presented focusing on factors such as cavitational yield, operational expenses, and energy requirements. The study elucidated that the combination of US + H2 O2 + KPS effectively removes Procion brilliant yellow H-E6G giving 92.2% as the maximum degradation at an operating cost of 0.1862 $/L. PRACTITIONER POINTS: First depiction of cavitative degradation of Procion brilliant yellow H-E6G Optimizing the equipment operating parameters and chemical oxidants Demonstration of optimized treatment scheme at pilot scale Evaluation of various approaches based on synergy and costs of treatment US + H2 O2  + KPS is the best approach for dye degradation.


Assuntos
Compostos Azo , Benzenossulfonatos , Peróxido de Hidrogênio , Oxidantes , Hidrodinâmica , Ultrassom
2.
Bioresour Technol ; 396: 130454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360218

RESUMO

The comprehensive separation and utilization of whole components of lignocellulosic materials has received extensive attention in present research. This study focused on the efficacy of alkali treatment for enzymatic saccharification of cellulose based on p-toluenesulfonic acid (p-TsOH) pretreated bamboo substrate. The results showed that the cellulose to glucose conversion yield was 94.69 % under optimized conditions of 0.4 g NaOH/g, 160 °C and 4 h (soaked), which after only 6 h enzymatic hydrolysis time. Alkali lignin recovery was 88.51 %, with potential for conversion to lignin derivatives. The yield of hemicellulose in the pretreated filtrate was 51.85 % after the 4th cycling reuse of p-TsOH. This work has borrowed the advantages of p-TsOH pretreatment of depolymerized hemicellulose from bamboo, combined with a low-priced weak alkali secondary treatment method, which can be effectively applied to the co-production of lignin, xylooligosaccharide, xylose and glucose, and the whole process is green and economically sustainable.


Assuntos
Álcalis , Benzenossulfonatos , Lignina , Biomassa , Celulose , Glucose , Hidrólise , Xilose/química , Oligossacarídeos/química
3.
BMC Anesthesiol ; 24(1): 75, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408901

RESUMO

OBJECTIVE: The objective of this study was to assess the efficacy and safety of Remimazolam in the context of combined spinal-epidural anesthesia for sedation during orthopedic surgery. METHODS: This randomized controlled trial enrolled patients scheduled for orthopedic surgery under combined spinal-epidural anesthesia (N = 80), who were randomly allocated to receive either dexmedetomidine (Group-D) or remimazolam (Group-R). The target sedation range aimed for a Ramsay score of 2-5 or a BIS value of 60-80 to evaluate the effectiveness and safety of remimazolam during sedation. RESULTS: The time taken to achieve the desired level of sedation was significantly shorter in the remimazolam group compared to the dexmedetomidine group (3.69 ± 0.75 vs. 9.59 ± 1.03; P < 0.0001). Patients in the remimazolam group exhibited quicker recovery, fewer intraoperative adverse events, more consistent vital signs, and greater satisfaction at various time points throughout the surgery. CONCLUSION: This preliminary study demonstrates that remimazolam tosilate serves as a safe and effective sedative for orthopedic surgery performed under combined spinal-epidural anesthesia, in comparison with dexmedetomidine.


Assuntos
Benzenossulfonatos , Benzodiazepinas , Hipnóticos e Sedativos , Humanos , Anestesia Epidural , Benzenossulfonatos/efeitos adversos , Benzodiazepinas/efeitos adversos , Dexmedetomidina/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Procedimentos Ortopédicos
4.
Water Res ; 253: 121343, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422888

RESUMO

A dye-sensitized photocatalysis system was developed for degrading persistent organic contaminants using solid waste (i.e., red mud, RM) and peroxymonosulfate (PMS) under visible light. Complete degradation of acid orange 7 (AO7) was achieved in RM suspension with PMS, where the co-existence of amorphous FeO(OH)/α-Fe2O3 was the key factor for PMS activation. The experimental results obtained from photochemical and electrochemical observations confirmed the enhanced PMS activation due to the Fe-OH phase in RM. DFT calculations verified the acceleration of PMS activation due to the high adsorption energy of PMS on FeO(OH) and low energy barrier for generating reactive radicals. Compared to the control experiment without AO7 showing almost no degradation of other organic contaminants (phenol, bisphenol A, 4-chlorophenol, 4-nitrophenol, and benzoic acid), photo-sensitized AO7* enhanced electron transfer in the FeIII/FeII cycle, dramatically enhancing the degradation of organic contaminants via radical (•OH, SO4•-, and O2•-) and non-radical (dye*+ and 1O2) pathways. Therefore, the novel finding of this study can provide new insights for unique PMS activation by heterogeneous Fe(III) containing solid wastes and highlight the importance of sensitized dye on the interaction of PMS with Fe charge carrier for the photo-oxidation of organic contaminants under visible light.


Assuntos
Compostos Azo , Benzenossulfonatos , Compostos Férricos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Peróxidos , Luz
5.
Environ Sci Pollut Res Int ; 31(12): 18614-18624, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349493

RESUMO

In this study, cobalt etched graphite felt electrodes were produced using a simple etching technique. It was used in combination with a solid polymer electrolyte (SPE) for the degradation of the target contaminant Orange II by Electro-Fenton (EF) technique in low conductivity water. In this method, 94% of Orange II in low conductivity water was removed in 90 min. The characterization analysis substantiates the hypothesis that the electrodes produced exhibit a three-dimensional porous structure, augmented defect concentration, and enhanced electron transfer capability. In addition, the potential reaction mechanism was inferred from the radical quenching experiments, and hydroxyl radicals (·OH) were deemed the main reactive substances. The combination of cobalt etched graphite felt electrodes with SPE demonstrates remarkable efficacy in the treatment of organic wastewater characterized by low electrical conductivity.


Assuntos
Compostos Azo , Benzenossulfonatos , Grafite , Poluentes Químicos da Água , Grafite/química , Cobalto , Polímeros , Eletrodos , Água , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Oxirredução
6.
BMC Anesthesiol ; 24(1): 48, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308200

RESUMO

PURPOSE: Previous reports argue that preoperative sleep conditions of patients can influence the dosage of general anaesthesia drugs. Therefore, we aimed to investigate the dose-effect relationship of preoperative sleep disorders on the induction of general anaesthesia with remimazolam tosilate and calculate the Median effective (ED50) and 95% effective (ED95) dosages. METHODS: Included in our study were 56 patients who underwent laparoscopic cholecystectomy at our hospital. A separate group of 27 patients with sleep disorders (SD group) and 29 patients without sleep disorders (NSD group) using the Pittsburgh Sleep Quality Index (PSQI) were also included. According to the Dixon 'up-and-down' design, patients received remimazolam at preselected concentrations starting at 0.2 mg/kg. After the administration of remimazolam, loss of consciousness was observed. By observing whether consciousness disappeared within a minute, we adjusted the dose of remimazolam by 0.1 mg/kg (up and down) in the following patient. The Median effective dose (ED50), 95% effective dose (ED95), and 95% confidence interval (CI) of remimazolam for effective sedation were calculated. RESULTS: The ED50 of remimazolam was 0.226 mg/kg (95%CI 0.221-0.232 mg/kg) in the SD group and 0.191 mg/kg (95%CI, 0.183-0.199 mg/kg) in the NSD group. The ED95 of remimazolam was 0.237 mg/kg (95%CI 0.231-0.262 mg/kg) in the SD group and 0.209 mg/kg (95%CI 0.200-0.254 mg/kg) in the NSD group. CONCLUSIONS: In the SD group, the ED50 and ED95 of remimazolam during anaesthesia induction were 0.226 and 0.237 mg/kg, respectively. The induction dose of remimazolam in the SD group was significantly higher than that in the NSD group.


Assuntos
Benzenossulfonatos , Benzodiazepinas , Colecistectomia Laparoscópica , Propofol , Transtornos do Sono-Vigília , Humanos , Anestesia Geral
7.
Chemosphere ; 352: 141471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373445

RESUMO

The bio-reduction of azo dyes is significantly dependent on the availability of electron donors and external redox mediators. In this study, the natural henna plant biomass was supplemented to promote the biological reduction of an azo dye of Acid Orange 7 (AO7). Besides, the machine learning (ML) approach was applied to decipher the intricate process of henna-assisted azo dye removal. The experimental results indicated that the hydrolysis and fermentation of henna plant biomass provided both electron donors such as volatile fatty acid (VFA) and redox mediator of lawsone to drive the bio-reduction of AO7 to sulfanilic acid (SA). The high henna dosage selectively enriched certain bacteria, such as Firmicutes phylum, Levilinea and Paludibacter genera, functioning in both the henna fermentation and AO7 reduction processes simultaneously. Among the three tested ML algorithms, eXtreme Gradient Boosting (XGBoost) presented exceptional accuracy and generalization ability in predicting the effluent AO7 concentrations with pH, oxidation-reduction potential (ORP), soluble chemical oxygen demand (SCOD), VFA, lawsone, henna dosage, and cumulative henna as input variables. The validating experiments with tailored optimal operating conditions and henna dosage (pH 7.5, henna dosage of 2 g/L, and cumulative henna of 14 g/L) confirmed that XGBoost was an effective ML model to predict the efficient AO7 removal (91.6%), with a negligible calculating error of 3.95%. Overall, henna plant biomass addition was a cost-effective and robust method to improve the bio-reduction of AO7, which had been demonstrated by long-term operation, ML modeling, and experimental validation.


Assuntos
Lawsonia (Planta) , Microbiota , Naftoquinonas , Corantes , Biomassa , Compostos Azo , Oxirredução , Benzenossulfonatos
8.
Biosens Bioelectron ; 250: 116057, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286091

RESUMO

Aflatoxin B1 (AFB1) is considered as a serious carcinogenic mycotoxin that was widely detected in grains and foods, and its sensitive analysis is of key importance to avoid the health threats for consumers. In this study, a dual-signal aptasensor based on cascade of entropy-driven strand displacement reaction (ESDR) and linear rolling circle amplification (LRCA) was fabricated for ultrasensitive determination of AFB1. At the sensing system, the complementary strand would be released after the aptamer combined with AFB1, which will bring about the functional domains exposed, triggering the subsequent ESDR. Meanwhile, the two strands that were outputted by ESDR would incur the downstream LRCA reaction to produce a pair of long strands to assist in the generation of fluorescence and absorbance signals. Under the optimized conditions, the proposed aptasensor could achieve excellent sensitivity (limit of detection, 0.427 pg/mL) with satisfactory accuracy (recoveries, 92.8-107.9 %; RSD, 2.4-5.0 %), mainly ascribed to the cascade amplification. Importantly, owing to the flexibility design of nucleic acid primer, this analytical method can be applied in monitoring various hazardous substances according to the specific requirements. Our strategy provides some novel insights at signal amplification for rapid detection of AFB1 and other targets.


Assuntos
Aptâmeros de Nucleotídeos , Benzenossulfonatos , Técnicas Biossensoriais , Aflatoxina B1/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
9.
Water Res ; 251: 121113, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215539

RESUMO

A novel treatment technique by coupling granular activated carbon (GAC) adsorption and ozone regeneration was constructed for long-lasting water decontamination. The GAC adsorption showed high performance for atrazine (ATZ) removal (99.9 %), and the ozone regeneration ensured the recyclability of GAC for water purification. The regeneration process was evaluated via several paths to assist the efficient adsorption process. Employing ozone micro-nano bubbles (O3-MNBs) for regenerating GAC showed superior performance compared to traditional ozone. Meantime, inhibiting the formation of bromate (BrO3-). ATZ adsorption process suffered from the pore-filling, hydrogen bonding effect and π-π EDA interaction. The surface phenolic hydroxyl group, carboxyl group and pyridine nitrogen benefitted the triggering of ozone to generate reactive oxygen species, and regenerate the GAC surface. The superior performance of the adsorption and regeneration process was verified via a long-term running by a pilot study. It significantly improved the removal of organic micropollutants, UV254 and permanganate index. Additionally, the intermittent O3-MNBs regeneration process resulted in efficient decontamination within the pores structure of GAC, which also effectively preserved the pore structure from destruction. For actual application, the cost of water production can be saved around 0.63 kWh m-3. This work proposed new ideas and theoretical support for economic water production.


Assuntos
Atrazina , Benzenossulfonatos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Projetos Piloto , Ozônio/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Água , Adsorção
10.
Diagn Microbiol Infect Dis ; 108(4): 116186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278003

RESUMO

PURPOSE: To evaluate the value of calcofluor white in the diagnosis of invasive fungal disease (IFD). METHODS: A total of 84 patients with possible pulmonary fungal infection who underwent bronchoscopy with bronchoalveolar lavage fluid (BALF) were included. All BALF specimens were subjected to Calcofluor white (CFW), potassium hydroxide (KOH) and Gram stains. RESULTS: CFW has the most sensitivity than KOH and Gram staining. The specificity of CFW was 92.00 %, which was lower than that of Gram staining. The PPVs for CFW, KOH and Gram staining were 94.44 %, 84.62 % and 80.00 % respectively. The NPVs for CFW, KOH and Gram staining was 47.92 %, 32.39 % and 30.38 % respectively. The AUCs of these three methods were 0.748, 0.550 and 0.510 respectively. CONCLUSION: CFW is superior to KOH and Gram staining in the diagnosis of invasive fungal diseases.


Assuntos
Benzenossulfonatos , Violeta Genciana , Micoses , Fenazinas , Humanos , Coloração e Rotulagem , Micoses/diagnóstico , Sensibilidade e Especificidade , Líquido da Lavagem Broncoalveolar
11.
Mol Pharm ; 21(2): 970-981, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206824

RESUMO

Biodistribution tracks compounds or molecules of interest in vivo to understand a compound's anticipated efficacy and safety. Nanoparticles deliver nucleic acid and drug payloads and enhance tumor permeability due to multiple properties such as high surface area to volume ratio, surface functionalization, and modifications. Studying the in vivo biodistribution of nanoparticles documents the effectiveness and safety of nanoparticles and facilitates a more application-driven approach for nanoparticle development that allows for more successful translation into clinical use. In this study, we present a relatively simple method to determine the biodistribution of magnetic iron nanoparticles in mice. In vitro, cells take up branched amphiphilic peptide-coated magnetic nanobeads (BAPc-MNBs) like their counterparts, i.e., branched amphiphilic peptide capsules (BAPCs) with a hollow water-filled core. Both BAPc-MNBs and BAPCs have widespread applications as a nanodelivery system. We evaluated the BAPc-MNBs tissue distribution in wild-type mice injected intravenously (i.v.), intraperitoneally (i.p.), or orally gavaged to understand the biological interactions and to further the development of branched amphiphilic peptide-based nanoparticles. The magnetic nanoparticles allowed collection of the BAPc-MNBs from multiple organs by magnetic bead sorting, followed by a high-throughput screening for iron content. When injected i.v., nanoparticles were distributed widely to various organs before elimination from the system via the intestines in feces. The spleen accumulated the highest amount of BAPc-MNBs in mice administered NPs via i.v. and i.p. but not via oral gavage. Taken together, these data demonstrate that the magnetic sorting not only allowed quantification of the BAPc-MNBs but also identified the distribution of BAPc-MNBs after distinct administration methods.


Assuntos
Benzenossulfonatos , Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Distribuição Tecidual , Peptídeos/química , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química
12.
Bioresour Technol ; 395: 130338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237641

RESUMO

Deep eutectic solvent (DES) is a newly-emerged green solvent for efficient pretreatment of lignocellulosic feedstock. To improve the component fractionation performance of neutral DES, p-toluenesulfonic acid (p-TsOH) was employed as catalyst to form a novel ternary DES with benzyltriethylammonium chloride (TEBAC) and glycerol (Gly) for pretreatment of soybean straw. Under the optimum reaction conditions (TEBAC:Gly = 1:12, 1.6 wt% p-TsOH and reacted at 90 °C for 160 min), the lignin and hemicellulose removal from soybean straw were amounted to 92.0 % and 88.2 %, respectively. The pretreated substrate showed satisfactory enzymatic hydrolysis performance, as the glucose and reducing sugar concentrations reached 37.3 g/L and 42.3 g/L, respectively, after 72 h saccharification under the action of cellulase with a relatively low enzyme loading of 10 FPU/g cellulose.This method provides an efficient and mild route for utilization of agricultural waste and production of platform monosaccharides.


Assuntos
Benzenossulfonatos , Lignina , Solventes Eutéticos Profundos , Hidrólise , Glicerol , Solventes , Biomassa
13.
J Environ Manage ; 353: 120181, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271882

RESUMO

The substantial development of the dyeing and printing industry has resulted in an increased discharge of dye wastewater containing a large amount of recalcitrant organic pollutants. Furthermore, the landfill disposal of red mud has led to significant environmental pollution such as soil erosion and groundwater contamination. Therefore, this study aimed to promote the resource utilization of red mud by preparing advanced oxidation catalyst, resulting in effective treatment of dye wastewater, and the primary reaction mechanism was revealed. In this study, biochar-loading red mud (RBC) was applied to activate persulfate (PDS) for the degradation of acid orange 7 (AO7) with the initial concentration of 50 mg L-1. The maximum removal rate of 2.45 mg L·min-1 was achieved in 20 min and corresponding with the removal ratio of 98.0% under the PDS concentration of 20 mM (4.76 g L-1). Eventually, the removal ratio of 99.2% was attained within 60 min. The high catalytic efficiency was probably ascribed to the singlet oxygen (1O2) dominant non-radical pathway and RBC-mediated electron transfer mechanism. It was found that Fe(II), specific surface areas and functional groups on the catalyst were highly related to its catalytic efficiency and passivation. RBC had better reusability due to the loading of biochar and the reduction of zero-valent iron. The non-radical pathway mechanism and electron transfer mechanism were proposed for the activation of PDS, and non-radical pathway played a dominant role. Besides, the degradation pathways and toxicity assessment were analyzed. This research proposed a new electron transfer mechanism for activation process of PDS, which can provide a theoretical support for further studies. Overall, this study demonstrated that catalysts synthesized from red mud and biomass exhibit highly efficient activation in degrading the model pollutant AO7 through PDS activation. The catalyst displayed promising reusability and practical applicability, offering potential advancements in both the resource utilization and reduction of red mud.


Assuntos
Compostos Azo , Benzenossulfonatos , Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal , Ferro , Poluentes Químicos da Água/análise
14.
Bioresour Technol ; 395: 130401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286170

RESUMO

An innovative two-step process with p-toluenesulfonic acid (p-TsOH) and oxidation treatment was proposed for the efficient preparation of carboxylated nanocellulose from hybrid Pennisetum. Approximately 90 % of lignin was dissolved by p-TsOH acid under the optimal condition (80 °C, 20 min). Near-complete delignification (down to 0.5 %) and introduction of carboxylate groups (up to 1.48 mmol/g) could be achieved simultaneously during cellulose oxidation treatments without the requirement for bleaching. However, different oxidation methods expressed different efficiency and sustainability. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) oxidation has higher selectivity for the carboxylation reaction but with detriment to the aquatic environment. Fenton oxidation is more energy-consuming due to the lower carboxylate contents of products (maximum 188 µmol/g), with the carboxylic groups present as carboxylic acids, but competitive in terms of environmental sustainability, especially when renewable energy sources are available. The nanocelluloses obtained by the two oxidation methods differ in morphology and have different application prospects.


Assuntos
Benzenossulfonatos , Pennisetum , Óxidos N-Cíclicos , Celulose , Ácidos Carboxílicos
15.
Chemosphere ; 352: 141297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296211

RESUMO

The ubiquitous contamination of surfactants in wastewater has raised global concerns. Photocatalysis is deemed as a promising yet challenging approach for the decomposition of surfactant residues. Herein, a novel Z-scheme heterojunction of Bi4O5Br2/Bi2S3 with covalent S-O bonds was prepared via a facile one-pot hydrothermal and subsequent annealing process. The prepared optimal Bi4O5Br2/Bi2S3 composite exhibited remarkable photo-degradation activity towards the sodium dodecylbenzene sulfonate (SDBS). The Z-scheme reaction mechanism was proposed and validated by meticulous analysis of quenching tests, ESR spectroscopy and DFT calculations. Furthermore, the presence of chemical S-O linkages between Bi4O5Br2 and Bi2S3 was identified via FT-IR and XPS analyses, which served as a distinct bridge to modify the Z-scheme route for carrier transport. The Z-scheme heterostructure, in conjunction with chemical S-O bonds, synergistically enhanced the separation rate of electron-hole pairs and thus greatly boosted the photocatalytic activity. Additionally, the possible degradation pathways of SDBS were proposed by using HR-MS technology. Moreover, real hotel laundry wastewater could be efficiently disposed by the photocatalysis of the Bi4O5Br2/Bi2S3 with a decrease in the COD value from 428 to 74 mg/L, indicating that the fabricated Z-scheme heterojunction hold great promise for effectively removing refractory surfactant contaminants from aquatic environment.


Assuntos
Benzenossulfonatos , Surfactantes Pulmonares , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos
16.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203847

RESUMO

A combined experimental and molecular dynamic simulation approach was used to examine the structure and interfacial properties of solute-saturated micelles. The properties of dodecylbenzenesulfonate (DBS) micelles were examined in dodecane and benzene hydrocarbon systems. Pyrene fluorescence was used to determine the aggregation number of surfactant monomers in the micelle systems. Molecular dynamic (MD) simulations using energy minimization applying the CHARMm force field with the TIP3P model for water. Comparison of the DBS/benzene and DBS/Dodecane micelles equilibrium structures via radial distribution function (RDF) and probability distribution function (PDF) analysis indicates that the area per head group for the DBS/Benzene micelle interface is significantly larger than that of the DBS/Dodecane at the interface. It was also determined that benzene molecules can move freely within the micelle while dodecane is strictly confined in the core of the micelle. The increased interfacial area per monomer caused by the insertion of benzene also reduces the effectiveness of the surfactant, which has implications for use in various environmental applications. However, the DBS/benzene micelle can solubilize many more hydrocarbon molecules in one micelle with less surfactant monomer (i.e., lower aggregation number) per micelle due to the increased available packing positions within the micelle. This, in turn, increases the efficiency of the surfactant in real-world applications which is consistent with previous laboratory results. Understanding the differing solubilization characteristics of surfactants against various classes of hydrocarbons in single solute systems is a necessary step to beginning to understand their solubilization properties in the mixed waste systems prevalent in most surfactant enhanced remediation (SEAR) strategies.


Assuntos
Alcanos , Benzeno , Benzenossulfonatos , Surfactantes Pulmonares , Micelas , Simulação de Dinâmica Molecular , Tensoativos
18.
Sci Total Environ ; 912: 168940, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042196

RESUMO

The widespread distribution of saline-alkali soil around the world affects the health of ecological systems and the development of the national economy by limiting the growth of plants. However, the commonly used remediation technologies have the drawbacks of low efficiency, high cost, and secondary pollution. This study investigated the feasibility and efficacy of novel combined micro-nanobubbles (MNBs) and microbial agent (MA) technology for the remediation of saline-alkali soil. The results demonstrated that the combined MA-MNBs method greatly renovated the properties of saline-alkali soil compared with the technologies of single utilization of MA or MNBs process in the laboratory. The method resulted in a reduction of soil electrical conductivity and pH levels, an improvement in soil fertility, and the formation of soil aggregates. Moreover, the method significantly impacted the growth of plants, particularly in plant length, dry weight, and rhizome elongation. Further high-throughput sequencing and gene expression analysis revealed that the MA-MNBs method enhanced the abundance of soil microbial community compared with single MA and MNBs treatment. Gene enrichment analysis revealed that the MA-MNBs method could compensate for the shortcomings of single MA treatment and enhance the expression of energy metabolism and salt stress-related genes attributed to MNBs treatment, thereby significantly improving the growth and development of plants. Consistently, 6115 kg/ha of rice was yielded in the field for the saline-alkali soils using this MA-MNBs method, with zero crops before remediation. This study provided a novel, efficient, and green strategy for the remediation of saline-alkali soil without adding any chemicals.


Assuntos
Álcalis , Benzenossulfonatos , Solo , Solo/química , Plantas , Poluição Ambiental
19.
Adv Mater ; 36(4): e2309711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983647

RESUMO

As an iron-dependent lipid peroxidation (LPO) mediated cell death pathway, ferroptosis offers promises for anti-tumor treatment. Photodynamic therapy (PDT) is an ideal way to generate reactive oxygen species (ROS) for LPO. However, the conventional PDT normally functions on subcellular organelles, such as endoplasmic reticulum, mitochondria, and lysosome, causing rapid cell death before triggering ferroptosis. Herein, the first lipid droplet (Ld)-targeting type I photosensitizer (PS) with enhanced superoxide anion (O2 -· ) production, termed MNBS, is reported. The newly designed PS selectively localizes at Ld in cells, and causes cellular LPO accumulation by generating sufficient O2 -· upon irradiation, and subsequently induces ferroptosis mediated chronical PDT, achieving high-efficient anti-tumor PDT in hypoxia and normoxia. Theoretical calculations and comprehensive characterizations indicate that the Ld targeting property and enhanced O2 -· generation of MNBS originate from the elevated H-aggregation tendency owing to dispersed molecular electrostatic distribution. Further in vivo studies using MNBS-encapsulated liposomes demonstrate the excellent anti-cancer efficacy as well as anti-metastatic activity. This study offers a paradigm of H-aggregation reinforced type I PS to achieve ferroptosis-mediated PDT.


Assuntos
Benzenossulfonatos , Ferroptose , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Peroxidação de Lipídeos , Gotículas Lipídicas , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral
20.
Bioresour Technol ; 393: 130054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995876

RESUMO

Polyhydroxyalkanoates (PHAs) are promising alternatives to non-degradable polymers in various applications. This study explored the use of biologically recovered PHA as a biofilm carrier in a moving bed biofilm reactor for acid orange 7 treatment. The PHA was comprised of 86 ± 1 mol% of 3-hydroxybutyrate and 14 ± 1 mol% of 3-hydroxyhexanoate and was melt-fused at 140 °C into pellets. The net positive surface charge of the PHA biocarrier facilitated attachment of negatively charged activated sludge, promoting biofilm formation. A 236-µm mature biofilm developed after 26 days. The high polysaccharides-to-protein ratio (>1) in the biofilm's extracellular polymeric substances indicated a stable biofilm structure. Four main microbial strains in the biofilm were identified as Leclercia adecarboxylata, Leuconostoc citreum, Bacillus cereus, and Rhodotorula mucilaginosa, all of which exhibited decolourization abilities. In conclusion, PHA holds promise as an effective biocarrier for biofilm development, offering a sustainable alternative in wastewater treatment applications.


Assuntos
Benzenossulfonatos , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Esgotos/química , Compostos Azo , Biofilmes , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...