Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Protein Sci ; 33(4): e4948, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501485

RESUMO

Increasing antimicrobial drug resistance represents a global existential threat. Infection is a particular problem in immunocompromised individuals, such as patients undergoing cancer chemotherapy, due to the targeting of rapidly dividing cells by antineoplastic agents. We recently developed a strategy that targets bacterial nucleotide excision DNA repair (NER) to identify compounds that act as antimicrobial sensitizers specific for patients undergoing cancer chemotherapy. Building on this, we performed a virtual drug screening of a ~120,000 compound library against the key NER protein UvrA. From this, numerous target compounds were identified and of those a candidate compound, Bemcentinib (R428), showed a strong affinity toward UvrA. This NER protein possesses four ATPase sites in its dimeric state, and we found that Bemcentinib could inhibit UvrA's ATPase activity by ~90% and also impair its ability to bind DNA. As a result, Bemcentinib strongly diminishes NER's ability to repair DNA in vitro. To provide a measure of in vivo activity we discovered that the growth of Escherichia coli MG1655 was significantly inhibited when Bemcentinib was combined with the DNA damaging agent 4-NQO, which is analogous to UV. Using the clinically relevant DNA-damaging antineoplastic cisplatin in combination with Bemcentinib against the urological sepsis-causing E. coli strain EC958 caused complete growth inhibition. This study offers a novel approach for the potential development of new compounds for use as adjuvants in antineoplastic therapy.


Assuntos
Antineoplásicos , Benzocicloeptenos , Proteínas de Escherichia coli , Neoplasias , Triazóis , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Reparo do DNA , Dano ao DNA , Antineoplásicos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , DNA/metabolismo , Adenosina Trifosfatases/metabolismo
3.
Microb Ecol ; 86(1): 282-296, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35608637

RESUMO

Heavily pigmented glacier ice algae Ancylonema nordenskiöldii and Ancylonema alaskanum (Zygnematophyceae, Streptophyta) reduce the bare ice albedo of the Greenland Ice Sheet, amplifying melt from the largest cryospheric contributor to eustatic sea-level rise. Little information is available about glacier ice algae interactions with other microbial communities within the surface ice environment, including fungi, which may be important for sustaining algal bloom development. To address this substantial knowledge gap and investigate the nature of algal-fungal interactions, an ex situ co-cultivation experiment with two species of fungi, recently isolated from the surface of the Greenland Ice Sheet (here proposed new species Penicillium anthracinoglaciei Perini, Frisvad and Zalar, Mycobank (MB 835602), and Articulospora sp.), and the mixed microbial community dominated by glacier ice algae was performed. The utilization of the dark pigment purpurogallin carboxylic acid-6-O-ß-D-glucopyranoside (C18H18O12) by the two fungi was also evaluated in a separate experiment. P. anthracinoglaciei was capable of utilizing and converting the pigment to purpurogallin carboxylic acid, possibly using the sugar moiety as a nutrient source. Furthermore, after 3 weeks of incubation in the presence of P. anthracinoglaciei, a significantly slower decline in the maximum quantum efficiency (Fv/Fm, inverse proxy of algal stress) in glacier ice algae, compared to other treatments, was evident, suggesting a positive relationship between these species. Articulospora sp. did uptake the glycosylated purpurogallin, but did not seem to be involved in its conversion to aglycone derivative. At the end of the incubation experiments and, in conjunction with increased algal mortality, we detected a substantially increasing presence of the zoosporic fungi Chytridiomycota suggesting an important role for them as decomposers or parasites of glacier ice algae.


Assuntos
Camada de Gelo , Estreptófitas , Camada de Gelo/microbiologia , Groenlândia , Benzocicloeptenos , Fungos
4.
J Med Chem ; 65(22): 15066-15084, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346645

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. (E)-2-(5-Hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA (1i) with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.


Assuntos
Benzocicloeptenos , Encéfalo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Animais , Camundongos , Benzocicloeptenos/farmacologia , Sítios de Ligação , Encéfalo/metabolismo , Ligação Proteica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores
5.
Int Immunopharmacol ; 111: 109057, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964408

RESUMO

BACKGROUND: Purpurogallin (PPG) has been testified to have neuroprotective effects. This study intends to probe the neuroprotection of PPG on cerebral ischemia/reperfusion (I/R) injury and its potential mechanism. METHODS: C57/B6 mice, BV2 microglia and HT22 hippocampal neurons were used for in-vivo and in-vitro experiments. I/R injury models were constructed using middle cerebral artery occlusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. The expression of apoptosis and inflammatory proteins, and endoplasmic reticulum (ER) stress proteins were gauged by Western blotting (WB). The contents of inflammatory cytokines in OGD/R-induced BV2 microglia were testified by enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8), TUNEL assay and flow cytometry (FCM) were utilized to examine the viability and apoptosis of cells. The neurological, learning and memory functions were evaluated by the modified neurological severity score (mNSS) and water maze experiment. 2, 3, 5-triphenyltetrazole chloride (TTC) staining was utilized to calculate the volume of cerebral infarction and cerebral edema in the peri-infarct area. Apoptosis-related proteins, inflammation-related proteins and ER stress proteins were gauged by WB. ELISA was conducted to verify inflammatory cytokines. RESULTS: PPG treatment notably abated the expression of ER stress proteins and inflammatory factors in OGD/R-induced BV2 microglia and boosted HT22 neuron's viability and eased their apoptosis in comparison to the control group. In vivo, PPG treatment signally lessened cerebral infarct area, cerebral edema, and neurological deficit scores in MCAO/R mice. Additionally, PPG caused a dramatic decline in neuronal apoptosis and levels of ER stress proteins and inflammatory factors in the brain's peri-infarct region of MCAO/R mice. Mechanically, PPG blocked the TLR4/NF-κB pathway in OGD/R-induced BV2, HT22 neurons, and the MCAO/R mice. CONCLUSION: PPG attenuates brain I/R damage probably by suppressing ER stress and neuroinflammation via inactivation of the TLR4/NF-κB pathway, suggesting that PPG may be a candidate drug for treating cerebral I/R injury.


Assuntos
Edema Encefálico , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Apoptose , Benzocicloeptenos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocinas/uso terapêutico , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Reperfusão , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055167

RESUMO

The receptor tyrosine kinase AXL (RTK-AXL) is implicated in therapy resistance and tumor progression in glioblastoma multiforme (GBM). Here, we investigated therapy-induced receptor modifications and how endogenous RTK-AXL expression and RTK-AXL inhibition contribute to therapy resistance in GBM. GBM cell lines U118MG and SF126 were exposed to temozolomide (TMZ) and radiation (RTX). Receptor modifications in response to therapy were investigated on protein and mRNA levels. TMZ-resistant and RTK-AXL overexpressing cell lines were exposed to increasing doses of TMZ and RTX, with and without RTK-AXL tyrosine kinase inhibitor (TKI). Colorimetric microtiter (MTT) assay and colony formation assay (CFA) were used to assess cell viability. Results showed that the RTK-AXL shedding product, C-terminal AXL (CT-AXL), rises in response to repeated TMZ doses and under hypoxia, acts as a surrogate marker for radio-resistance. Endogenous RTX-AXL overexpression leads to therapy resistance, whereas combination therapy of TZM and RTX with TKI R428 significantly increases therapeutic effects. This data proves the role of RTK-AXL in acquired and intrinsic therapy resistance. By demonstrating that therapy resistance may be overcome by combining AXL TKI with standard treatments, we have provided a rationale for future study designs investigating AXL TKIs in GBM.


Assuntos
Benzocicloeptenos/farmacologia , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Temozolomida/farmacologia , Triazóis/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Receptor Tirosina Quinase Axl
7.
Appl Microbiol Biotechnol ; 106(2): 593-603, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971410

RESUMO

Purpurogallin is a natural benzotropolone extracted from Quercus spp, which has antioxidant, anticancer, and anti-inflammatory properties. Purpurogallin is typically synthesized from pyrogallol using enzymatic or metal catalysts, neither economically feasible nor environmentally friendly. 3-Methoxycatechol (3-MC) is a lignin-derived renewable chemical with the potential to be a substrate for the biosynthesis of purpurogallin. In this study, we designed a pathway to produce purpurogallin from 3-MC. We first characterized four bacterial laccases and identified the laccase CueO from Escherichia coli, which converts pyrogallol to purpurogallin. Then, we used CueO and the P450 GcoAB reported to convert 3-MC to pyrogallol, to construct a method for producing purpurogallin directly from 3-MC. A total of 0.21 ± 0.05 mM purpurogallin was produced from 5 mM 3-MC by whole-cell conversion. This study provides a new method to enable efficient and sustainable synthesis of purpurogallin and offers new insights into lignin valorization. KEY POINTS: • Screening four bacterial laccases for converting pyrogallol to purpurogallin. • Laccase CueO from Escherichia coli presenting the activity for purpurogallin yield. • A novel pathway for converting lignin-derived 3-methoxycatechol to purpurogallin.


Assuntos
Produtos Biológicos , Lacase , Benzocicloeptenos , Catecóis , Lignina
8.
Mol Cancer Res ; 20(3): 446-455, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782372

RESUMO

AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting.In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS: Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.


Assuntos
Compostos de Anilina/uso terapêutico , Benzocicloeptenos/uso terapêutico , Lisossomos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/uso terapêutico , Compostos de Anilina/farmacologia , Autofagia , Benzocicloeptenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Transdução de Sinais , Transfecção , Triazóis/farmacologia , Receptor Tirosina Quinase Axl
9.
Physiol Rep ; 9(23): e15140, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34877810

RESUMO

AXL tyrosine kinase activation enhances cancer cell survival, migration, invasiveness, and promotes drug resistance. AXL overexpression is typically detected in a high percentage of renal cell carcinomas (RCCs) and is strongly associated with poor prognosis. Therefore, AXL inhibition represents an attractive treatment option in these cancers. In this preclinical study, we investigated the antitumor role of a highly selective small molecule AXL inhibitor bemcentinib (BGB324, BerGenBio), and a newly developed humanized anti-AXL monoclonal function blocking antibody tilvestamab, (BGB149, BerGenBio), in vitro and an orthotopic RCC mice model. The 786-0-Luc human RCC cells showed high AXL expression. Both bemcentinib and tilvestamab significantly inhibited AXL activation induced by Gas6 stimulation in vitro. Furthermore, tilvestamab inhibited the downstream AKT phosphorylation in these cells. The 786-0-Luc human RCC cells generated tumors with high Ki67 and vimentin expression upon orthotopic implantation in athymic BALB/c nude mice. Most importantly, both bemcentinib and tilvestamab inhibited the progression of tumors induced by the orthotopically implanted 786-0 RCC cells. Remarkably, their in vivo antitumor effectiveness was not significantly enhanced by concomitant administration of a multi-target tyrosine kinase inhibitor. Bemcentinib and tilvestamab qualify as compounds of potentially high clinical interest in AXL overexpressing RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Benzocicloeptenos/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia , Receptor Tirosina Quinase Axl
10.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948046

RESUMO

AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Regulação para Cima , Animais , Benzocicloeptenos , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Fenótipo , Triazóis , Receptor Tirosina Quinase Axl
11.
J Am Chem Soc ; 143(48): 20084-20089, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813320

RESUMO

We report the convergent total synthesis of (±)-hamigeran M, enabled by five C-H functionalization reactions and proceeding in 11 steps in 3.9% overall yield. The C-H functionalizations include a hydroxy-directed C-H borylation, one C-H metalation-1,2-addition, one C-H metalation-Negishi coupling, a late-stage oxazole-directed C-H borylation-oxidation, and one electrophilic bromination. Two of these five C-H functionalizations forged strategic C-C bonds in the seven-membered ring of hamigeran M. The oxazole-directed C-H borylation-oxidation was unprecedented and ensured a late-stage hydroxylation. Other key steps include a tandem Suzuki reaction-lactonization to join the cyclopentane building block with the aromatic moiety and a hydrogen-atom transfer reaction to reduce a challenging tetrasubstituted double bond.


Assuntos
Diterpenos/síntese química , Oxazóis/síntese química , Benzocicloeptenos/síntese química , Ciclização , Metilação , Oxirredução , Estereoisomerismo
12.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684780

RESUMO

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Triazóis/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Benzocicloeptenos/química , Benzocicloeptenos/metabolismo , Sítios de Ligação , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Bases de Dados de Compostos Químicos , Meia-Vida , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/uso terapêutico , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , SARS-CoV-2/isolamento & purificação , Triazóis/metabolismo , Triazóis/uso terapêutico , Tratamento Farmacológico da COVID-19
13.
J Cell Mol Med ; 25(15): 7407-7417, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34219376

RESUMO

Renal fibrosis is a progressive histological manifestation leading to chronic kidney disease (CKD) and associated with mitochondrial dysfunction. In previous work, we showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis development. In this study, to investigate its effects on mitochondrial dysfunction in renal fibrosis, we analysed genome-wide transcriptomics data from a unilateral ureter obstruction (UUO) murine model in the presence or absence of bemcentinib (n = 6 per group) and SHAM-operated (n = 4) mice. Kidney ligation resulted in dysregulation of mitochondria-related pathways, with a significant reduction in the expression of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid cycle (TCA), response to reactive oxygen species and amino acid metabolism-related genes. Bemcentinib treatment increased the expression of these genes. In contrast, AKT/PI3K signalling pathway genes were up-regulated upon UUO, but bemcentinib largely inhibited their expression. At the functional level, ligation reduced mitochondrial biomass, which was increased upon bemcentinib treatment. Serum metabolomics analysis also showed a normalizing amino acid profile in UUO, compared with SHAM-operated mice following bemcentinib treatment. Our data suggest that mitochondria and mitochondria-related pathways are dramatically affected by UUO surgery and treatment with Axl-inhibitor bemcentinib partially reverses these effects.


Assuntos
Benzocicloeptenos/uso terapêutico , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Triazóis/uso terapêutico , Animais , Benzocicloeptenos/farmacologia , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Insuficiência Renal Crônica/etiologia , Triazóis/farmacologia , Obstrução Ureteral/complicações , Receptor Tirosina Quinase Axl
14.
Neurochem Res ; 46(9): 2276-2284, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081245

RESUMO

Diabetic neuropathy is one of the common complications of type 2 diabetes mellitus (T2DM) with severe outcomes. The mechanisms of physiopathology of diabetic neuropathy are not well elucidated. Inflammation and inflammatory macrophages are recognized to be crucial in diabetic neuropathy. Toll-like receptor 2 (TLR2) is an important factor in innate immune response which could promote the polarization of inflammatory macrophages. In present study, we evaluated the effects of a TLR2 antagonist CU-CPT22 on diabetic neuropathy. We induced T2DM in mice by feeding with high fat diet (HFD). We measured the body weight, blood glucose level, paw withdrawal threshold, inflammatory cytokine production, and macrophages infiltration in T2DM mice. We evaluated the effects of CU-CPT22 on pro-inflammatory cytokines production, macrophage marker expression in lipopolysaccharides (LPS)-treated BMDMs. We administrated CU-CPT22 in T2DM mice and measured the pro-inflammatory cytokines levels, expression of macrophages markers in sciatic nerve (SCN), and paw withdrawal threshold. T2DM mice had significantly increased body weight and blood glucose, and had significantly decreased paw withdrawal threshold. Obvious increased pro-inflammatory cytokine level and infiltration of M1 phenotype macrophages was observed in SCN from T2DM mice. CU-CPT22 prevented pro-inflammatory cytokine production in LPS-treated BMDMs and re-polarized them to M2 phenotype. CU-CPT22 suppressed the inflammation and induced M2 macrophages in SCN from T2DM mice, and ameliorated the paw withdrawal threshold in T2DM mice. CU-CPT22 ameliorates neuropathic pain in T2DM by promoting M2 phenotype macrophages.


Assuntos
Benzocicloeptenos/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Dieta Hiperlipídica , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/etiologia , Nervo Isquiático/metabolismo
15.
J Neurochem ; 158(2): 328-341, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871050

RESUMO

Post-operative cognitive dysfunction (POCD) is common and is associated with poor clinical outcome. Toll-like receptor (TLR) 3 and 4 have been implied in the development of POCD. The role of TLR2, a major brain TLR, in POCD is not clear. High mobility group box-1 (HMGB1) is a delayed inflammatory mediator and may play a role in POCD. The interaction between HMGB1 and TLRs in the perioperative period is not known. We hypothesize that TLR2 contributes to the development of POCD and that HMGB1 regulates TLR2 for this effect. To test these hypotheses, 6- to 8-week old male mice were subjected to right carotid artery exposure under isoflurane anesthesia. CU-CPT22, a TLR1/TLR2 inhibitor, at 3 mg/kg was injected intraperitoneally 30 min before surgery and 1 day after surgery. Glycyrrhizin, a HMGB1 antagonist, at 200 mg/kg was injected intraperitoneally 30 min before surgery. Mice were subjected to Barnes maze and fear conditioning tests from 1 week after surgery. Hippocampus and cerebral cortex were harvested 6 hr or 12 hr after the surgery for Western blotting, ELISA, immunofluorescent staining, and chromatin immunoprecipitation. There were neuroinflammation and impairment of learning and memory in mice with surgery. Surgery increased the expression of TLR2 and TLR4 but not TLR9 in the brain of CD-1 male mice. CU-CPT22 attenuated surgery-induced neuroinflammation and cognitive impairment. Similarly, surgery induced neuroinflammation and cognitive dysfunction in C57BL/6J mice but not in TLR2-/- mice. TLR2 staining appeared in neurons and microglia. Surgery increased HMGB1 in the cell nuclei of the cerebral cortex and hippocampus. Glycyrrhizin ameliorated this increase and the increase of TLR2 in the hippocampus after surgery. Surgery also increased the amount of tlr2 DNA precipitated by an anti-HMGB1 antibody in the hippocampus. Our results suggest that TLR2 contributes to surgery-induced neuroinflammation and cognitive impairment. HMGB1 up-regulates TLR2 expression in the hippocampus after surgery to facilitate this contribution. Thus, TLR2 and HMGB1 are potential targets for reducing POCD.


Assuntos
Benzocicloeptenos/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Encefalite/genética , Encefalite/psicologia , Proteína HMGB1/antagonistas & inibidores , Complicações Pós-Operatórias/prevenção & controle , Receptor 2 Toll-Like/antagonistas & inibidores , Anestesia , Anestésicos Inalatórios , Animais , Comportamento Animal , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Ácido Glicirrízico/farmacologia , Proteína HMGB1/genética , Isoflurano , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/psicologia , Receptor 2 Toll-Like/genética
16.
Nat Prod Rep ; 38(10): 1821-1851, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33650613

RESUMO

Covering: 2010 to 2020Benzocycloheptane is a fundamental and unique structural motif found in pharmaceuticals and natural products. The total syntheses of natural products bearing the benzocycloheptane subunit are challenging and there are only a few efficient approaches to access benzocycloheptane. Thus, new methods and innovative strategies for preparing such natural products need to be developed. In this review, recent progress in the total syntheses of natural products bearing the benzocycloheptane motif is presented, and key transformations for the construction of benzocycloheptane are highlighted. This review provides a useful guide for those engaged in the syntheses of natural products containing the benzocycloheptane motif.


Assuntos
Benzocicloeptenos/síntese química , Produtos Biológicos/síntese química , Reação de Cicloadição , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Estilbenos/síntese química
17.
Med Oncol ; 38(3): 24, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570712

RESUMO

A subset of colorectal cancer (CRC) with a mesenchymal phenotype (CMS4) displays an aggressive disease, with an increased risk of recurrence after surgery, reduced survival, and resistance to standard treatments. It has been shown that the AXL and TGFß signaling pathways are involved in epithelial-to-mesenchymal transition, migration, metastatic spread, and unresponsiveness to targeted therapies. However, the prognostic role of the combination of these biomarkers and the anti-tumor effect of AXL and TGFß inhibition in CRC still has to be assessed. To evaluate the role of AXL and TGFß as negative biomarker in CRC, we conducted an in-depth in silico analysis of CRC samples derived from the Gene Expression Omnibus. We found that AXL and TGFß receptors are upregulated in CMS4 tumors and are correlated with an increased risk of recurrence after surgery in stage II/III CRC and a reduced overall survival. Moreover, we showed that AXL receptor is differently expressed in human CRC cell lines. Dual treatment with the TGFß galunisertib and the AXL inhibitor, bemcentinib, significantly reduced colony formation and migration capabilities of tumor cells and displayed a strong anti-tumor activity in 3D spheroid cultures derived from patients with advanced CRC. Our work shows that AXL and TGFß receptors identify a subgroup of CRC with a mesenchymal phenotype and correlate with poor prognosis. Dual inhibition of AXL and TGFß could represent a novel therapeutic strategy for patients with this aggressive disease.


Assuntos
Adenocarcinoma/tratamento farmacológico , Benzocicloeptenos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II/antagonistas & inibidores , Triazóis/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Esferoides Celulares , Receptor Tirosina Quinase Axl
18.
Cancer Res ; 81(5): 1398-1412, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402388

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a dynamic epigenetic reprogramming event that occurs in a subset of tumor cells and is an initiating step toward invasion and distant metastasis. The process is reversible and gives plasticity to cancer cells to survive under variable conditions, with the acquisition of cancer stem cell-like characteristics and features such as drug resistance. Therefore, understanding survival dependencies of cells along the phenotypic spectrum of EMT will provide better strategies to target the spatial and temporal heterogeneity of tumors and prevent their ability to bypass single-inhibitor treatment strategies. To address this, we integrated the data from a selective drug screen in epithelial and mesenchymal KRAS/p53 (KP)-mutant lung tumor cells with separate datasets including reverse-phase protein array and an in vivo shRNA dropout screen. These orthogonal approaches identified AXL and MEK as potential mesenchymal and epithelial cell survival dependencies, respectively. To capture the dynamicity of EMT, incorporation of a dual fluorescence EMT sensor system into murine KP lung cancer models enabled real-time analysis of the epigenetic state of tumor cells and assessment of the efficacy of single agent or combination treatment with AXL and MEK inhibitors. Both two- and three-dimensional culture systems and in vivo models revealed that this combination treatment strategy of MEK plus AXL inhibition synergistically killed lung cancer cells by specifically targeting each phenotypic subpopulation. In conclusion, these results indicate that cotargeting the specific vulnerabilities of EMT subpopulations can prevent EMT-mediated drug resistance, effectively controlling tumor cell growth and metastasis. SIGNIFICANCE: This study shows that a novel combination of MEK and AXL inhibitors effectively bypasses EMT-mediated drug resistance in KRAS/p53-mutant non-small cell lung cancer by targeting EMT subpopulations, thereby preventing tumor cell survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Células A549 , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Benzocicloeptenos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
19.
Inflamm Bowel Dis ; 27(3): 303-316, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676663

RESUMO

BACKGROUND: Fibrosis is the final common pathway to intestinal failure in Crohn's disease, but no medical therapies exist to treat intestinal fibrosis. Activated myofibroblasts are key effector cells of fibrosis in multiple organ systems, including the intestine. AXL is a receptor tyrosine kinase that has been implicated in fibrogenic pathways involving myofibroblast activation. We aimed to investigate the AXL pathway as a potential target for the treatment of intestinal fibrosis. METHODS: To establish proof of concept, we first analyzed AXL gene expression in 2 in vivo models of intestinal fibrosis and 3 in vitro models of intestinal fibrosis. We then tested whether pharmacological inhibition of AXL signaling could reduce fibrogenesis in 3 in vitro models of intestinal fibrosis. In vitro testing included 2 distinct cell culture models of intestinal fibrosis (matrix stiffness and TGF-ß1 treatment) and a human intestinal organoid model using TGF-ß1 cytokine stimulation. RESULTS: Our findings suggest that the AXL pathway is induced in models of intestinal fibrosis. We demonstrate that inhibition of AXL signaling with the small molecule inhibitor BGB324 abrogates both matrix-stiffness and transforming growth factor beta (TGF-ß1)-induced fibrogenesis in human colonic myofibroblasts. AXL inhibition with BGB324 sensitizes myofibroblasts to apoptosis. Finally, AXL inhibition with BGB324 blocks TGF-ß1-induced fibrogenic gene and protein expression in human intestinal organoids. CONCLUSIONS: The AXL pathway is active in multiple models of intestinal fibrosis. In vitro experiments suggest that inhibiting AXL signaling could represent a novel approach to antifibrotic therapy for intestinal fibrosis such as in Crohn's disease.


Assuntos
Benzocicloeptenos/farmacologia , Doença de Crohn , Insuficiência Intestinal , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Fibrose , Humanos , Intestinos/patologia , Organoides , Fator de Crescimento Transformador beta1/efeitos adversos , Receptor Tirosina Quinase Axl
20.
J Hepatol ; 74(4): 893-906, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197513

RESUMO

BACKGROUND & AIMS: The tumour microenvironment shapes tumour growth through cellular communications that include both direct interactions and secreted factors. The aim of this study was to characterize the impact of the secreted glycoprotein ADAMTSL5, whose role in cancer has not been previously investigated, on hepatocellular carcinoma (HCC). METHODS: ADAMTSL5 methylation status was evaluated through bisulfite sequencing, and publicly available data analysis. ADAMTSL5 RNA and protein expression were assessed in mouse models and HCC patient samples and compared to data from published datasets. Functional studies, including association of ADAMTSL5 depletion with responsiveness to clinically relevant drugs, were performed in cellular and in vivo models. Molecular alterations associated with ADAMTSL5 targeting were determined using proteomics, biochemistry, and reverse-transcription quantitative PCR. RESULTS: Methylome analysis revealed hypermethylated gene body CpG islands at the ADAMTSL5 locus in both mouse and human HCC, correlating with higher ADAMTSL5 expression. ADAMTSL5 targeting interfered with tumorigenic properties of HCC cells in vitro and in vivo, whereas ADAMTSL5 overexpression conferred tumorigenicity to pre-tumoural hepatocytes sensitized to transformation by a modest level of MET receptor expression. Mechanistically, ADAMTSL5 abrogation led to a reduction of several oncogenic inputs relevant to HCC, including reduced expression and/or phosphorylation levels of receptor tyrosine kinases MET, EGFR, PDGFRß, IGF1Rß, or FGFR4. This phenotype was associated with significantly increased sensitivity of HCC cells to clinically relevant drugs, namely sorafenib, lenvatinib, and regorafenib. Moreover, ADAMTSL5 depletion drastically increased expression of AXL, accompanied by a sensitization to bemcentinib. CONCLUSIONS: Our results point to a role for ADAMTSL5 in maintaining the function of key oncogenic signalling pathways, suggesting that it may act as a master regulator of tumorigenicity and drug resistance in HCC. LAY SUMMARY: The environment of cancer cells has profound effects on establishment, progression, and response of a tumour to treatment. Herein, we show that ADAMTSL5, a protein secreted by liver cancer cells and overlooked in cancer so far, is increased in this tumour type, is necessary for tumour formation and supports drug resistance. Adamtsl5 removal conferred sensitivity of liver cancer cells to drugs used in current treatment. This suggests ADAMTSL5 as a potential marker in liver cancer as well as a possible drug target.


Assuntos
Proteínas ADAMTS , Proteína ADAMTS5 , Carcinogênese , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Hepáticas , Transdução de Sinais , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Benzocicloeptenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Sorafenibe/farmacologia , Ativação Transcricional , Triazóis/farmacologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...