Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.969
Filtrar
1.
BMC Genomics ; 25(1): 372, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627613

RESUMO

BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.


Assuntos
Dalbergia , RNA Longo não Codificante , Madeira/genética , Madeira/metabolismo , Dalbergia/genética , Dalbergia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Processamento Alternativo , Isoformas de Proteínas/genética , Terpenos/metabolismo
2.
Physiol Plant ; 176(2): e14299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628104

RESUMO

Mussaenda pubescens (Mp) is a valuable medicinal plant that has traditionally been used for medicinal purposes or as a tea substitute. However, there are few studies on the comprehensive and dynamic evaluation of Mp metabolites. This study used an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach and biochemical analysis to investigate substance changes in leaves at three different stages and elucidate the relationship between metabolites and antioxidant capacity. The findings showed that Mp leaves contained 957 metabolites, the majority of which were phenolic acids, lipids, and terpenoids. The metabolite profiling of Mp leaves was significantly influenced by their growth and development at different stages. A total of 317 differentially accumulated metabolites (DAMs) were screened, including 150 primary metabolites and 167 secondary metabolites, with 202 DAMs found in bud leaf vs. tender leaf, 54 DAMs in tender leaf vs. mature leaf, and 254 DAMs in bud leaf vs. mature leaf. Total phenolics, flavonoids, and anthocyanin concentrations decreased as Mp leaves grew and developed, whereas terpenoids increased significantly. The secondary metabolites also demonstrated a positive correlation with antioxidant activity. Phenolics, flavonoids, terpenoids, and anthocyanins were the primary factors influencing the antioxidant activity of leaves. These findings provide new insights into the metabolite formation mechanism, as well as the development and utilization of Mp tea.


Assuntos
Antocianinas , Antioxidantes , Antioxidantes/metabolismo , Antocianinas/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/metabolismo , Fenóis/metabolismo , Chá/metabolismo , Terpenos/metabolismo , Folhas de Planta/metabolismo
3.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568986

RESUMO

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Melaleuca , Óleo de Melaleuca , Limoneno , Cromatografia Gasosa-Espectrometria de Massas/métodos , Árvores , Austrália , Terpenos/química , Chá , Melaleuca/química
4.
Sci Rep ; 14(1): 8644, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622163

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.


Assuntos
Flavonoides , Gynostemma , Flavonoides/metabolismo , Gynostemma/genética , Gynostemma/química , Terpenos/metabolismo , Extratos Vegetais/química , Perfilação da Expressão Gênica
5.
PLoS One ; 19(4): e0298194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625916

RESUMO

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Assuntos
Paeonia , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/metabolismo
6.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611928

RESUMO

Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants. Renowned for their complex structures and broad spectrum of bioactivities, grayanane diterpenes have become a primary focus in extensive phytochemical and pharmacological research. Recent studies, spanning from 2018 to January 2024, have reported a series of new grayanane diterpenes with unprecedented carbon skeletons. These compounds exhibit various biological properties, including analgesic, antifeedant, anti-inflammatory, and inhibition of protein tyrosine phosphatase 1B (PTP1B). This paper delves into the discovery of 193 newly identified grayanoids, representing 15 distinct carbon skeletons within the Ericaceae family. The study of grayanane diterpenes is not only a deep dive into the complexities of natural product chemistry but also an investigation into potential therapeutic applications. Their unique structures and diverse biological actions make them promising candidates for drug discovery and medicinal applications. The review encompasses their occurrence, distribution, structural features, and biological activities, providing invaluable insights for future pharmacological explorations and research.


Assuntos
Produtos Biológicos , Diterpenos , Ericaceae , Diterpenos/farmacologia , Terpenos , Produtos Biológicos/farmacologia , Carbono
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612398

RESUMO

Pak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.


Assuntos
Flavonoides , Terpenos , Antocianinas , Vigor Híbrido/genética , Perfilação da Expressão Gênica
8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612633

RESUMO

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.


Assuntos
Sesquiterpenos , Synechococcus , Synechocystis , Limoneno , Synechococcus/genética , Synechocystis/genética , Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Terpenos , Ciclo do Carbono
9.
BMC Plant Biol ; 24(1): 256, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594627

RESUMO

BACKGROUND: Climate change has led to severe cold events, adversely impacting global crop production. Eggplant (Solanum melongena L.), a significant economic crop, is highly susceptible to cold damage, affecting both yield and quality. Unraveling the molecular mechanisms governing cold resistance, including the identification of key genes and comprehensive transcriptional regulatory pathways, is crucial for developing new varieties with enhanced tolerance. RESULTS: In this study, we conducted a comparative analysis of leaf physiological indices and transcriptome sequencing results. The orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted peroxidase (POD) activity and soluble protein as crucial physiological indicators for both varieties. RNA-seq data analysis revealed that a total of 7024 and 6209 differentially expressed genes (DEGs) were identified from variety "A" and variety "B", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs demonstrated that the significant roles of starch and sucrose metabolism, glutathione metabolism, terpenoid synthesis, and energy metabolism (sucrose and starch metabolism) were the key pathways in eggplant. Weighted gene co-expression network analysis (WGCNA) shown that the enrichment of numerous cold-responsive genes, pathways, and soluble proteins in the MEgrep60 modules. Core hub genes identified in the co-expression network included POD, membrane transporter-related gene MDR1, abscisic acid-related genes, growth factor enrichment gene DELLA, core components of the biological clock PRR7, and five transcription factors. Among these, the core transcription factor MYB demonstrated co-expression with signal transduction, plant hormone, biosynthesis, and metabolism-related genes, suggesting a pivotal role in the cold response network. CONCLUSION: This study integrates physiological indicators and transcriptomics to unveil the molecular mechanisms responsible for the differences in cold tolerance between the eggplant cold-tolerant variety "A" and the cold-sensitive variety "B". These mechanisms include modulation of reactive oxygen species (ROS), elevation in osmotic carbohydrate and free proline content, and the expression of terpenoid synthesis genes. This comprehensive understanding contributes valuable insights into the molecular underpinnings of cold stress tolerance, ultimately aiding in the improvement of crop cold tolerance.


Assuntos
Solanum melongena , Transcriptoma , Solanum melongena/genética , Solanum melongena/metabolismo , Fisiologia Comparada , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Amido/metabolismo , Sacarose/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Physiol Plant ; 176(2): e14277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566271

RESUMO

In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.


Assuntos
Arabidopsis , Diterpenos , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Retroalimentação , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Terpenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia
11.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566027

RESUMO

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Assuntos
Alquil e Aril Transferases , Coffea , Liases Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Sementes , Perfilação da Expressão Gênica
12.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441295

RESUMO

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Alcaloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo
13.
Pol J Vet Sci ; 27(1): 135-138, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511650

RESUMO

The aim of this study was to investigate the antimycobacterial activity of 39 free terpenes and their activity in combination with streptomycin. Antimicrobial activity was first evaluated by screening 39 free terpenes at concentrations from 1.56 to 400 µg/mL. None of these exhibited positive effects against any of the nontuberculous mycobacteria (NTM) strains tested. However, six of the 39 terpenes (isoeugenol, nerol, (+)-α-terpineol, (1R)-(-)-myrtenol, (+)-terpinen-4-ol, and eugenol) were shown to enhance the activity of streptomycin against the NTM strains isolated from diseased ornamental fish.


Assuntos
Micobactérias não Tuberculosas , Estreptomicina , Animais , Estreptomicina/farmacologia , Antibacterianos/farmacologia , Terpenos/farmacologia , Testes de Sensibilidade Microbiana/veterinária
14.
Nat Commun ; 15(1): 2492, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509059

RESUMO

Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.


Assuntos
Morus , Morus/genética , Morus/química , Terpenos , Catálise , Reação de Cicloadição
15.
mSystems ; 9(4): e0122523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470040

RESUMO

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.


Assuntos
Agaricales , Hemiterpenos , Microbiota , Micorrizas , Pentanóis , Terpenos , Micorrizas/genética , Lipídeos
16.
Elife ; 132024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477562

RESUMO

Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.


Assuntos
Ecossistema , Controle de Pragas , Humanos , Animais , Feminino , Recém-Nascido , Agricultura , Zea mays , Spodoptera , Larva , Terpenos
17.
Int J Biol Macromol ; 265(Pt 2): 131017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513909

RESUMO

Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.


Assuntos
Ciclopentanos , Oenanthe , Oxilipinas , Terpenos , Terpenos/metabolismo , Oenanthe/metabolismo , Monoterpenos Cicloexânicos , Acetatos/farmacologia
18.
Int J Biol Macromol ; 264(Pt 2): 130763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467223

RESUMO

Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.


Assuntos
Lindera , Óleos Voláteis , Terpenos/metabolismo , Frutas , Lindera/genética , Lindera/metabolismo , Óleos Voláteis/metabolismo , Monoterpenos/metabolismo
19.
Food Chem ; 447: 138910, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479143

RESUMO

Hydrophilic, lipophilic extracts and essential oil of four hops varieties from Slovenia were examined in this study. Lipophilic extracts were obtained by supercritical extraction (SFE), while for hydrophilic extracts ultrasound and microwave extraction were employed. Essential oils were isolated by the hydrodistillation process. The lipophilic composition of essential oils and lipophilic extracts was determined by GC-MS analysis. Monoterpenes and sesquiterpene hydrocarbons were the most abundant class of compounds in oils (62.27-79.65 %), with myrcene being the most abundant constituent. Limonene and trans-caryophyllene were two terpenes determined in all essential oils while only trans-caryophyllene was detected in SFE samples. Antioxidant, antimicrobial, and cytotoxic activity, determined by applying in vitro assays, was more influenced by extraction technique than by varieties. Molecular docking was carried out to gain insight into the potential cancer protein targets BCL-2 and MMP9, whereby humulene epoxide II displayed good binding configuration within the cavities of the two proteins.


Assuntos
Humulus , Óleos Voláteis , Sesquiterpenos Policíclicos , Humulus/química , Simulação de Acoplamento Molecular , Óleos Voláteis/química , Terpenos/química
20.
Int Immunopharmacol ; 131: 111875, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508095

RESUMO

As an endocrine cytokine, fibroblast growth factor 21 (FGF21) exhibits anti-inflammatory properties. With the development of lupus nephritis (LN), which is tightly related to pathogenic factors, including inflammation and immune cell dysregulation, we explored the impact of Fibroblast Growth Factor 21 (FGF21) as well as its underlying mechanism. We induced an in vivo LN model using pristane in both wild-type C57BL/6 and FGF21 knockout (FGF21-/-) mice. LN serum obtained from 32-week-old wild-type LN mice was used to stimulate RAW264.7 and human renal tubular epithelial (HK-2) cells to mimic an in vitro LN model. Moreover, our findings revealed that FGF21-/- mice showed more severe kidney injury compared to wild-type mice, as evidenced by increased levels of renal function markers, inflammatory factors, and fibrosis markers. Notably, exogenous administration of FGF21 to wild-type LN mice markedly mitigated these adverse effects. Additionally, we used tandem mass tag (TMT)-based quantitative proteomics to detect differentially expressed proteins following FGF21 treatment. Results indicated that 121 differentially expressed proteins influenced by FGF21 were involved in biological processes such as immune response and complement activation. Significantly upregulated protein Irgm 1, coupled with modulated inflammatory response, appeared to contribute to the beneficial effects of FGF21. Furthermore, Western blot analysis demonstrated that FGF21 upregulated Irgm 1 while inhibiting nucleotide-binding oligomerization domain-like receptors family pyrin domain including 3 (NLRP3) inflammasome expression. Silencing Irgm 1, in turn, reversed FGF21's inhibitory effect on NLRP3 inflammasome. In summary, FGF21 can potentially alleviate pristane-induced lupus nephritis in mice, possibly through the FGF21/Irgm 1/NLRP3 inflammasome pathway.


Assuntos
Fatores de Crescimento de Fibroblastos , Inflamassomos , Nefrite Lúpica , Terpenos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...