Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.529
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
2.
Adv Exp Med Biol ; 1446: 99-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625526

RESUMO

The determination of amino acid (AA) requirements for mammals has traditionally been done through nitrogen (N) balance studies, but this technique underestimates AA requirements in adult animals. There has been a shift toward researchers using the indicator amino acid oxidation (IAAO) technique for the determination of AA requirements in humans, and recently in dogs. However, the determination of AA requirements specific to adult dogs and cats at maintenance is lacking and the current requirements outlined by the National Research Council are based on a dearth of data and are likely underreporting the requirements of indispensable AA (IAA) for the population. To ensure the physiological requirements of our cats and dogs are met, we need methods to accurately and precisely measure digestibility. In vivo methods, such as ileal cannulation, are most commonly used, however, due to ethical considerations, we are moving away from animal models and toward in vitro methods. Harmonized static digestion models have the potential to replace in vivo methods but work needs to be done to have these methods more accurately represent the gastrointestinal tract (GIT) of cats and dogs. The Digestible IAA Score (DIAAS) is one metric that can help define protein quality for individual ingredients or mixed diets that uses AA SID estimates and ideally those can be replaced with in vitro AA digestibility estimates. Finally, we need accurate and reliable laboratory AA analyses to measure the AA present in complete diets, especially those used to quantify methionine (Met) and cysteine (Cys), both often limiting AAs in cat and dog diets. Together, this will guide accurate feed formulation for our companion animals to satisfy requirements while avoiding over-supplying protein, which inevitably contributes to excess N excretion, affecting both the environment and feed sustainability.


Assuntos
Doenças do Gato , Doenças do Cão , Adulto , Humanos , Gatos , Cães , Animais , Aminoácidos , Alimentos , Metionina , Mamíferos
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612469

RESUMO

Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.


Assuntos
Microbioma Gastrointestinal , Metionina , Animais , Ratos , RNA Ribossômico 16S/genética , Racemetionina , Metabolômica
4.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568774

RESUMO

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Assuntos
Metionina Sulfóxido Redutases , Oryza , Rhizoctonia , Oryza/microbiologia , Metionina , Peróxido de Hidrogênio/farmacologia , Racemetionina/farmacologia , Doenças das Plantas/microbiologia
5.
Nat Commun ; 15(1): 2931, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575566

RESUMO

Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.


Assuntos
Cistationina beta-Sintase , Metionina , Humanos , Cistationina beta-Sintase/metabolismo , Microscopia Crioeletrônica , S-Adenosilmetionina/metabolismo , Domínio Catalítico
6.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613029

RESUMO

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Assuntos
Neoplasias Colorretais , Metionina , Humanos , Metionina/farmacologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Vitamina B 12/farmacologia , Homocistina , Racemetionina , Linhagem Celular , Homocisteína , Neoplasias Colorretais/tratamento farmacológico
7.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 895-907, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545985

RESUMO

As the only essential amino acid containing elemental sulphur, L-methionine has important physiological and biochemical functions in living organisms. However, the fermentative production of L-methionine has not met the requirements of industrial production because of its low production level. In this paper, the fermentation process of an efficient L-methionine producing strain E. coli W3110ΔIJAHFEBC trc-fliY trc-malY/PAM glyA-22 metF constructed previously was systematically optimized. Based on the optimal initial glucose concentration, the effects of different fed-batch fermentation processes, including DO-Stat, pH-Stat, controlling residual sugar control at different level and feeding glucose with constant rate, on L-methionine fermentation were studied. It was found that the control of glucose concentration greatly affected the fermentation process. Subsequently, an optimal fed-batch fermentation process was developed, where the L-methionine titer was increased to 31.71 g/L, the highest yield reported to date, while the fermentation time was shortened to 68 h. Meanwhile, a fermentation kinetics model under the optimal fed-batch fermentation conditions was established, which fitted well with the biosynthesis process of L-methionine. This study may facilitate further development of the fermentative production of L-methionine.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Metionina/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Proteínas de Transporte
8.
J Ethnopharmacol ; 328: 118057, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518965

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY: However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS: Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS: We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION: Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , DNA Mitocondrial/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Hepatite/metabolismo , Camundongos Endogâmicos C57BL
9.
Biotechnol J ; 19(3): e2300579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494424

RESUMO

Fluorescent initiator tRNAs (tRNAi) play a crucial role in studying protein synthesis, yet generating highly fluorescent tRNAi complexes remains challenging. We present an optimized strategy to effectively generate highly fluorescent initiator-tRNA complexes in living cells. Our strategy allows the generation of Fluo-Met-tRNAiMet complexes. These complexes can have highly chromogenic N-terminal labeling. For generating such complexes, we use either purified fluorescent methionine (PFM) or non-purified fluorescently labeled methionine (NPFM). Furthermore, PFM promotes the active generation of endogenous tRNAi in cells, leading to highly efficient Fluo-Met-tRNAiMet complexes. Finally, PFM-tRNAiMet complexes also facilitate the visualization of native fluorescently labeled Tat binding to beads. This demonstrates the potential of our approach to advance precision protein engineering and biotechnology applications.


Assuntos
Biossíntese de Proteínas , RNA de Transferência de Metionina , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Metionina/genética , Metionina/metabolismo , Corantes , Racemetionina/metabolismo
10.
J Biochem Mol Toxicol ; 38(4): e23695, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511258

RESUMO

This article describes how methylcobalamin (MeCbl) restores nerve myelination in a moderate- grade hepatic encephalopathy (MoHE) model of ammonia neurotoxicity. The comparative profiles of myelin basic protein (MBP), homocysteine (Hcy) and methionine synthase (MS: a MeCbl- dependent enzyme) activity versus nerve myelination status were studied in the hippocampus of the control, the MoHE (developed by administering 100 mg/kg bw thioacetamide i.p. for 10 days) and the MoHE rats treated with MeCbl (500 µg/kg BW i.p.) for 7 days. Compared to those of control rats, the hippocampal CA1 and CA3 regions of the MoHE rats showed significantly lower myelinated areas and MBP immunostaining. This coincided with the deranged myelin layering in TEM images, decreased MBP protein and its transcript levels in hippocampus of MoHE rats. However, all these parameters recovered to normal levels after MeCbl treatment. MeCbl is a cofactor of MS that catalyzes the conversion of Hcy to methionine as a feeder step of methylation reactions. We observed significantly increased serum and hippocampal Hcy levels in MoHE rats, however, these levels were restored to control values with a concordant activation of MS due to MeCbl treatment. A significant recovery in neurobehavioral impairments in the MoHE rats due to MeCbl treatment was also observed. These findings suggest that MoHE pathogenesis is associated with deranged nerve myelination in the hippocampus and that MeCbl treatment is able to restore it mainly by activating MS, a MeCbl-dependent Hcy-metabolizing enzyme.


Assuntos
Encefalopatia Hepática , Vitamina B 12/análogos & derivados , Ratos , Animais , Metilação , Metionina
11.
Biotechnol J ; 19(3): e2300650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479990

RESUMO

S-Adenosyl-L-methionine (SAM) is a substrate for many enzyme-catalyzed reactions and provides methyl groups in numerous biological methylations, and thus has vast applications in the agriculture and medical field. Saccharomyces cerevisiae has been engineered as a platform with significant potential for producing SAM, but the current production has room for improvement. Thus, a method that consists of a series of metabolic engineering strategies was established in this study. These strategies included enhancing SAM synthesis, increasing ATP supply, down-regulating SAM metabolism, and down-regulating competing pathway. After combinatorial metabolic engineering, Bayesian optimization was conducted on the obtained strain C262P6S to optimize the fermentation medium. A final yield of 2972.8 mg·L-1 at 36 h with 29.7% of the L-Met conversion rate in the shake flask was achieved, which was 26.3 times higher than that of its parent strain and the highest reported production in the shake flask to date. This paper establishes a feasible foundation for the construction of SAM-producing strains using metabolic engineering strategies and demonstrates the effectiveness of Bayesian optimization in optimizing fermentation medium to enhance the generation of SAM.


Assuntos
Metionina , S-Adenosilmetionina , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Teorema de Bayes , Fermentação , Racemetionina/metabolismo
12.
J Am Chem Soc ; 146(10): 6493-6505, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426440

RESUMO

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Assuntos
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopia de Ressonância de Spin Eletrônica
13.
J Transl Med ; 22(1): 259, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461346

RESUMO

BACKGROUND: Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear. METHODS: Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples. RESULTS: Higher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration. CONCLUSION: This study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.


Assuntos
Aminoácidos , Fibrilação Atrial , Adulto , Humanos , Animais , Camundongos , Idoso , Aminoácidos/metabolismo , Fibrilação Atrial/metabolismo , Metabolômica/métodos , Metionina , Glutamatos
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474273

RESUMO

A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Metionina/análogos & derivados , Compostos de Sulfônio , Camundongos , Animais , Humanos , Platina/química , Simulação de Acoplamento Molecular , Zinco , Antineoplásicos/farmacologia , DNA/química , Pirazinas
15.
Metabolomics ; 20(2): 36, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446263

RESUMO

INTRODUCTION: Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE: To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS: We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS: Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION: Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.


Assuntos
Doenças Mitocondriais , Sepse , Choque Séptico , Humanos , Aminoácidos , N-Formilmetionina , Metabolômica , Metionina , Ácido Láctico , Racemetionina
16.
Food Microbiol ; 120: 104467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431319

RESUMO

The luxS mutant strains of Shewanella putrefaciens (SHP) were constructed to investigate the regulations of gene luxS in spoilage ability. The potential regulations of AI-2 quorum sensing (QS) system and activated methyl cycle (AMC) were studied by analyzing the supplementation roles of key circulating substances mediated via luxS, including S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), homocysteine (Hcy) and 4,5-dihydroxy-2,3-pentanedione (DPD). Growth experiments revealed that the luxS deletion led to certain growth limitations of SHP, which were associated with culture medium and exogenous additives. Meanwhile, the decreased biofilm formation and diminished hydrogen sulfide (H2S) production capacity of SHP were observed after luxS deletion. The relatively lower total volatile base nitrogen (TVB-N) contents and higher sensory scores of fish homogenate with luxS mutant strain inoculation also indicated the weaker spoilage-inducing effects after luxS deletion. However, these deficiencies could be offset with the exogenous supply of circulating substances mentioned above. Our findings suggested that the luxS deletion would reduce the spoilage ability of SHP, which was potentially attributed to the disorder of AMC and AI-2 QS system.


Assuntos
Percepção de Quorum , Shewanella putrefaciens , Animais , Percepção de Quorum/genética , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metionina/genética , Metionina/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
17.
Ann Nucl Med ; 38(5): 400-407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466549

RESUMO

OBJECTIVE: The uptake of [11C]methionine in positron emission tomography (PET) imaging overlapped in earlier images of tumors. Bayesian penalized likelihood (BPL) reconstruction increases the quantitative values of tumors compared with conventional ordered subset-expectation maximization (OSEM). The present study aimed to grade glioma malignancy based on the new WHO 2021 classification using [11C]methionine PET images reconstructed using BPL. METHODS: We categorized 32 gliomas in 28 patients as grades 2/3 (n = 15) and 4 (n = 17) based on the WHO 2021 classification. All [11C]methionine images were reconstructed using OSEM + time-of-flight (TOF) and BPL + TOF (ß = 200). Maximum standardized uptake value (SUVmax) and tumor-to-normal tissue ratio (T/Nmax) were measured at each lesion. RESULTS: The mean SUVmax was 4.65 and 4.93 in grade 2/3 and 6.38 and 7.11 in grade 4, and the mean T/Nmax was 7.08 and 7.22 in grade 2/3 and 9.30 and 10.19 in grade 4 for OSEM and BPL, respectively. The BPL significantly increased these values in grade 4 gliomas. The area under the receiver operator characteristic (ROC) curve (AUC) for SUVmax was the highest (0.792) using BPL. CONCLUSIONS: The BPL increased mean SUVmax and mean T/Nmax in lesions with higher contrast such as grade 4 glioma. The discrimination power between grades 2/3 and 4 in SUVmax was also increased using [11C]methionine PET images reconstructed with BPL.


Assuntos
Glioma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Metionina , Teorema de Bayes , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Racemetionina , Glioma/diagnóstico por imagem , Algoritmos , Organização Mundial da Saúde
18.
PLoS One ; 19(3): e0301133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547097

RESUMO

PURPOSE: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS: Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1ß and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS: The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1ß and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION: Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.


Assuntos
Alcaloides , Benzodioxóis , Nitrilas , Hepatopatia Gordurosa não Alcoólica , Piperidinas , Alcamidas Poli-Insaturadas , Sulfonas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , NF-kappa B/metabolismo , Piroptose , Fígado/metabolismo , Cirrose Hepática/patologia , Fibrose , Inflamação/patologia , Colina/metabolismo , Hepatócitos/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL
19.
Commun Biol ; 7(1): 380, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548921

RESUMO

S-Adenosyl-L-homocysteine hydrolase (SAHH) reversibly cleaves S-adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine-dependent methylation reactions. The conversion of S-adenosyl-L-homocysteine into adenosine and L-homocysteine plays an important role in the regulation of the methyl cycle. An alternative metabolic route for S-adenosyl-L-methionine regeneration in the extremophiles Methanocaldococcus jannaschii and Thermotoga maritima has been identified, featuring the deamination of S-adenosyl-L-homocysteine to S-inosyl-L-homocysteine. Herein, we report the structural characterisation of different archaeal SAHHs together with a biochemical analysis of various SAHHs from all three domains of life. Homologues deriving from the Euryarchaeota phylum show a higher conversion rate with S-inosyl-L-homocysteine compared to S-adenosyl-L-homocysteine. Crystal structures of SAHH originating from Pyrococcus furiosus in complex with SLH and inosine as ligands, show architectural flexibility in the active site and offer deeper insights into the binding mode of hypoxanthine-containing substrates. Altogether, the findings of our study support the understanding of an alternative metabolic route for S-adenosyl-L-methionine and offer insights into the evolutionary progression and diversification of SAHHs involved in methyl and purine salvage pathways.


Assuntos
Archaea , S-Adenosilmetionina , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Archaea/metabolismo , Adenosina/metabolismo , Metionina , Homocisteína
20.
Anticancer Res ; 44(4): 1499-1504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538002

RESUMO

BACKGROUND/AIM: Breast cancer is the most common and the deadliest cancer among women in the world. Treatment options for HER2-positive metastatic breast cancer patients are limited. Trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate (ADC), has recently been introduced as second-line chemotherapy for HER2-positive metastatic breast cancer. The aim of the present study was to evaluate the efficacy of methionine restriction with oral recombinant methioninase (o-rMETase) and a low-methionine diet combined with T-DXd, on a patient with HER2-positive recurrent stage IV breast cancer. CASE REPORT: A 66-year-old female was diagnosed with HER2-positive metastatic breast cancer. Computed tomography (CT) indicated peritoneal dissemination, thickening of the sigmoid colon and splenic flexure and widespread bone metastases. The patient was previously treated with fulvestrant, trastuzumab, pertuzumab, paclitaxel and capecitabine which were ineffective. T-DXd was administered as a second-line chemotherapy. Since the patient experienced strong side effects, the dose of T-Dxd was decreased. The patient began methionine restriction using o-rMETase and a low-methionine diet along with T-DXd. After the start of the combined treatment, CA15-3 and CA27.29, tumor markers for breast cancer, decreased rapidly from a very high level. The levels of both tumor markers are currently normal. Additionally, peritoneal-dissemination nodules, ascites and the thickness of the sigmoid colon and splenic flexure are no longer detected on CT. The patient maintains a high performance status, without severe side effects of the combination treatment. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with T-DXd as second-line chemotherapy, was highly effective in a patient with HER2-positive stage IV breast cancer.


Assuntos
Neoplasias da Mama , Camptotecina/análogos & derivados , Liases de Carbono-Enxofre , Imunoconjugados , Humanos , Feminino , Idoso , Neoplasias da Mama/tratamento farmacológico , Biomarcadores Tumorais , Trastuzumab/uso terapêutico , Metionina , Racemetionina , Dieta , Receptor ErbB-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...