Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.671
Filtrar
1.
Nat Prod Res ; 38(9): 1591-1598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573587

RESUMO

Three new pterosins, named as semipterosin A (1), B (2) and C (3), together with 11 known pterosins (4-14), were isolated from the aerial parts of Pteris semipinnata. Their structures were elucidated by HRESI-MS, NMR spectral data, CD and literature comparisons. Three new pterosins were assessed for their anti-inflammatory activity. Compounds 1-3 inhibited the NF-kB induction by 40.7%, 61.9% and 34.0%, respectively. This is the first report of the isolation of compounds 6-14 from this plant.


Assuntos
Pteris , Sesquiterpenos , Indanos , NF-kappa B
2.
Arch Esp Urol ; 77(2): 119-128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38583003

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignancies of the urinary system and ferroptosis is considered as a promising therapeutic approach for treating RCC. Ginsenoside Rh4 (Rh4) was proved to have anticancer properties and play roles in ferroptosis. This study aimed to investigate the potential of ginsenoside Rh4 (Rh4) in enhancing the sensitivity of renal cell carcinoma (RCC) cells to ferroptosis and to elucidate the underlying mechanisms. METHODS: RCC cell lines of 786-O and ACHN were treated with RAS-selective lethal 3 (RSL3) and/or Rh4. Cell-viability assays were used to determine how Rh4 affected the sensitivity of RCC cells to RSL3-induced ferroptosis. Quantitative real-time polymerase chain reaction was conducted to examine the levels of ferroptosis-related genes. Additionally, the knockdown of nuclear factor E2-related factor 2 (NRF2) was performed to investigate the role of NRF2 in mediating the effects of Rh4. RESULTS: RSL3 suppressed the progression of RCC cells by inducing ferroptosis. Furthermore, Rh4 led to more RCC sensitivity to ferroptosis induced by RSL3. Rh4 downregulated the ferroptosis-related gene expression including superoxide dismutase 1 (p < 0.01), glutathione peroxidase 4 (p < 0.01), and catalase (p < 0.01), which was attenuated by NRF2 knockdown. This finding suggested that Rh4 exerted its sensitising effect on ferroptosis through the NRF2 pathway. CONCLUSIONS: Rh4 made RCC cells more sensitive to ferroptosis by inhibiting the NRF2 signaling and suppressing the expression of antioxidant enzymes. Therefore, combining Rh4 with ferroptosis-inducing reagents to treat RCC had potential therapeutic application.


Assuntos
Carcinoma de Células Renais , Ferroptose , Ginsenosídeos , Indanos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Fator 2 Relacionado a NF-E2 , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124168, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513420

RESUMO

A typical drug used to treat Parkinson's disease is called rasagiline. It belongs to an assortment of drugs known as monoamine oxidase inhibitors, which function by raising dopamine levels in the brain. This work created a unique spectrofluorimetric method for the analytical assay of rasagiline for the first time. The approach utilized the synergistic utility of the fluorogenic properties of benzofurazan and salting-out assisted liquid-liquid extraction. By combining these techniques an ultrasensitive, and highly selective methodology for the assay of rasagiline was established. Measurements were made of the resultant yellow fluorescent product at 533 nm by applying an excitation wavelength of 475.3 nm. The calibration graph was examined to assess its linearity across a range of 30-600 ng/ml. Through estimation, the limit of detection was discovered to be 8.9 ng/ml, while the quantitation limit was estimated to be 27 ng/ml. All relevant parameters influencing the fulfillment of the developed method were thoroughly examined and tuned. Following the directives set by the (ICH) the suggested approach was confirmed and demonstrated its capability for the accurate determination of rasagiline in tablets, as well as for testing content uniformity. The incorporation of salting-out assisted liquid-liquid extraction technology enables effective tracking of rasagiline in plasma samples, providing a novel and innovative approach for its analysis in biological matrices.


Assuntos
4-Cloro-7-nitrobenzofurazano , Inibidores da Monoaminoxidase , Cloreto de Sódio , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Indanos , Extração Líquido-Líquido/métodos
4.
Neurochem Res ; 49(5): 1387-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502411

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease, whereby disturbances within the antioxidant defence system, increased aggregation of proteins, and activation of neuronal apoptosis all have a crucial role in the pathogenesis. In this context, exploring the neuroprotective capabilities of compounds that sustain the effectiveness of cellular defence systems in neurodegenerative disorders is worthwhile. During this study, we assessed how 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ), which has antioxidant properties, affects the functioning of the antioxidant system, the activity of NADPH-generating enzymes and chaperones, and the level of apoptotic processes in rats with rotenone-induced PD. Six groups of animals were formed for our experiment, each with 12 animals. These were: a control group, animals with rotenone-induced PD, rats with PD given HTHQ at a dose of 50 mg/kg, rats with PD given HTHQ at a dose of 25 mg/kg, animals with pathology who were administered a comparison drug rasagiline, and control animals who were administered HTHQ at a dose of 50 mg/kg. The study results indicate that administering HTHQ led to a significant decrease in oxidative stress in PD rats. The enhanced redox status in animal tissues was linked with the recovery of antioxidant enzyme activities and NADPH-generating enzyme function, as well as an upsurge in the mRNA expression levels of antioxidant genes and factors Nrf2 and Foxo1. Administering HTHQ to rats with PD normalized the chaperone-like activity and mRNA levels of heat shock protein 70. Rats treated with the compound displayed lower apoptosis intensity when compared to animals with pathology. Therefore, owing to its antioxidant properties, HTHQ demonstrated a beneficial impact on the antioxidant system, resulting in decreased requirements for chaperone activation and the inhibition of apoptosis processes triggered in PD. HTHQ at a dose of 50 mg/kg had a greater impact on the majority of the examined variables compared to rasagiline.


Assuntos
Indanos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Quinolinas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Rotenona/farmacologia , NADP/metabolismo , Apoptose , Estresse Oxidativo , RNA Mensageiro/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
Front Immunol ; 15: 1230735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533505

RESUMO

Background: Ozanimod (RPC1063) is an immunomodulator that has been recently approved by the FDA (2020) for the treatment of relapsing-remitting multiple sclerosis (RRMS). It is a selective agonist of the sphingosine-1-phophate receptors 1 and 5, expressed on naïve and central memory T and B cells, as well as natural killer (NK) cells, and is involved in lymphocyte trafficking. Oral administration of ozanimod was reported to result in rapid and reversible reduction in circulating lymphocytes in multiple sclerosis (MS) patients, however, only minimal effect on NK cells was observed. In this study, we sought to investigate the effect of ozanimod on NK cells and assess whether they play any role in ozanimod-induced remission in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Methods: Active EAE induction was done in C57BL/6 female mice, followed by daily oral treatment with ozanimod (0.6mg/kg) starting at disease onset (score 1). Flow cytometry of blood and CNS was performed 24 hours after the last oral dose of ozanimod treatment in diseased mice. Histological analysis of lumbar spinal cord was performed for evaluating the level of inflammation and demyelination. Depletion of peripheral NK cells was done using anti-NK1.1 mouse antibody (mAb) at day 5 post-EAE induction. Results: Ozanimod was effective in reducing the clinical severity of EAE and reducing the percentage of autoreactive CD4+ and CD8+ T cells along with significant inhibition of lymphocyte infiltration into the spinal cord, accompanied by reversed demyelination. Furthermore, ozanimod treatment resulted in a significant increase in the frequency of total NK cells in the blood and CNS along with upregulation of the activating receptor NKG2D on CD27low/- NK cell subset in the CNS. The effectiveness of ozanimod treatment in inhibiting the progression of the disease was reduced when NK cells were depleted using anti-NK1.1 mAb. Conclusion: The current study demonstrated that ozanimod treatment significantly improved clinical symptoms in EAE mice. Ozanimod and anti-NK1.1 mAb appear to function in opposition to one another. Collectively, our data suggest that ozanimod-mediated remission is associated with an increased percentage of total NK cells and CD27low/- NK cells expressing the activating receptor, NKG2D in the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Indanos , Esclerose Múltipla , Oxidiazóis , Humanos , Feminino , Camundongos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Células Matadoras Naturais
6.
Comput Biol Med ; 172: 108195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460310

RESUMO

Parkinson's disease (PD) is a complex neurological disease associated with the degeneration of dopaminergic neurons. Oxidative stress is a key player in instigating apoptosis in dopaminergic neurons. To improve the survival of neurons many dietary phytochemicals have gathered significant attention recently. Thus, the present study implements a comprehensive network pharmacology approach to unravel the mechanisms of action of dietary phytochemicals that benefit disease management. A literature search was performed to identify ligands (i.e., comprising dietary phytochemicals and Food and Drug Administration pre-approved PD drugs) in the PubMed database. Targets associated with selected ligands were extracted from the search tool for interactions of chemicals (STITCH) database. Then, the construction of a gene-gene interaction (GGI) network, analysis of hub-gene, functional and pathway enrichment, associated transcription factors, miRNAs, ligand-target interaction network, docking were performed using various bioinformatics tools together with molecular dynamics (MD) simulations. The database search resulted in 69 ligands and 144 unique targets. GGI and subsequent topological measures indicate histone acetyltransferase p300 (EP300), mitogen-activated protein kinase 1 (MAPK1) or extracellular signal-regulated kinase (ERK)2, and CREB-binding protein (CREBBP) as hub genes. Neurodegeneration, MAPK signaling, apoptosis, and zinc binding are key pathways and gene ontology terms. hsa-miR-5692a and SCNA gene-associated transcription factors interact with all the 3 hub genes. Ligand-target interaction (LTI) network analysis suggest rasagiline and baicalein as candidate ligands targeting MAPK1. Rasagiline and baicalein form stable complexes with the Y205, K330, and V173 residues of MAPK1. Computational molecular insights suggest that baicalein and rasagiline are promising preclinical candidates for PD management.


Assuntos
Indanos , Farmacologia em Rede , Doença de Parkinson , Humanos , Ligantes , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Compostos Fitoquímicos/farmacologia , Simulação de Acoplamento Molecular
7.
Eur J Pharm Biopharm ; 197: 114223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367760

RESUMO

The lung is an attractive target organ for inhalation of RNA therapeutics, such as small interfering RNA (siRNA). However, clinical translation of siRNA drugs for application in the lung is hampered by many extra- and intracellular barriers. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel (nanogel) core coated with Curosurf®, a clinically used pulmonary surfactant. The surfactant shell was shown to markedly improve particle stability and promote intracellular siRNA delivery, both in vitro and in vivo. However, the full potential of siRNA nanocarriers is typically not reached as they are rapidly trafficked towards lysosomes for degradation and only a fraction of the internalized siRNA cargo is able to escape into the cytosol. We recently reported on the repurposing of widely applied cationic amphiphilic drugs (CADs) as siRNA delivery enhancers. Due to their physicochemical properties, CADs passively accumulate in the (endo)lysosomal compartment causing a transient permeabilization of the lysosomal membrane, which facilitates cytosolic drug delivery. In this work, we assessed a selection of cationic amphiphilic ß2-agonists (i.e., salbutamol, formoterol, salmeterol and indacaterol) for their ability to enhance siRNA delivery in a lung epithelial and macrophage cell line. These drugs are widely used in the clinic for their bronchodilating effect in obstructive lung disease. As opposed to the least hydrophobic drugs salbutamol and formoterol, the more hydrophobic long-acting ß2-agonist (LABA) salmeterol promoted siRNA delivery in both cell types for both uncoated and surfactant-coated nanogels, whereas indacaterol showed this effect solely in lung epithelial cells. Our results demonstrate the potential of both salmeterol and indacaterol to be repurposed as adjuvants for nanocarrier-mediated siRNA delivery to the lung, which could provide opportunities for drug combination therapy.


Assuntos
Indanos , Polietilenoglicóis , Polietilenoimina , Surfactantes Pulmonares , Quinolonas , Surfactantes Pulmonares/química , Nanogéis , RNA Interferente Pequeno , Terapia Respiratória , Xinafoato de Salmeterol , Albuterol , Fumarato de Formoterol , Adjuvantes Farmacêuticos , Administração por Inalação , Adjuvantes Imunológicos , Tensoativos
8.
Cell Death Dis ; 15(2): 168, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395990

RESUMO

Glioblastoma (GBM) cells require large amounts of iron for tumor growth and progression, which makes these cells vulnerable to destruction via ferroptosis induction. Mitochondria are critical for iron metabolism and ferroptosis. Sirtuin-3 (SIRT3) is a deacetylase found in mitochondria that regulates mitochondrial quality and function. This study aimed to characterize SIRT3 expression and activity in GBM and investigate the potential therapeutic effects of targeting SIRT3 while also inducing ferroptosis in these cells. We first found that SIRT3 expression was higher in GBM tissues than in normal brain tissues and that SIRT3 protein expression was upregulated during RAS-selective lethal 3 (RSL3)-induced GBM cell ferroptosis. We then observed that inhibition of SIRT3 expression and activity in GBM cells sensitized GBM cells to RSL3-induced ferroptosis both in vitro and in vivo. Mechanistically, SIRT3 inhibition led to ferrous iron and ROS accumulation in the mitochondria, which triggered mitophagy. RNA-Sequencing analysis revealed that upon SIRT3 knockdown in GBM cells, the mitophagy pathway was upregulated and SLC7A11, a critical antagonist of ferroptosis via cellular import of cystine for glutathione (GSH) synthesis, was downregulated. Forced expression of SLC7A11 in GBM cells with SIRT3 knockdown restored cellular cystine uptake and consequently the cellular GSH level, thereby partially rescuing cell viability upon RSL3 treatment. Furthermore, in GBM cells, SIRT3 regulated SLC7A11 transcription through ATF4. Overall, our study results elucidated novel mechanisms underlying the ability of SIRT3 to protect GBM from ferroptosis and provided insight into a potential combinatorial approach of targeting SIRT3 and inducing ferroptosis for GBM treatment.


Assuntos
Ferroptose , Glioblastoma , Sirtuína 3 , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Cistina , Ferroptose/genética , Glioblastoma/genética , Glutationa , Indanos , Ferro , Mitofagia , Sirtuína 3/genética
9.
Sci Total Environ ; 921: 170658, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340825

RESUMO

Plants produce a diverse array of toxic compounds which may be released by precipitation, explaining their wide occurrence in surrounding soil and water. This study presents the first mechanistic model for describing the generation and environmental fate of a natural toxin, i.e. ptaquiloside (PTA), a carcinogenic phytotoxin produced by bracken fern (Pteridium aquilinum L. Kuhn). The newly adapted DAISY model was calibrated based on two-year monitoring performed in the period 2018-2019 in a Danish bracken population located in a forest glade. Several functions related to the fate of PTA were calibrated, covering processes from toxin generation in the canopy, wash off by precipitation and degradation in the soil. Model results show a good description of observed bracken biomass and PTA contents, supporting the assumption that toxin production can be explained by the production of new biomass. Model results show that only 4.4 % of the PTA produced in bracken is washed off by precipitation, from both canopy and litter. Model simulations showed that PTA degrades rapidly once in the soil, especially during summer due to the high soil temperatures. Leaching takes place in form of pulses directly connected to precipitation events, with maximum simulated concentrations up to 4.39 µg L-1 at 50 cm depth. Macropore transport is mainly responsible for the events with the highest PTA concentrations, contributing to 72 % of the total mass of PTA leached. Based on the results, we identify areas with high density of bracken, high precipitation during the summer and soils characterized by fast transport, as the most vulnerable to surface and groundwater pollution by phytotoxins.


Assuntos
Pteridium , Sesquiterpenos , Pteridium/metabolismo , Rizosfera , Sesquiterpenos/metabolismo , Indanos , Solo
10.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
11.
J Chromatogr A ; 1717: 464696, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310699

RESUMO

The first chiral methodology enabling the separation of indacaterol enantiomers was developed in this work by cyclodextrin-electrokinetic chromatography. Indacaterol (IND) is a chiral drug marketed as a pure enantiomer. Then, the separation and quantification of each enantiomer is of great importance for the quality control of pharmaceutical formulations. After selecting the most suitable chiral selector and background electrolyte, two Box-Behnken designs were achieved to optimize the electrophoretic conditions using two different approaches to shorten analysis times: i) decreasing the capillary length, or ii) performing a short-end injection. Indacaterol enantiomers were separated in less than 5 min with a resolution value of 3.6 under the optimal separation conditions: 0.7% (m/v) carboxymethyl-α-cyclodextrin in 50 mM sodium formate buffer (pH 4.0) and using a short-end injection. Then, the analytical characteristics of the method were evaluated and LODs of 0.05 mg/L for S-IND and 0.04 mg/L for R-IND were achieved. Also, the method allowed the detection of a 0.1% enantiomeric impurity (S-IND) in the R-IND-based pharmaceutical formulations. The developed method was applied to the analysis of two pharmaceutical formulations. Percentages of 97 ± 3% and 103 ± 6% of R-IND with respect to the labeled amounts were found.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Ciclodextrinas , Indanos , Quinolonas , Cromatografia , Ciclodextrinas/química , Preparações Farmacêuticas , Estereoisomerismo , Cromatografia Capilar Eletrocinética Micelar/métodos
12.
Medicina (Kaunas) ; 60(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399538

RESUMO

Background: Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, necessitates long-term medical therapy to manage symptoms and prevent complications. Therapeutic drug monitoring (TDM) has emerged as a strategy to optimize treatment efficacy, particularly with anti-tumour necrosis factor (anti-TNF) alpha drugs. This review explores the role of TDM for non-anti-TNF advanced therapies in IBD, focusing on vedolizumab, ustekinumab, tofacitinib, upadacitinib, risankizumab and ozanimod. Methods: The literature search, conducted through OVID (Medline) and PubMed, delves into proactive versus reactive TDM, timing of monitoring and methods for measuring drug levels and anti-drug antibodies. Results: While ustekinumab and vedolizumab exhibit exposure-response relationships, consensus on target levels and the role of TDM adjustments remains elusive. Limited data on risankizumab suggest a dose-dependent response, while for small molecule therapies (janus kinase inhibitors and ozanimod), the absence of real-world data and commercially available TDM tools pose challenges. Conclusion: At present, with the available data, there is a limited role for TDM in non-anti-TNF biologic and small-molecule therapies. This review underscores the need for further research to delineate the utility of TDM in guiding treatment decisions for these agents.


Assuntos
Produtos Biológicos , Indanos , Doenças Inflamatórias Intestinais , Oxidiazóis , Humanos , Ustekinumab/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Monitoramento de Medicamentos/métodos , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/diagnóstico , Produtos Biológicos/uso terapêutico
13.
Biosensors (Basel) ; 14(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392012

RESUMO

Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase , Preparações Farmacêuticas , Piperidinas/farmacologia , Indanos/farmacologia , Indanos/uso terapêutico
14.
J Cachexia Sarcopenia Muscle ; 15(2): 631-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38333911

RESUMO

BACKGROUND: Chronic hypoxia and skeletal muscle atrophy commonly coexist in patients with COPD and CHF, yet the underlying physio-pathological mechanisms remain elusive. Muscle regeneration, driven by muscle stem cells (MuSCs), holds therapeutic potential for mitigating muscle atrophy. This study endeavours to investigate the influence of chronic hypoxia on muscle regeneration, unravel key molecular mechanisms, and explore potential therapeutic interventions. METHODS: Experimental mice were exposed to prolonged normobaric hypoxic air (15% pO2, 1 atm, 2 weeks) to establish a chronic hypoxia model. The impact of chronic hypoxia on body composition, muscle mass, muscle strength, and the expression levels of hypoxia-inducible factors HIF-1α and HIF-2α in MuSC was examined. The influence of chronic hypoxia on muscle regeneration, MuSC proliferation, and the recovery of muscle mass and strength following cardiotoxin-induced injury were assessed. The muscle regeneration capacities under chronic hypoxia were compared between wildtype mice, MuSC-specific HIF-2α knockout mice, and mice treated with HIF-2α inhibitor PT2385, and angiotensin converting enzyme (ACE) inhibitor lisinopril. Transcriptomic analysis was performed to identify hypoxia- and HIF-2α-dependent molecular mechanisms. Statistical significance was determined using analysis of variance (ANOVA) and Mann-Whitney U tests. RESULTS: Chronic hypoxia led to limb muscle atrophy (EDL: 17.7%, P < 0.001; Soleus: 11.5% reduction in weight, P < 0.001) and weakness (10.0% reduction in peak-isometric torque, P < 0.001), along with impaired muscle regeneration characterized by diminished myofibre cross-sectional areas, increased fibrosis (P < 0.001), and incomplete strength recovery (92.3% of pre-injury levels, P < 0.05). HIF-2α stabilization in MuSC under chronic hypoxia hindered MuSC proliferation (26.1% reduction of MuSC at 10 dpi, P < 0.01). HIF-2α ablation in MuSC mitigated the adverse effects of chronic hypoxia on muscle regeneration and MuSC proliferation (30.9% increase in MuSC numbers at 10 dpi, P < 0.01), while HIF-1α ablation did not have the same effect. HIF-2α stabilization under chronic hypoxia led to elevated local ACE, a novel direct target of HIF-2α. Notably, pharmacological interventions with PT2385 or lisinopril enhanced muscle regeneration under chronic hypoxia (PT2385: 81.3% increase, P < 0.001; lisinopril: 34.6% increase in MuSC numbers at 10 dpi, P < 0.05), suggesting their therapeutic potential for alleviating chronic hypoxia-associated muscle atrophy. CONCLUSIONS: Chronic hypoxia detrimentally affects skeletal muscle regeneration by stabilizing HIF-2α in MuSC and thereby diminishing MuSC proliferation. HIF-2α increases local ACE levels in skeletal muscle, contributing to hypoxia-induced regenerative deficits. Administration of HIF-2α or ACE inhibitors may prove beneficial to ameliorate chronic hypoxia-associated muscle atrophy and weakness by improving muscle regeneration under chronic hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Indanos , Lisinopril , Sulfonas , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia
15.
Eur J Neurol ; 31(4): e16204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240416

RESUMO

BACKGROUND AND PURPOSE: In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS: We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS: Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS: These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/complicações , Indanos/uso terapêutico , Progressão da Doença
16.
Biomolecules ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254713

RESUMO

Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1ß, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1ß and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.


Assuntos
Citocinas , Indanos , Lipopolissacarídeos , Polifosfatos , Animais , Camundongos , Ratos , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores Imunológicos , Indanos/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Microglia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia
17.
Eur J Pharmacol ; 966: 176341, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244761

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the primary complication of type 2 diabetes (T2DM)-related liver disease, lacking effective treatment options. Metformin (Met), a widely prescribed anti-hyperglycemic medication, has been found to protect against NAFLD. Ferroptosis, a newly discovered form of cell death, is associated with the development of NAFLD. Despite this association, the extent of Met's protective effects on NAFLD through the modulation of ferroptosis has yet to be thoroughly investigated. In the present study, the administration of erastin or Ras-selective lethal 3 (RSL3), both known ferroptosis inducers, resulted in elevated cell mortality and reduced cell viability in AML12 hepatocytes. Notably, Met treatment demonstrated the capacity to mitigate these effects. Furthermore, we observed increased ferroptosis levels in both AML12 hepatocytes treated with palmitate and oleate (PA/OA) and in the liver tissue of db/db mice. Met treatment demonstrated significant reductions in iron accumulation and lipid-related reactive oxygen species production, simultaneously elevating the glutathione/glutathione disulfide ratio in both PA/OA-treated AML12 hepatocytes and the liver tissue of db/db mice. Interestingly, the anti-ferroptosis effects of Met were significantly reversed with the administration of RSL3, both in vitro and in vivo. Mechanistically, Met treatment regulated the glutathione peroxidase 4/solute carrier family 7 member 11/acyl-CoA synthetase long-chain family member 4 axis to alleviate ferroptosis in NAFLD hepatocytes. Overall, our findings highlight the crucial role of ferroptosis in the development of T2DM-related NAFLD and underscore the potential of Met in modulating key factors associated with ferroptosis in the context of NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Indanos , Metformina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Dissulfeto de Glutationa , Camundongos Endogâmicos
18.
Cell Physiol Biochem ; 58(1): 1-13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219048

RESUMO

BACKGROUND/AIMS: Factors influencing gene expression through chemical modifications of histones may play an important role in the regulation of the autophagy process in cancers. RING1A or RING1B are responsible for the catalytical activity of Polycomb repressive complex 1 (PRC1) which monoubiquitylate histone H2A. The aim of the study was to determine the effect of the RING1A/B protein inhibition on the autophagy process in endometrial cancer cells and the anticancer effectiveness of RING1 inhibitor PRT4165 in combination with autophagy inhibitors. METHODS: The expression of autophagy genes and proteins were analyzed in endometrial cancer cells HEC-1A and Ishikawa grown in different glucose concentrations and treated with PRT4165. To assess the effectiveness of PRT4165 used alone or in combination with HCQ or Lys05, IC50 and the combination index (CI) were calculated. Flow cytometry method was used to estimate apoptotic cells after treatment. RESULTS: The results confirm the impact of RINGs on autophagy and apoptosis in endometrial cancer cells. PRT4165 inhibitor causes changes in the expression of ATG genes and autophagy markers and the effect depends on glucose concentration and cell types. However, the anticancer effectiveness of PRT4165 was lower when it was used in combination with autophagy inhibitors, suggesting that such a combination is not a promising anticancer strategy. CONCLUSION: The results indicate the importance of the RINGs in the process of autophagy and apoptosis. Further potentially more effective combinations of PRT4165 with autophagy modulators should be sought.


Assuntos
Neoplasias do Endométrio , Indanos , Feminino , Humanos , Autofagia , Linhagem Celular Tumoral , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Glucose/farmacologia , Histonas/farmacologia , Piridinas/farmacologia
19.
Arthritis Rheumatol ; 76(2): 279-284, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37695218

RESUMO

OBJECTIVE: Calcium pyrophosphate (CPP) crystal deposition in the joints is associated with a heterogeneous set of debilitating syndromes characterized by inflammation and pain, for which no effective therapies are currently available. Because we found that the mitochondrial enzyme monoamine oxidase B (MAO-B) plays a fundamental role in promoting inflammatory pathways, this study aims at assessing the efficacy of two clinical-grade inhibitors (iMAO-Bs) in preclinical models of this disease to pave the way for a novel treatment. METHODS: We tested our hypothesis in two murine models of CPP-induced arthritis, by measuring cytokine and chemokine levels, along with immune cell recruitment. iMAO-Bs (rasagiline and safinamide) were administered either before or after crystal injection. To elucidate the molecular mechanism, we challenged in vitro primed macrophages with CPP crystals and assessed the impact of iMAO-Bs in dampening proinflammatory cytokines and in preserving mitochondrial function. RESULTS: Both in preventive and therapeutic in vivo protocols, iMAO-Bs blunted the release of proinflammatory cytokines (interleukin [IL]-6 and IL1-ß) and chemokines (CXCL10, CXCL1, CCL2 and CCL5) (n > 6 mice/group). Importantly, they also significantly reduced ankle swelling (50.3% vs 17.1%; P < 0.001 and 23.1%; P = 0.005 for rasagiline and safinamide, respectively). Mechanistically, iMAO-Bs dampened the burst of reactive oxygen species and the mitochondrial dysfunction triggered by CPP crystals in isolated macrophages. Moreover, iMAO-Bs blunted cytokine secretion and NLRP3 inflammasome activation through inhibition of the NF-κB and STAT3 pathways. CONCLUSION: iMAO-Bs dampen inflammation in murine models of crystal-induced arthropathy, thereby uncovering MAO-B as a promising target to treat these diseases.


Assuntos
Alanina/análogos & derivados , Artrite , Benzilaminas , Pirofosfato de Cálcio , Indanos , Camundongos , Animais , Monoaminoxidase/metabolismo , Citocinas , Inflamação/metabolismo , Artrite/metabolismo , Quimiocinas/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
20.
Mov Disord ; 39(2): 350-359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37886872

RESUMO

BACKGROUND: There remains uncertainty as to the optimal way to initiate therapy for Parkinson's disease (PD) to maximize benefit and minimize adversity. OBJECTIVES: The objective was to determine if P2B001 (a fixed, low-dose, extended-release [ER] combination of pramipexole 0.6 mg and rasagiline 0.75 mg) is superior to each of its components and compare its safety and efficacy to optimized treatment with marketed doses of pramipexole-ER. METHODS: This was a 12-week, double-blind study (NCT03329508). Total of 544 untreated patients with PD were randomized (2:2:2:1) to treatment with P2B001, its individual components (pramipexole-ER 0.6 mg or rasagiline-ER 0.75 mg), or commercial doses of pramipexole-ER titrated to optimal dose (1.5-4.5 mg). The primary endpoint was change from baseline to week 12 in Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III. The key secondary endpoint was the change from baseline in the Epworth Sleepiness Scale (ESS) for P2B001 versus the titrated dose of pramipexole-ER. RESULTS: P2B001 provided superior efficacy compared to each of its components; mean (95% CI) treatment differences in UPDRS II + III scores were -2.66 (95% CI, -4.33 to -1.00) versus pramipexole-ER 0.6 mg (P = 0.0018) and - 3.30 (95% CI, -4.96 to -1.63) versus rasagiline-ER 0.75 mg (P < 0.0001). P2B001 had comparable efficacy with the titrated dose of pramipexole-ER (mean, 3.2 mg), but significantly less worsening in daytime-sleepiness (ESS treatment difference: -2.66 [95% CI, -3.50 to -1.81]; P < 0.0001). P2B001 was well-tolerated with fewer sleep-related and dopaminergic adverse events than titrated doses of pramipexole-ER including somnolence, orthostatic hypotension, and neuropsychiatric side effects. CONCLUSIONS: P2B001 had superior efficacy to its individual components and was comparable with commercially used doses of pramipexole-ER with less worsening of sleepiness and fewer dopaminergic adverse events. These findings support considering once-daily P2B001 as initial therapy for patients with early PD. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Indanos , Doença de Parkinson , Humanos , Pramipexol , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/efeitos adversos , Sonolência , Benzotiazóis/uso terapêutico , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...