Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.892
Filtrar
1.
J Orthop Surg Res ; 19(1): 169, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448971

RESUMO

OBJECTIVE: The objective of this study is to investigate the impact of four natural product extracts, namely, aloe-emodin, quercetin, curcumin, and tannic acid, on the in vitro bacteriostatic properties and biocompatibility of gentamicin-loaded bone cement and to establish an experimental groundwork supporting the clinical utility of antibiotic-loaded bone cements (ALBC). METHODS: Based on the components, the bone cement samples were categorized as follows: the gentamicin combined with aloe-emodin group, the gentamicin combined with quercetin group, the gentamicin combined with curcumin group, the gentamicin combined with tannic acid group, the gentamicin group, the aloe-emodin group, the quercetin group, the curcumin group, and the tannic acid group. Using the disk diffusion test, we investigated the antibacterial properties of the bone cement material against Staphylococcus aureus (n = 4). We tested cell toxicity and proliferation using the cell counting kit-8 (CCK-8) and examined the biocompatibility of bone cement materials. RESULTS: The combination of gentamicin with the four natural product extracts resulted in significantly larger diameters of inhibition zones compared to gentamicin alone, and the difference was statistically significant (P < 0.05). Except for the groups containing tannic acid, cells in all other groups showed good proliferation across varying time intervals without displaying significant cytotoxicity (P < 0.05). CONCLUSION: In this study, aloe-emodin, quercetin, curcumin, and tannic acid were capable of enhancing the in vitro antibacterial performance of gentamicin-loaded bone cement against S. aureus. While the groups containing tannic acid displayed moderate cytotoxicity in in vitro cell culture, all other groups showed no discernible cytotoxic effects.


Assuntos
Antraquinonas , Produtos Biológicos , Curcumina , Emodina , Polifenóis , Gentamicinas/farmacologia , Cimentos Ósseos/farmacologia , Curcumina/farmacologia , Quercetina , Staphylococcus aureus , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia
2.
PLoS One ; 19(3): e0299128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437212

RESUMO

Fermentation-based biosynthesis in synthetic biology relies heavily on sugar-derived feedstocks, a limited and carbon-intensive commodity. Unconventional feedstocks from less-noble sources such as waste are being utilized to produce high-value chemical products. Azo dyes, a major pollutant commonly discharged by food, textile, and pharmaceutical industries, present significant health and environmental risks. We explore the potential of engineering Pseudomonas putida KT2440 to utilize azo dyes as a substrate to produce a polyketide, actinorhodin (ACT). Using the constrained minimal cut sets (cMCS) approach, we identified metabolic interventions that optimize ACT biosynthesis and compare the growth-coupling solutions attainable on an azo dye compared to glucose. Our results predicted that azo dyes could perform better as a feedstock for ACT biosynthesis than glucose as it allowed growth-coupling regimes that are unfeasible with glucose and generated an 18.28% higher maximum ACT flux. By examining the flux distributions enabled in different carbon sources, we observed that carbon fluxes from aromatic compounds like azo dyes have a unique capability to leverage gluconeogenesis to support both growth and production of secondary metabolites that produce excess NADH. Carbon sources are commonly chosen based on the host organism, availability, cost, and environmental implications. We demonstrated that careful selection of carbon sources is also crucial to ensure that the resulting flux distribution is suitable for further metabolic engineering of microbial cell factories.


Assuntos
Compostos Azo , Pseudomonas putida , Carbono , Glucose , Antraquinonas
3.
Drug Des Devel Ther ; 18: 597-612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436040

RESUMO

Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01µg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.


Assuntos
Agaricales , Antineoplásicos , Ciclopentanos , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cinética , Antibacterianos/farmacologia , Antraquinonas/farmacologia
4.
Oxid Med Cell Longev ; 2024: 6654606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425997

RESUMO

Background: Neurological disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). Objectives: In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. Methods: This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood-brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. Results: Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. Conclusion: The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.


Assuntos
Doença de Alzheimer , Antraquinonas , Ácidos Cumáricos , Doença de Parkinson , Humanos , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo
5.
J Appl Biomed ; 22(1): 33-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505968

RESUMO

PURPOSE: The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS: HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS: Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1ß, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION: These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.


Assuntos
Antraquinonas , Glucosídeos , Luteolina , Osteogênese , Aldeído Pirúvico , Humanos , Osteogênese/fisiologia , Aldeído Pirúvico/toxicidade , Células Cultivadas , Espécies Reativas de Oxigênio , Polpa Dentária , Óxido de Magnésio , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
6.
Sci Rep ; 14(1): 5343, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438532

RESUMO

This study aimed to develop a predictive nomogram model to estimate the odds of osteoporosis (OP) in elderly patients with type 2 diabetes mellitus (T2DM) and validate its prediction efficiency. The hospitalized elderly patients with T2DM from the Affiliated Hospital of North Sichuan Medical University between July 2022 and March 2023 were included in this study. We sorted them into the model group and the validation group with a ratio of 7:3 randomly. The selection operator regression (LASSO) algorithm was utilized to select the optimal matching factors, which were then included in a multifactorial forward stepwise logistic regression to determine independent influencing factors and develop a nomogram. The discrimination, accuracy, and clinical efficacy of the nomogram model were analyzed utilizing the receiver operating characteristic (ROC) curve, calibration curve, and clinical decision curve analysis (DCA). A total of 379 study participants were included in this study. Gender (OR = 8.801, 95% CI 4.695-16.499), Geriatric Nutritional Risk Index (GNRI) < 98 (OR = 4.698, 95% CI 2.416-9.135), serum calcium (Ca) (OR = 0.023, 95% CI 0.003-0.154), glycated hemoglobin (HbA1c) (OR = 1.181, 95% CI 1.055-1.322), duration of diabetes (OR = 1.076, 95% CI 1.034-1.119), and serum creatinine (SCr) (OR = 0.984, 95% CI 0.975-0.993) were identified as independent influencing factors for DOP occurrence in the elderly. The area under the curve (AUC) of the nomogram model was 0.844 (95% CI 0.797-0.89) in the modeling group and 0.878 (95% CI 0.814-0.942) in the validation group. The nomogram clinical prediction model was well generalized and had moderate predictive value (AUC > 0.7), better calibration, and better clinical benefit. The nomogram model established in this study has good discrimination and accuracy, allowing for intuitive and individualized analysis of the risk of DOP occurrence in elderly individuals. It can identify high-risk populations and facilitate the development of effective preventive measures.


Assuntos
Antraquinonas , Diabetes Mellitus Tipo 2 , Osteoporose , Pirazóis , Idoso , Humanos , Diabetes Mellitus Tipo 2/complicações , Modelos Estatísticos , Nomogramas , Prognóstico , Osteoporose/epidemiologia
7.
Sci Rep ; 14(1): 5589, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453990

RESUMO

The utilization of plants for the production of metallic nanoparticles is gaining significant attention in research. In this study, we conducted phytochemical screening of Alstonia scholaris (A. scholaris) leaves extracts using various solvents, including chloroform, ethyl acetate, n-hexane, methanol, and water. Our findings revealed higher proportions of flavonoids and alkaloids in both solvents compared to other phytochemical species. In the methanol, extract proteins, anthraquinone and reducing sugar were not detected. On the other hand, the aqueous extract demonstrated the presence of amino acids, reducing sugar, phenolic compounds, anthraquinone, and saponins. Notably, ethyl acetate and chloroform extracts displayed the highest levels of bioactive compounds among all solvents. Intrigued by these results, we proceeded to investigate the antibacterial properties of the leaf extracts against two major bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). All extracts exhibited significant zones of inhibition against both bacterial isolates, with S. aureus showing higher susceptibility compared to E. coli. Notably, the methanol extract displayed the most potent I hibitory effect against all organisms. Inspired by the bioactivity of the methanol extract, we employed it as a plant-based material for the green synthesis of copper nanoparticles (Cu-NPs). The synthesized Cu-NPs were characterized using Fourier infrared spectroscopy (FT-IR), UV-visible spectroscopic analysis, and scanning electron microscopy (SEM). The observed color changes confirmed the successful formation of Cu-NPs, while the FTIR analysis matched previously reported peaks, further verifying the synthesis. The SEM micrographs indicated the irregular shapes of the surface particles. From the result obtained by energy dispersive X-ray spectroscopic analysis, Cu has the highest relative abundance of 67.41 wt%. Confirming the purity of the Cu-NPs colloid. These findings contribute to the growing field of eco-friendly nanotechnology and emphasize the significance of plant-mediated approaches in nanomaterial synthesis and biomedical applications.


Assuntos
Acetatos , Alstonia , Anti-Infecciosos , Nanopartículas Metálicas , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Metanol/farmacologia , Clorofórmio/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Solventes/farmacologia , Açúcares/farmacologia , Antraquinonas/farmacologia , Testes de Sensibilidade Microbiana
8.
J Agric Food Chem ; 72(10): 5293-5306, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441033

RESUMO

The present study evaluated the potential of endogenous enzymes and probiotics in transforming bioactive metabolites to reduce the purgative effect and improve the functional activity of Cassiae Semen and verified and revealed the biotransformation effect of endogenous enzymes. Although probiotics, especially Lactobacillus rhamnosus, exerted the transformation effect, the endogenous enzymes proved to be more effective in transforming the components of Cassiae Semen. After biotransformation by endogenous enzymes for 12 h, the levels of six anthraquinones in Cassiae Semen increased by at least 2.98-fold, and free anthraquinones, total phenolics, and antioxidant activity also showed significant improvement, accompanied by an 82.2% reduction in combined anthraquinones responsible for the purgative effect of Cassiae Semen. Further metabolomic analysis revealed that the biotransformation effect of endogenous enzymes on the bioactive metabolites of Cassiae Semen was complex and diverse, and the biotransformation of quinones and flavonoids was particularly prominent and occurred by three primary mechanisms, hydrolyzation, methylation, and dimerization, might under the action of glycosyl hydrolases, SAM-dependent methyltransferases, and CYP450s. Accordingly, biotransformation by endogenous enzymes emerges as a mild, economical, food safety risk-free, and effective strategy to modify Cassiae Semen into an excellent functional food.


Assuntos
Cassia , Medicamentos de Ervas Chinesas , Probióticos , Catárticos , Antraquinonas , Probióticos/análise , Sementes/química , Biotransformação
9.
BMC Musculoskelet Disord ; 25(1): 206, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454404

RESUMO

BACKGROUND: Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS: The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS: Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION: Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.


Assuntos
Antraquinonas , Osteoporose , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Camundongos , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Ciclina A1/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose/induzido quimicamente , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Fatores de Crescimento Transformadores/metabolismo
10.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474655

RESUMO

In this research, we explore the synthesis of and characterize α-aminophosphonates derived from anthraquinone and benzanthrone, focusing on their fluorescence properties and potential applications in confocal laser scanning microscopy (CLSM). The synthesized compounds exhibit notable solvatochromic behavior, emitting fluorescence from green to red across various solvents. Spectroscopic analysis, including 1H-, 13C-, and 31P-NMR, FTIR, and mass spectrometry, confirms the chemical structures. The compounds' toxicity is evaluated using etiolated wheat sprouts, revealing varying degrees of impact on growth and oxidative damage. Furthermore, the study introduces these α-aminophosphonates for CLSM imaging of the parasitic flatworm Opisthorchis felineus, demonstrating their potential in visualizing biological specimens. Additionally, an X-ray crystallographic study of an anthraquinone α-aminophosphonate provides valuable structural insights.


Assuntos
Benzo(a)Antracenos , Opisthorchis , Organofosfonatos , Animais , Cristalografia por Raios X , Organofosfonatos/química , Espectroscopia de Ressonância Magnética , Microscopia Confocal/métodos , Antraquinonas
11.
Sci Rep ; 14(1): 7046, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528064

RESUMO

One factor for the lacking integration of the middle ear stapes footplate prosthesis or the missing healing of stapes footplate fractures could be the known osteogenic inactivity. In contrast, it was recently demonstrated that titanium prostheses with an applied collagen matrix and immobilised growth factors stimulate osteoblastic activation and differentiation on the stapes footplate. Regarding those findings, the aim of this study was to evaluate the potential of bone regeneration including bone remodeling in the middle ear. Ten one-year-old female merino sheep underwent a middle ear surgery without implantation of middle ear prostheses or any other component for activating bone formation. Post-operatively, four fluorochromes (tetracycline, alizarin complexion, calcein green and xylenol orange) were administered by subcutaneous injection at different time points after surgery (1 day: tetracycline, 7 days: alizarin, 14 days: calcein, 28 days: xylenol). After 12 weeks, the temporal bones including the lateral skull base were extracted and histologically analyzed. Fluorescence microscopy analysis of the entire stapes with the oval niche, but in particular stapes footplate and the Crura stapedis revealed evidence of new bone formation. Calcein was detected in all and xylenol in 60% of the animals. In contrast, tetracycline and alizarin could only be verified in two animals. The authors were able to demonstrate the osseoregenerative potential of the middle ear, in particular of the stapes footplate, using fluorescence sequence labelling.


Assuntos
Antraquinonas , Fluoresceínas , Corantes Fluorescentes , Osteogênese , Xilenos , Ovinos , Feminino , Animais , Orelha Média/fisiologia , Tetraciclinas
12.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530134

RESUMO

Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.


Assuntos
Antracenos , Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans , Itraconazol , Virulência , Antraquinonas/farmacologia , Biofilmes
13.
Chemosphere ; 352: 141456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367878

RESUMO

Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Carbono , Peróxido de Hidrogênio , Eletrodos , Oxirredução , Oxigênio , Antraquinonas
14.
Food Res Int ; 178: 113959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309912

RESUMO

Aloe-emodin (AE) is a natural compound with photodynamic properties. The aim of this study was to investigate the inhibitory effect of AE-mediated photodynamic inactivation (PDI) on Staphylococcus aureus (S. aureus). The bacteriostatic efficiency under different photodynamic conditions and photosensitizing mechanism was studied in detail. The results showed that AE-mediated PDI exhibited a typical concentration and time-dependent characteristics. In terms of bactericidal mechanism, disruption of membrane integrity and increase of cell membrane permeability was observed. Type II reaction was assumed as the main photochemical reaction involved in AE-mediated PDI as evidenced by the action of different ROS quenching agents. Furthermore, AE-mediated PDI decreased the bacterial survival in freshly squeezed apple juice and maintained its quality. The combination of blue light and AE enlarged the application of AE as an effective natural photosensitizer suitable for a food system.


Assuntos
Aloe , Antraquinonas , Emodina , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Staphylococcus aureus , Emodina/farmacologia
15.
Neurosci Lett ; 824: 137684, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355004

RESUMO

Chrysophanol (CHR) is an anthraquinone compound found in rhubarb, and it possesses neuroprotective properties. The purpose of this study was to gain a better understanding of its role in Alzheimer's disease (AD). In vivo study, D-galactose combined with intracerebral injection of ß-protein 25-35(Aß25-35) were used to establish AD model rats. In vitro study, Aß25-35 was used to induce AD model cells. Our results indicated that CHR improves learning and memory in AD model rats and provides protection against neuronal damage in both AD model rats and cells. Additionally, we observed that CHR suppressed the protein expression of p-tau, EGFR, PLCγ, IP3R, and CAM, as well as the mRNA levels of tau, EGFR, PLCγ, IP3R, and CAM. Furthermore, we have confirmed that CHR inhibited the fluorescence expression of calcium ions (Ca2+). In conclusion, the CHR may exert neuroprotective effects in AD by reducing tau phosphorylation through the Ca2+/EGFR-PLCγ pathway.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Receptores ErbB
16.
BMC Genomics ; 25(1): 212, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408895

RESUMO

Geoherb usually represents high-quality medicinal herbs with better clinical therapeutic effects, and elucidating the geoherbalism is essential for the quality improvement of traditional Chinese Medicine. However, few researches were conducted to clarify the geoherbalism based on a large scale of transcriptomics. In the present study, we compared the transcriptomes of Rheum palmatum complex derived from top-geoherb and non-geoherb areas to show the geoherbalism properties of rhubarb. A total of 412.32 Gb clean reads were obtained with unigene numbers of 100,615 after assembly. Based on the obtained transcriptome datasets, key enzyme-encoding genes involved in the anthraquinones biosynthesis were also obtained. We also found that 21 anthraquinone-related unigenes were differentially expressed between two different groups, and some of these DEGs were correlated to the content accumulation of five free anthraquinones, indicating that the gene expression profiles may promote the geoherbalism formation of rhubarb. In addition, the selective pressure analyses indicated that most paired orthologous genes between these two groups were subject to negative selection, and only a low proportion of orthologs under positive selection were detected. Functional annotation analyses indicated that these positive-selected genes related to the functions such as gene expression, substance transport, stress response and metabolism, indicating that discrepant environment also enhanced the formation of geoherbalism. Our study not only provided insights for the genetic mechanism of geoherbalism of rhubarb, but also laid more genetic cues for the future rhubarb germplasms improvement and utilization.


Assuntos
Medicamentos de Ervas Chinesas , Rheum , Transcriptoma , Rheum/genética , Antraquinonas , Perfilação da Expressão Gênica
17.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338413

RESUMO

To fully harness the potential of laccase in the efficient decolorization and detoxification of single and mixed dyes with diverse chemical structures, we carried out a systematic study on the decolorization and detoxification of single and mixed dyes using a crude laccase preparation obtained from a white-rot fungus strain, Pleurotus eryngii. The crude laccase preparation showed efficient decolorization of azo, anthraquinone, triphenylmethane, and indigo dyes, and the reaction rate constants followed the order Remazol Brilliant Blue R > Bromophenol blue > Indigo carmine > New Coccine > Reactive Blue 4 > Reactive Black 5 > Acid Orange 7 > Methyl green. This laccase preparation exhibited notable tolerance to SO42- salts such as MnSO4, MgSO4, ZnSO4, Na2SO4, K2SO4, and CdSO4 during the decolorization of various types of dyes, but was significantly inhibited by Cl- salts. Additionally, this laccase preparation demonstrated strong tolerance to some organic solvents such as glycerol, ethylene glycol, propanediol, and butanediol. The crude laccase preparation demonstrated the efficient decolorization of dye mixtures, including azo + azo, azo + anthraquinone, azo + triphenylmethane, anthraquinone + indigo, anthraquinone + triphenylmethane, and indigo + triphenylmethane dyes. The decolorization kinetics of mixed dyes provided preliminary insight into the interactions between dyes in the decolorization process of mixed dyes, and the underlying reasons and mechanisms were discussed. Importantly, the crude laccase from Pleurotus eryngii showed efficient repeated-batch decolorization of single-, two-, and four-dye mixtures. This crude laccase demonstrated high stability and reusability in repeated-batch decolorization. Furthermore, this crude laccase was efficient in the detoxification of different types of single dyes and mixed dyes containing different types of dyes, and the phytotoxicity of decolorized dyes (single and mixed dyes) was significantly reduced. The crude laccase efficiently eliminated phytotoxicity associated with single and mixed dyes. Consequently, the crude laccase from Pleurotus eryngii offers significant potential for practical applications in the efficient decolorization and management of single and mixed dye pollutants with different chemical structures.


Assuntos
Corantes , Pleurotus , Compostos de Tritil , Corantes/química , Lacase/química , Índigo Carmim , Sais , Antraquinonas , Biodegradação Ambiental , Compostos Azo
18.
ACS Macro Lett ; 13(3): 288-295, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38368530

RESUMO

We report a facile stimuli-responsive strategy to generate reactive oxygen and nitrogen species (ROS and RNS) in the biological milieu from a photocleavable water-soluble block copolymer under visible light irradiation (427 nm, 2.25 mW/cm2). An anthraquinone-based water-soluble polymeric nitric oxide (NO) donor (BCPx-NO) is synthesized, which exhibits NO release in the range of 40-65 µM within 10 h of photoirradiation with a half-life of 30-103 min. Additionally, BCPx-NO produces peroxynitrite (ONOO-) and singlet oxygen (1O2) under photoirradiation. To understand the mechanism of NO release and photolysis of the functional group under blue light, we prepared a small-molecule anthraquinone-based N-nitrosamine (NOD). The cellular investigation of the effect of spatiotemporally controlled ONOO- and 1O2 generation from the NO donor polymeric nanoparticles in a triple negative breast adenocarcinoma (MDA-MB-231) under visible light irradiation (white light, 5.83 mW/cm2; total dose 31.5 J/cm2) showed an IC50 of 0.6 mg/mL. The stimuli-responsive strategy using a photolabile water-soluble block copolymer employed to generate ROS and RNS in a biological setting widens the horizon for their potential in cancer therapy.


Assuntos
Neoplasias , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Polímeros/uso terapêutico , Espécies Reativas de Nitrogênio/uso terapêutico , Luz , Oxigênio/uso terapêutico , Óxido Nítrico/uso terapêutico , Antraquinonas/uso terapêutico , Neoplasias/tratamento farmacológico
19.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387333

RESUMO

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Assuntos
Antineoplásicos , Quadruplex G , Antineoplásicos/química , Antraquinonas/química , Triazóis/farmacologia , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Ligantes
20.
Chem Biol Interact ; 392: 110928, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423379

RESUMO

There is an increasing demand for anticancer agent in treating colorectal cancer (CRC) with frequently mutated TP53 and KRAS genes. Phytochemical compounds are suitable as chemoprevention for CRC since dietary factor is a major risk factor. Anthraquinones from Morinda citrifolia L. were previously reported with various pharmacological properties. Various in vitro experiments were conducted to investigate the effects of two anthraquinones: damnacanthal and morindone on the cell proliferation, cell cycle, apoptosis, gene expression and protein expression in two CRC cells: HCT116 and HT29. Real-time monitoring of CRC cells showed that both anthraquinones exerted significant anti-proliferative effects in a dose- and time-dependent manner. Next, cell cycle analysis revealed an increase in the percentage of CRC cells in the G1 phase under anthraquinones treatment. Fluorescence microscopy also showed an increment of apoptotic cells under anthraquinones' treatment. siRNA transfection was conducted to evaluate the mediating effect of gene knockdown on mutated TP53 and KRAS in CRC cells. Before transfection, qRT-PCR analysis showed that only morindone downregulated the gene expression of mutated TP53 and KRAS and then further downregulated them after transfection. Both damnacanthal and morindone treatments further downregulated the expression of these two genes but upregulated at the protein expression level. Furthermore, gene knockdown also sensitised CRC cells to both damnacanthal and morindone treatments, resulting in lowered IC50 values. The accumulation of cells at the G1 phase was reduced after gene knockdown but increased after damnacanthal and morindone treatments. In addition, gene knockdown has increased the number of apoptotic cells in both cell lines and further increment was observed after anthraquinone treatment. In conclusion, morindone could be a competitive therapeutic agent in CRC by exhibiting multiple mechanism of anti-cancer actions.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Antraquinonas/farmacologia , Antraquinonas/química , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mutação , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...