Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
1.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611926

RESUMO

The design of novel 4'-thionucleoside analogues bearing a C2' stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2' center, along with different approaches to control the selectivity of the N-glycosidic bond. Intramolecular SN2-like cyclization of a mixture of acyclic thioaminals provided analogues with a pyrimidine nucleobase. A kinetic bias favoring cyclization of the 1',2'-anti thioaminal furnished the desired ß-D-4'-thionucleoside analogue in a 7:1 ratio. DFT calculations suggest that this kinetic resolution originates from additional steric clash in the SN2-like transition state for 1',4'-trans isomers, causing a significant decrease in their reaction rate relative to 1',4'-cis counterparts. N-glycosylation of cyclic glycosyl donors with a purine nucleobase enabled the formation of novel 2-chloroadenine 4'-thionucleoside analogues. These proprietary molecules and other derivatives are currently being evaluated both in vitro and in vivo to establish their biological profiles.


Assuntos
Carbono , Glicosídeos Cardíacos , Ciclização , Glicosilação , Tionucleosídeos
2.
Gut Microbes ; 16(1): 2300847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439565

RESUMO

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.


Assuntos
Desoxiadenosinas , Microbioma Gastrointestinal , Doenças Metabólicas , Tionucleosídeos , Humanos , Metionina , Bifidobacterium , Racemetionina
3.
Food Chem ; 446: 138906, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460278

RESUMO

Auricularia cornea has garnered attention due to its nutrition, culinary applications, and promising commercial prospects. However, there is little information available regarding the metabolic profiling of various colors strains. In this study, 642 metabolites across 64 classes were identified by LC-MS/MS to understand the metabolic variations between white, pink and dark brown strains. Notably, prenol lipids, carboxylic acids and fatty acyls accounted for 46.8 % of the total. Comparative analysis revealed 17 shared differential metabolites (DMs) among them. ACP vs ACW exhibited 17 unique metabolites, including d-arginine and maleic acid, etc. ACP vs ACB showed 5 unique metabolites, with only PS(18:1(9Z)/0:0) demonstrating up-regulation. ACB vs ACW showed 8 unique metabolites, including 4-hydroxymandelic acid and 5'-methylthioadenosine, etc. KEGG enrichment analysis highlighted pathway variations, and MetPA analysis identified key-pathways influencing DMs accumulation in A. cornea. This pioneering metabolomics study offers insights into A. cornea metabolic profiling, potential applications, and guides further research.


Assuntos
Basidiomycota , Desoxiadenosinas , Espectrometria de Massas em Tandem , Tionucleosídeos , Cromatografia Líquida , Metabolômica , Biomarcadores/metabolismo , Auricularia/metabolismo , Basidiomycota/metabolismo
4.
Microbiol Spectr ; 12(4): e0308623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441472

RESUMO

All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work in other organisms has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Rather, the DHAP shunt in Escherichia coli ATCC 25922, when introduced into E. coli K-12, enables the use of 5dAdo and MTA as a carbon source for growth. When MTA is the substrate, the sulfur component is not significantly recycled back to methionine but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. The DHAP shunt in ATCC 25922 is active under oxic and anoxic conditions. Growth using 5-deoxy-d-ribose was observed during aerobic respiration and anaerobic respiration with Trimethylamine N-oxide (TMAO), but not during fermentation or respiration with nitrate. This suggests the DHAP shunt may only be relevant for extraintestinal pathogenic E. coli lineages with the DHAP shunt that inhabit oxic or TMAO-rich extraintestinal environments. This reveals a heretofore overlooked role of the DHAP shunt in carbon and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt. IMPORTANCE: The acquisition and utilization of organic compounds that serve as growth substrates are essential for Escherichia coli to grow and multiply. Ubiquitous enzymatic reactions involving S-adenosyl-l-methionine as a co-substrate by all organisms result in the formation of the 5'-deoxy-nucleoside byproducts, 5'-methylthioadenosine and 5'-deoxyadenosine. All E. coli possess a conserved nucleosidase that cleaves these 5'-deoxy-nucleosides into 5-deoxy-pentose sugars for adenine salvage. The DHAP shunt pathway is found in some extraintestinal pathogenic E. coli, but its function in E. coli possessing it has remained unknown. This study reveals that the DHAP shunt enables the utilization of 5'-deoxy-nucleosides and 5-deoxy-pentose sugars as growth substrates in E. coli strains with the pathway during aerobic respiration and anaerobic respiration with TMAO, but not fermentative growth. This provides an insight into the diversity of sugar compounds accessible by E. coli with the DHAP shunt and suggests that the DHAP shunt is primarily relevant in oxic or TMAO-rich extraintestinal environments.


Assuntos
Desoxiadenosinas , Escherichia coli , Metilaminas , S-Adenosilmetionina , Tionucleosídeos , S-Adenosilmetionina/metabolismo , Escherichia coli/metabolismo , Fosfato de Di-Hidroxiacetona , Metionina/metabolismo , Bactérias/metabolismo , Pentoses , Carbono , Açúcares
5.
Int J Biol Macromol ; 263(Pt 1): 130216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378112

RESUMO

Detection of a pathogen is crucial prior to all prophylaxis and post exposure treatment, as it can prevent further disease manifestation. In this study, we have developed a nucleic acid pre-amplification based CRISPR diagnostic for detection and surveillance of Bacillus anthracis Sterne. Strand Invasion Based isothermal Amplification (SIBA) platform and Cas12a (CRISPR endo-nuclease) was used to develop CRISPR-SIBA, a multifaceted diagnostic platform. SIBA was employed as the isothermal pre-amplification platform. CRISPR-Cas12a based collateral trans-cleavage reaction was used to ensure and enhance the specificity of the system. Efficiency of the detection system was evaluated by detecting Bacillus anthracis Sterne in complex wastewater sample backgrounds. Previously reported, Prophage 3, Cya and Pag genes of Bacillus anthracis were used as targets for this assay. The amplification system provided reliable and specific detection readout, with a sensitivity limit of 100 colony forming units in 40 min. The endpoint fluorescence from CRISPR collateral cleavage reactions gave a detection limit of 105 to 106 CFUs. The experiments conducted in this study provide the evidence for SIBA's applicability and compatibility with CRISPR-Cas system and its efficiency to specifically detect Bacillus anthracis Sterne. CRISPR-SIBA can be translated into developing cost-effective diagnostics for pathogens in resource constrained settings.


Assuntos
Bacillus anthracis , Desoxiadenosinas , Recombinases , Tionucleosídeos , Recombinases/genética , Bacillus anthracis/genética , Sistemas CRISPR-Cas/genética , Bioensaio
6.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256110

RESUMO

Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.


Assuntos
Crassostrea , Desoxiadenosinas , Histonas , Tionucleosídeos , Animais , Hemócitos , Crassostrea/genética , Interleucina-1
7.
Addict Behav ; 151: 107953, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232635

RESUMO

AIM: While the United States is becoming increasingly Multiracial, much is still unknown about the behavioral health of these growing new generations of Multiracial Americans. To narrow this research gap, this study investigated the prevalence/frequency of substance use and major depressive episodes [MDE] among non-Hispanic Multiracial [NHM] adolescents compared to their non-Hispanic White [NHW] counterparts and whether racial differences vary by socioeconomic status. METHODS: We analyzed data from the 2015-2019 National Survey on Drug Use and Health (N = 3,645 NHM and 34,776 NHW adolescents aged 12-17). Average Marginal Effects derived from logistic regression and negative binomial regression were used to examine (1) differences in six outcomes (past-month use of alcohol, cannabis, or drugs other than cannabis [DOTC], past-year MDE, and the frequency of alcohol and cannabis use among past-month users) by Multiracial status; (2) the moderation effect of family income on these associations. RESULTS: Compared to high-income NHW adolescents, high-income NHM adolescents reported significantly higher prevalence of past-month cannabis and DOTC use, and past-year MDE. No racial differences were observed at other income levels. Furthermore, moderation analyses indicated that the effect of Multiracial status on MDE was larger in the highest income group compared to the lowest income group. CONCLUSION: Our findings suggested that NHM adolescents, particularly those from high income families, exhibit increased prevalence of drug use and depression than NHW adolescents. As the US becomes more diverse, there is a need to further examine the social and structural factors driving the identified racial differences.


Assuntos
Cannabis , Desoxicitidina/análogos & derivados , Transtorno Depressivo Maior , Transtornos Relacionados ao Uso de Substâncias , Tionucleosídeos , Humanos , Adolescente , Estados Unidos/epidemiologia , Depressão/epidemiologia , Prevalência , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Classe Social
8.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253555

RESUMO

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Assuntos
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Telomerase , Tionucleosídeos , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Telômero
9.
Toxicol Mech Methods ; 34(3): 283-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946400

RESUMO

Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.


Assuntos
Desoxicitidina/análogos & derivados , Compostos Orgânicos de Estanho , Tionucleosídeos , Gravidez , Feminino , Ratos , Masculino , Animais , Compostos Orgânicos de Estanho/toxicidade , Encéfalo , Proteínas de Transporte , Proteínas do Tecido Nervoso , Caderinas
10.
Int J Biol Macromol ; 257(Pt 1): 128638, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070801

RESUMO

The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Genoma , Diferenciação Sexual , Masculino , Humanos , Diferenciação Sexual/genética , Tionucleosídeos , Cromossomos
11.
Biochemistry ; 62(20): 2928-2933, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788145

RESUMO

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori (HpMTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with 2H, 13C, and 15N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics. Here, a slow-onset, tight-binding transition-state analogue of HpMTAN is characterized with heavy and light enzymes. Dissociation constants for the initial encounter complex (Ki) and for the tightly bound complex after slow-onset inhibition (Ki*) with hexylthio-DADMe-Immucillin-A (HTDIA) gave Ki values for light and heavy HpMTAN = 52 ± 10 and 85 ± 13 pM and Ki* values = 5.9 ± 0.3 and 10.0 ± 1.2 pM, respectively. HTDIA dissociates from heavy HpMTAN at 0.063 ± 0.002 min-1, faster than that from light HpMTAN at 0.032 ± 0.004 min-1. These values are consistent with transition-state formation by an improved catalytic site dynamic search and inconsistent with catalytic efficiency proportional to tight binding of the transition state.


Assuntos
Desoxiadenosinas , Tionucleosídeos , Desoxiadenosinas/química , Catálise , Domínio Catalítico , Tionucleosídeos/química , Purina-Núcleosídeo Fosforilase/química
12.
Curr Protoc ; 3(9): e892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37725690

RESUMO

Cyclic diadenosine monophosphate (c-di-AMP) is a bacterial cyclic dinucleotide (CDN) comprising two adenosine monophosphates covalently linked by two 3',5'-phosphodiester bonds. c-di-AMP works as a second messenger, regulating many biological processes in bacteria such as cell wall homeostasis, DNA integrity, and sporulation via specific protein and/or RNA receptors. Moreover, c-di-AMP can function as an immunomodulatory agent in eukaryote cells via the stimulator of interferon genes (STING) signaling pathway. This protocol describes the chemical synthesis of two c-di-AMP analogs with a sulfur atom at the 4'-position of the furanose ring instead of an oxygen atom: c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2). Analogs 1 and 2 have resistance to phosphodiesterase-mediated degradation and are therefore useful for understanding the diverse biological phenomena regulated by c-di-AMP. In this protocol, two 4'-thioadenosine monomers are initially prepared via a Pummerer-like reaction assisted by hypervalent iodine. The CDN skeleton is then constructed through two key reactions based on phosphoramidite chemistry: dimerization of two appropriately protected nucleoside monomers to produce a linear dinucleotide, followed by macrocyclization of the resulting linear dinucleotide to form the CDN skeleton. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 4'-thioadenosine monomers 13 and 14 Basic Protocol 2: Preparation of c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2).


Assuntos
Fosfatos de Dinucleosídeos , Tionucleosídeos , Homeostase , AMP Cíclico
13.
Curr Protoc ; 3(9): e878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747330

RESUMO

Starting from a commercially available thioether, we report a nine-step synthesis of a 4'-thiouridine phosphoramidite building-block. We install the uracil nucleobase using Pummerer-type glycosylation of a sulfoxide intermediate followed by a series of protecting group manipulations to deliver the desired phosphite. Notably, we introduce a 3',5'-O-di-tert-butylsilylene protecting group within a 4'-thiosugar framework, harnessing this to ensure regiospecific installation of the 2'-O-silyl protecting group. We envisage this methodology will be generally applicable to other 4'-thionucleosides and duly support the exploration of their inclusion within related nucleic acid syntheses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (2R,3S,4R)-2,3-O-Isopopropylidene-5-O-tert-butyldiphenylsilyl-1-(4-sulfinyl)cyclopentane: Sulfoxidation Basic Protocol 2: 2',3'-O-Isopropylidene-5'-O-tert-butyldiphenylsilyl-4'-thiouridine: Pummerer glycosylation Basic Protocol 3: 4'-Thiouridine: Deprotection Basic Protocol 4: 2'-O-tert-Butyldimethylsilyl-3',5'-di-tert-butylsiloxy-4'-thiouridine: 2',3',5'-O-silylation Basic Protocol 5: 2'-O-tert-Butyldimethylsilyl-4'-thiouridine: Selective 3'-5'-desilylation Basic Protocol 6: 2'-O-tert-Butyldimethylsilyl-5'-O-dimethoxytrityl-4'-thiouridine: 5'-O-dimethoxytritylation Basic Protocol 7: 2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethoxy)(N,N-diisopropylamino)phosphino]-5'-O-dimethoxytrityl-4'-thiouridine: 3'-O-phosphitylation.


Assuntos
Tionucleosídeos , Tiouridina , Sistema ABO de Grupos Sanguíneos , Oligonucleotídeos
14.
J Med Chem ; 66(17): 12249-12265, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37603705

RESUMO

Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/farmacologia , Antagonistas de Receptores de Andrógenos , Imunoterapia , Antagonistas de Receptores Purinérgicos P1 , Relação Estrutura-Atividade , Tionucleosídeos/química , Tionucleosídeos/farmacologia
15.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146655

RESUMO

Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Animais , Carcinoma de Célula de Merkel/patologia , Fibroblastos/metabolismo , Guanosina/análogos & derivados , Humanos , Poliomavírus das Células de Merkel/genética , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Estilbenos , Tionucleosídeos
16.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969806

RESUMO

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Assuntos
N-Glicosil Hidrolases , Água , Catálise , Desoxiadenosinas , Hidrólise , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase , Tionucleosídeos
17.
J Biol Chem ; 298(9): 102367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963436

RESUMO

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Assuntos
Arginina , Desoxiadenosinas , Purina-Núcleosídeo Fosforilase , Arginina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Humanos , Metionina/metabolismo , Metilação , Poliaminas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Tionucleosídeos
18.
Bioorg Med Chem Lett ; 61: 128605, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123007

RESUMO

Nucleoside analogues represent an historically accomplished class of antiviral drug. Notwithstanding this, new molecular scaffolds are required to overcome their limitations and evolve pharmacophore space within this established field. Herein, we develop concise synthetic access to a new 2'-deoxy-2'-fluoro-2'-C-methyl-4'-thionucleoside chemotype, including the ProTide form of the uridine analogue. Biological evaluation of these materials in the Hepatitis C replicon assay shows little activity for the canonical pyrimidine forms, but the phosphoramidate of 2'-deoxy-2'-fluoro-2'-C-methyl-ß-d-4'-thiouridine has an EC50 of 2.99 µM. Direct comparison to the established Hepatitis C drug Sofosbuvir shows a 100-fold drop in activity upon substituting the furanose chalcogen; the reasons for this are as yet unclear.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Hepacivirus/efeitos dos fármacos , Tionucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tionucleosídeos/síntese química , Tionucleosídeos/química , Replicação Viral/efeitos dos fármacos
19.
Antiviral Res ; 198: 105254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101534

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid global emergence of SARS-CoV-2 highlights the importance and urgency for potential drugs to control the pandemic. The functional importance of RNA-dependent RNA polymerase (RdRp) in the viral life cycle, combined with structural conservation and absence of closely related homologs in humans, makes it an attractive target for designing antiviral drugs. Nucleos(t)ide analogs (NAs) are still the most promising broad-spectrum class of viral RdRp inhibitors. In this study, using our previously developed cell-based SARS-CoV-2 RdRp report system, we screened 134 compounds in the Selleckchemicals NAs library. Four candidate compounds, Fludarabine Phosphate, Fludarabine, 6-Thio-20-Deoxyguanosine (6-Thio-dG), and 5-Iodotubercidin, exhibit remarkable potency in inhibiting SARS-CoV-2 RdRp. Among these four compounds, 5-Iodotubercidin exhibited the strongest inhibition upon SARS-CoV-2 RdRp, and was resistant to viral exoribonuclease activity, thus presenting the best antiviral activity against coronavirus from a different genus. Further study showed that the RdRp inhibitory activity of 5-Iodotubercidin is closely related to its capacity to inhibit adenosine kinase (ADK).


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores da Síntese de Ácido Nucleico/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tubercidina/análogos & derivados , Linhagem Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/genética , Tionucleosídeos/farmacologia , Tubercidina/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/farmacologia
20.
J Med Chem ; 65(3): 1749-1766, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041419

RESUMO

The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of MTAP-deleted cancers. Here, we report the discovery of development candidate MRTX1719. MRTX1719 is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in MTAP-deleted cells compared to MTAP-wild-type cells. Daily oral administration of MRTX1719 to tumor xenograft-bearing mice demonstrated dose-dependent inhibition of PRMT5-dependent symmetric dimethylarginine protein modification in MTAP-deleted tumors that correlated with antitumor activity. A 4-(aminomethyl)phthalazin-1(2H)-one hit was identified through a fragment-based screen, followed by X-ray crystallography, to confirm binding to the PRMT5•MTA complex. Fragment growth supported by structural insights from X-ray crystallography coupled with optimization of pharmacokinetic properties aided the discovery of development candidate MRTX1719.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Ftalazinas/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Desoxiadenosinas/metabolismo , Feminino , Deleção de Genes , Humanos , Camundongos Nus , Ftalazinas/síntese química , Ftalazinas/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Tionucleosídeos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...