Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.709
Filtrar
1.
Int J Pharm ; 654: 123980, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460769

RESUMO

Solid lipid microparticles (SLMs) represent a promising approach for drug delivery in anti-acne applications. In this study, asiatic acid-loaded SLMs (AASLMs) were prepared by melt emulsification method in conjunction with freeze-drying. Comprehensive evaluations comprised particle size, %entrapment efficiency (%EE), %labeled amount (%LA), surface morphology, stability, %release, %skin permeation, and anti-acne activity. The AASLMs exhibited an average particle size ranging from 7.46 to 38.86 µm, with %EE and %LA falling within the range of 31.56 to 100.00 and 90.43 to 95.38, respectively. The AASLMs demonstrated a spherical shape under scanning electron microscopy, and maintained stability over a 3-month period. Notably, formulations with 10 % and 15 % cetyl alcohol stabilized with poloxamer-188 (specifically F6 and F12) displayed a minimum inhibitory concentration (MIC) value of 75 mg/ml against Cutibacterium acnes. Furthermore, F12 exhibited a higher %release and %skin permeation compared to F6 over 24 h. In a single-blind clinical trial involving fifteen participants with mild-to-moderate acne, F12 showcased its potential not only in reducing porphyrin intensity and enhancing skin barriers but also in significantly improving skin hydration and brightness. However, further investigations with larger subject cohorts encompassing diverse age groups and genders are necessary to thoroughly establish the performance of the developed AASLMs.


Assuntos
Acne Vulgar , Sistemas de Liberação de Medicamentos , Triterpenos Pentacíclicos , Humanos , Feminino , Masculino , Método Simples-Cego , Sistemas de Liberação de Medicamentos/métodos , Acne Vulgar/tratamento farmacológico , Lipídeos , Tamanho da Partícula , Portadores de Fármacos
2.
Sci Rep ; 14(1): 6872, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519553

RESUMO

Leontodon hispidulus Boiss is a wild annual plant growing in Egypt. The present study aims for the first time, to evaluate the phytochemical profile of the main secondary metabolites of the optimized ethanolic extract of the plant using Quadrupole Time-of-Flight Liquid chromatography-mass spectrometry and Gas chromatography-mass spectrometry. It also aims to assess the anticancer activity of its different fractions against the prostate carcinoma cell line. Moreover, an in-silico docking study was performed using the Hexokinase-two enzyme. LC-qToF-MS analysis revealed the tentative identification of 36 phenolic compounds including the glycosides of (luteolin, quercetin, kaempferol, apigenin, isorhamnetin, and daidzein), coumarines (esculin, esculetin, and daphnetin), and phenolic acids (chlorogenic, caffeic, quinic, P-coumaric, and rosmarinic). GC-MS/MS analysis revealed the presence of 18 compounds where palmitic acid, myristic acid, alpha-amyrin, and beta-amyrin were the major ones. The cytotoxic activity results revealed that methylene chloride and ethyl acetate fractions showed the highest cytotoxic activity against the PC3 cell line, with IC50 values of 19, and 19.6 µg/ml, respectively. Interestingly, the docking study demonstrated that apigenin-7-O-glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucuronide, quercetin-4'-O-glucoside, esculin, rosmarinic acid, chlorogenic acid, and α-amyrin exhibited high affinity to the selected target, HEK-2 enzyme.


Assuntos
Asteraceae , Triterpenos Pentacíclicos , Espectrometria de Massas em Tandem , Apigenina , Quercetina , Hexoquinase , Esculina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/química , Antioxidantes/química
3.
Int Immunopharmacol ; 131: 111822, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503010

RESUMO

Previous study has indicated that Celastrol (Cel) has various physiological and pharmacological effects, including antibacterial, antioxidant, pro-apoptotic, anticancer and anti-rheumatoid arthritis (RA) effects. However, low water solubility, low oral bioavailability, narrow treatment window, and high incidence of systemic adverse reactions still limit the further clinical application of Cel. Here, aiming at effectively overcome those shortcomings of Cel to boost its beneficial effects for treating RA, we developed the leukosome (LEUKO) coated biomimetic nanoparticles (NPs) for the targeted delivery of Cel to arthritis injury area in RA. LEUKO were synthesized using membrane proteins purified from activated J774 macrophage. LEUKO and Cel-loaded LEUKO (Cel@LEUKO) were characterized using dynamic light scattering and transmission electron microscopy. Our results demonstrated that Cel@LEUKO can inhibit the inflammatory response of lipopolysaccharide (LPS) induced mouse monocyte macrophage leukemia cells (RAW264.7 cells) and human rheumatoid arthritis synovial fibroblasts (MH7A) cells through the inhibition of reactive oxygen species (ROS)-NF-κB pathway. In addition, research has shown that LEUKO effectively targets and transports Cel to the inflammatory site of RA, increased drug concentration in affected areas, reduced systemic toxicity of Cel, and reduced clinical symptoms, inflammatory infiltration, bone erosion, and serum inflammatory factors in collagen-induced arthritis (CIA) rats.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nanopartículas , Triterpenos Pentacíclicos , Camundongos , Ratos , Humanos , Animais , NF-kappa B , Inflamassomos , Espécies Reativas de Oxigênio , Biomimética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Experimental/tratamento farmacológico
4.
Food Chem ; 447: 139044, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513481

RESUMO

The object of this study was to trace TwHf-derived toxins in raw honey and clarify their acute toxic effect related to the addition of honey or sugars. TwHf flowers, raw honey from TwHf planting base and from beekeepers in high-risk area were detected using LC-MS/MS. The results revealed five target toxins were detected in TwHf flowers; only celastrol was detected in one raw honey sample, as a food safety risk factor, celastrol had been traced back to TwHf flowers from raw honey. In a series of acute toxic tests on zebrafish, toxification effects were observed when honey, mimic honey or sugar was mixed with toxins. The degree of toxicity varied among various sugar-based solutions. At the same mass concentration, they follow this order: raw honey/mimic honey > glucose > fructose. The main toxic target organs of triptolide and celastrol with honey were the heart and liver.


Assuntos
Diterpenos , Mel , Triterpenos Pentacíclicos , Fenantrenos , Tripterygium , Animais , Mel/análise , Cromatografia Líquida , Peixe-Zebra , Espectrometria de Massas em Tandem , Açúcares , Compostos de Epóxi
5.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494523

RESUMO

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Assuntos
Lesão Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Lesão Pulmonar Aguda/tratamento farmacológico , Solubilidade
6.
Med Oncol ; 41(5): 97, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532150

RESUMO

Glioblastoma, a highly aggressive and lethal brain cancer, lacks effective treatment options and has a poor prognosis. In our study, we explored the potential anti-cancer effects of sodium butyrate (SB) and celastrol (CEL) in two glioblastoma cell lines. SB, a histone deacetylase inhibitor, and CEL, derived from the tripterygium wilfordii plant, act as mTOR and proteasome inhibitors. Both can cross the blood-brain barrier, and they exhibit chemo- and radiosensitive properties in various cancer models. GB cell lines LN-405 and T98G were treated with SB and CEL. Cell viability was assessed by MTT assay and IC50 values were obtained. Gene expression of DNA repair, apoptosis, and autophagy-related genes was analyzed by RT-PCR. Cell cycle distribution was determined using flow cytometry. Viability assays using MTT assay revealed IC50 values of 26 mM and 22.7 mM for SB and 6.77 µM, and 9.11 µM for CEL in LN-405 and T98G cells, respectively. Furthermore, we examined the expression levels of DNA repair genes (MGMT, MLH-1, MSH-2, MSH-6), apoptosis genes (caspase-3, caspase-8, caspase-9), and an autophagy gene (ATG-6) using real-time polymerase chain reaction. Additionally, flow cytometry analysis revealed alterations in cell cycle distribution following treatment with SB, CEL and their combination. These findings indicate that SB and CEL may act through multiple mechanisms, including DNA repair inhibition, apoptosis induction, and autophagy modulation, to exert their anti-cancer effects in glioblastoma cells. This is the first study providing novel insights into the potential therapeutic effects of SB and CEL in glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Linhagem Celular , Apoptose , Linhagem Celular Tumoral
7.
Chem Biol Drug Des ; 103(3): e14454, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477392

RESUMO

Asiatic acid (AA) is generally recognized in the treatment of various diseases and has significant advantages in the treatment of various inflammatory diseases. The treatment of rheumatoid arthritis (RA) with AA is a completely new entry point. RA is a complex autoimmune inflammatory disease, and despite the involvement of different immune and nonimmune cells in the pathogenesis of RA, fibroblast-like synoviocytes (FLS) play a crucial role in the progression of the disease. si-Nrf2 was transfected in RA-FLS and the cells were treated with AA. MTT assay and colony formation assay were used to detect the effect of AA on the viability and formation of clones of RA-FLS, respectively. Moreover, the apoptosis of RA-FLS was observed by Hoechst 33342 staining and flow cytometry. Western blot was applied to measure the expression of the Nrf2/HO-1/NF-κB signaling pathway-related proteins. Compared with the control group, RA-FLS proliferation, and clone formation were significantly inhibited by the increase of AA concentration, and further experiments showed that AA-induced apoptosis of RA-FLS. In addition, AA activated the Nrf2/HO-1 pathway to inhibit NF-κB protein expression. However, the knockdown of Nrf2 significantly offsets the effects of AA on the proliferation, apoptosis, and Nrf2/HO-1/NF-κB signaling pathway of RA-FLS cells. AA can treat RA by inhibiting the proliferation and inducing the apoptosis of RA-FLS. The mechanism may be related to the activation of the Nrf2/HO-1/NF-κB pathway.


Assuntos
Artrite Reumatoide , Triterpenos Pentacíclicos , Sinoviócitos , Humanos , NF-kappa B/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Proliferação de Células , Transdução de Sinais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Células Cultivadas , Apoptose
8.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471722

RESUMO

OBJECTIVE: Celastrol is a bioactive constituent extracted from Tripterygium wilfordii (thunder god vine). It has been demonstrated to have a therapeutic effect on experimental disease models for chronic inflammatory and immune disorders. In the present study, we investigated whether and how celastrol exerts a regulatory effect on the autoimmune response in MRL/lpr mice. METHODS: We performed an in vivo study to determine the therapeutic effects of celastrol in MRL/lpr mice and then further investigated the underlying mechanism of celastrol in the regulation of the autoimmune response in MRL/lpr mice. RESULTS: Celastrol showed a therapeutic effect in MRL/lpr mice by preventing the enlargement of the spleen and lymph nodes, alleviating renal injury, and reducing the levels of ANA and anti-double-stranded DNA antibodies. Furthermore, celastrol suppressed the in vivo inflammatory response in MRL/lpr mice by reducing the serum levels of multiple cytokines, including interleukin (IL)-6, tumour necrosis factor (TNF) and interferon (IFN)-γ, and the production of multiple antibody subsets, including total IgG, IgG1 and IgG2b. In vitro, celastrol reduced anti-CD3 antibody stimulation-induced T helper 1 and TNF-producing cells in CD4+ T cells of MRL/lpr mice. In addition, celastrol significantly affected B cell differentiation and prevented the generation of plasma cells from B cells in MRL/lpr mice by reducing the frequency of activated and germinal centre B cells. Celastrol treatment also affected T cell differentiation and significantly reduced central memory T cell frequencies in MRL/lpr mice. Importantly, celastrol treatment specifically promoted apoptosis of CD138+ but not CD138- T cells to suppress autoimmune T cell accumulation in MRL/lpr mice. CONCLUSIONS: Celastrol exerted therapeutic effects on lupus by specifically promoting apoptosis of autoimmune T cells and preventing the progression of autoimmune response.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Triterpenos Pentacíclicos , Camundongos , Animais , Humanos , Camundongos Endogâmicos MRL lpr , Apoptose , Imunoglobulina G
9.
Mar Pollut Bull ; 201: 116224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457880

RESUMO

In this study, multiple molecular markers [polycyclic aromatic hydrocarbons (PAHs), linear and branched alkanes, unresolved complex mixture (UCM), hopanes, and steranes] were applied to explore petroleum-related inputs in complex coastal systems influenced by various human-induced pressures. To investigate anthropogenic impacts related to petrogenic emissions, we analysed surface sediments from coastal areas of southern Baltic, including harbour/shipyard channels, offshore dumping sites, shipping routes, and major sinks for particulate matter discharged by large rivers. This study indicates a large spatial variability in the contamination degree of examined sites by petroleum-derived chemicals. Hopanes and steranes along with UCM appeared to have the highest potential to identify petroleum sources in studied locations, whereas investigations based on alkanes and PAHs seemed to be considerably affected by inputs of modern biogenic and combustion-derived materials, respectively. However, the combined use of all these markers provides deeper insight into the complexity of sedimentary organic matter in human-impacted environments.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Efeitos Antropogênicos , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental , Alcanos/análise , Petróleo/análise , Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos Pentacíclicos
10.
Arch Oral Biol ; 160: 105910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364717

RESUMO

OBJECTIVE: To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFß1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN: Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFß1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFß1-induced responses in a human gingival fibroblast cell line. RESULTS: Celastrol impaired the ability of TGFß1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFß1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFß1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFß1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFß1. CONCLUSION: YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFß1 in human gingival fibroblasts.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Triterpenos Pentacíclicos , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas de Sinalização YAP , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas
11.
Anim Biotechnol ; 35(1): 2314100, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38343377

RESUMO

Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.


Assuntos
NF-kappa B , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt , Feminino , Bovinos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Ativação Transcricional , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células Epiteliais/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia
12.
Steroids ; 205: 109381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325751

RESUMO

This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.


Assuntos
Acetazolamida , Anidrases Carbônicas , Triterpenos Pentacíclicos , Humanos , Acetazolamida/farmacologia , Ácido Betulínico , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Isoformas de Proteínas , Relação Estrutura-Atividade
13.
Biomed Pharmacother ; 172: 116256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367550

RESUMO

Anti-IL-17A antibodies, such as secukinumab and ixekizumab, are effective proinflammatory cytokine inhibitors for autoimmune disorders, including psoriasis. However, anti-IL-17A small molecule treatments are yet to be commercialized. Celastrol, a natural compound extracted from the roots of traditional Chinese medicinal plants, has anti-inflammatory and antioxidant properties. However, the binding of celastrol to IL-17A and the associated anti-inflammatory mechanisms remain unclear. This study investigated whether celastrol could directly bind to IL-17A and regulate inflammation in psoriatic in vitro and in vivo models. The results showed that celastrol directly binds to IL-17A and inhibits its downstream signaling, including the NF-kB and MAPK pathways. Interestingly, celastrol restored autophagy dysfunction and reduced proinflammatory cytokine secretion in keratinocytes. In addition, celastrol increased autophagy in the epidermis of a mouse model of psoriasis. Celastrol decreased Th17 cell populations and proinflammatory cytokine levels in mice. Thus, IL-17A-targeting celastrol reduced inflammation by rescuing impaired autophagy in in vitro and in vivo models of psoriasis, demonstrating its potential as a substitute for anti-IL-17A antibodies for treating psoriasis.


Assuntos
Anti-Inflamatórios , Interleucina-17 , Triterpenos Pentacíclicos , Psoríase , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Autofagia , Citocinas , Inflamação/tratamento farmacológico , Interleucina-17/antagonistas & inibidores , Triterpenos Pentacíclicos/uso terapêutico , Psoríase/tratamento farmacológico
14.
Cell Commun Signal ; 22(1): 139, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378659

RESUMO

BACKGROUND: Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS: We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS: The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS: In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/uso terapêutico , Espermidina/farmacologia , Camundongos Endogâmicos C57BL , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos Pentacíclicos/uso terapêutico
15.
Toxicon ; 241: 107652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395262

RESUMO

T-2 toxin, a type-A trichothecene mycotoxin, exists ubiquitously in mildewed foods and feeds. Betulinic acid (BA), a pentacyclic triterpenoid derived from plants, has the effect of relieving inflammation and oxidative stress. The purpose of this study was to investigate whether BA mitigates lung impairment caused by T-2 toxin and elucidate the underlying mechanism. The results indicated that T-2 toxin triggered the inflammatory cell infiltration, morphological alterations and cell apoptosis in the lungs. It is gratifying that BA ameliorated T-2 toxin-caused lung injury. The protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway and the markers of antioxidative capability were improved in T-2 toxin induced lung injury by BA mediated protection. Simultaneously, BA supplementation could suppress T-2 toxin-induced mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB)-dependent inflammatory response and mitochondrial apoptotic pathway. Therefore, T-2 toxin gave rise to pulmonary toxicity, but these changes were moderated by BA administration through regulation of the Nrf2/MAPK/NF-κB pathway, which maybe offer a viable alternative for mitigating the lung impairments caused by the mycotoxin.


Assuntos
Lesão Pulmonar , Toxina T-2 , Humanos , NF-kappa B/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Ácido Betulínico , Fator 2 Relacionado a NF-E2/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Triterpenos Pentacíclicos , Transdução de Sinais , Estresse Oxidativo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
16.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367794

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Triterpenos Pentacíclicos , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , 60489 , Transdução de Sinais , Apoptose , Linfoma Difuso de Grandes Células B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
17.
Appl Microbiol Biotechnol ; 108(1): 195, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324205

RESUMO

Pentacyclic triterpenoids exhibit a wide range of biological activities which have wide applications in the food, cosmetics, and pharmaceutical industries. High-performance chassis strains have been developed for the production of various pentacyclic triterpenoids, e.g., lupane-type and oleanane-type triterpenoids. The production of common pentacyclic triterpenes and their derivatives is limited by the poor activity of typical pentacyclic triterpene synthases (PTSs). However, a general strategy applicable to typical PTSs is still lacking. As typical pentacyclic triterpenes are derived from the baccharenyl cation, engineering the non-active-site residues in the MXXXXR motif might be beneficial for the catalytic efficiencies of typical PTSs by the stabilization of the baccharenyl cation. Here, we develop a general strategy for improving the activity of typical PTSs. As a proof of concept, the activity of three PTSs such as lupeol synthase, ß-amyrin synthase, and α-amyrin synthases was significantly increased up to 7.3-fold by site-directed saturation mutagenesis. This strategy could be applied to improve the activity of various typical PTSs. KEY POINTS: • The strategy could be applied to typical PTSs for improving the activity. • The catalytic activity of typical PTSs was significantly increased.


Assuntos
Triterpenos , Aminoácidos , Triterpenos Pentacíclicos , Catálise , Cátions
18.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342566

RESUMO

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Condrócitos , Interleucina-1beta
19.
ACS Appl Bio Mater ; 7(2): 1271-1289, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315869

RESUMO

Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.


Assuntos
Sulfatos de Condroitina , Micelas , Triterpenos Pentacíclicos , Animais , Camundongos , Fenformin/metabolismo , Tecido Adiposo/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação , Dieta Hiperlipídica/efeitos adversos
20.
Chem Biodivers ; 21(2): e202301871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320175

RESUMO

This report informs for the first time the chemical constituents of Diospyros xolocotzii and Diospyros digyna, the pesticidal and the acetylcholinesterase (AChE) inhibition potential of some compounds calculated by in silico approaches, the larvicidal activity against Spodoptera frugiperda of available compounds, the AChE inhibition of selected compounds, and the results of the molecular docking of the most active ones with this receptor. From the aerial parts of D. xolocotzii were isolated pentacyclic triterpenes (1-4, 6, 10, 11-13), phytosterols (15-17), and isodiospyrin (18), whereas the analysis of aerial parts of D. digyna conducted to the isolation of pentacyclic triterpenes (4, 5, 7-9, 11-14), (4S)-shinanolone (19), and scopoletin (20). For comparison purposes, origanal (21) was chemically prepared from 11. The in silico analysis showed that the tested compounds have pesticide potential. The larvicidal activities of 11>13>12 indicated that the increase of the oxidation degree at C-28 increases their bioactivity. Compounds 11 and 21 presented the higher inhibition in the acetylcholinesterase assay, and the higher binding energies, and for the interactionswith AChE by molecular docking. Both Diospyros species are sources of triterpenes with pesticidal potential and the molecular changes in lupane triterpenes correlate with the observed bioactivity and molecular docking.


Assuntos
Diospyros , Praguicidas , Animais , Simulação de Acoplamento Molecular , Diospyros/química , Diospyros/metabolismo , Acetilcolinesterase/metabolismo , Spodoptera , Triterpenos Pentacíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...