Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.129
Filtrar
1.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611949

RESUMO

Olibanum is a resinous traditional Chinese medicine that is directly used as a powder. It is widely used in China and is often combined with other traditional Chinese medicine powders to promote blood circulation and relieve pain, as well as to treat rheumatism, rheumatoid arthritis, and osteoarthritis. Powdered traditional Chinese medicine is often easily contaminated by microorganisms and 60Co irradiation is one of the good sterilization methods. Volatile organic compounds (VOCs) are the main active ingredient of olibanum. The aim of this study was to validate the optimum doses of 60Co irradiation and its effect on VOCs. 60Co irradiation was applied in different doses of 0 kGy, 1.5 kGy, 3.0 kGy, and 6.0 kGy. Changes in VOCs were detected using gas chromatography ion mobility spectrometry. A total of 81 VOCs were identified. The odor fingerprint results showed that, with an increase in irradiation dose, most of the VOCs of olibanum changed. Through principal component analysis, cluster analysis, and partial least squares discriminant analysis, it was demonstrated that, at 1.5 kGy, the impact of radiation on the VOCs of olibanum was minimal, indicating this is a relatively good irradiation dose. This study provides a theoretical basis for the irradiation processing and quality control of resinous medicinal materials such as olibanum and it also provides a good reference for irradiation technology development and its application to functional foods, thus making it both significant from a research perspective and useful from an application perspective.


Assuntos
Radioisótopos de Cobalto , Franquincenso , Compostos Orgânicos Voláteis , Espectrometria de Mobilidade Iônica , Cromatografia Gasosa-Espectrometria de Massas , Resinas Vegetais
2.
Clin Chim Acta ; 557: 117895, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561063

RESUMO

The discovery of new diagnostic tools for the early detection of diseases with poor prognosis such as pancreatic adenocarcinoma (PAC) is of high importance. The results from a control-case study (20 PAC patients, 19 healthy controls) for the search of new biomarkers of pancreatic cancer based in differences in the serum volatolome are presented in this work. Volatolomics were performed following a non-targeted HS-SPME-GC/MS approach, and a total of 433 volatile organic compounds (VOCs) was detected in the human serum samples. Of these, 125 VOC indexes showed a significant variation when controls and patients were compared (p-value < 0.05). Bonferroni corrected p-values < 0.05 were found for 40 features. PCA analysis showed the control-PAC discrimination capability of VOCs in serum, and PLS-DA was performed to select the best candidate biomarkers for the diagnosis of PAC. For the 40 selected VOCs, calculated areas under the curve (AUC) ranged from 0.98 to 0.85, and 11 of them were successfully validated using an independent set of samples (5 PAC patients, 5 healthy controls). Four of the proposed PAC biomarkers were identified as toluene, 2-ethyl-1-hexanol, pentylbenzene, and butoxymethylbenzene. Combinations of the identified PAC biomarkers were tested and showed AUC > 0.90, with the more promising candidate being butoxymethylbenzene (AUC = 0.98).


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Compostos Orgânicos Voláteis , Humanos , Adenocarcinoma/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Biomarcadores , Compostos Orgânicos Voláteis/análise
3.
J Environ Manage ; 357: 120730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574705

RESUMO

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Medição de Risco , Indústria Manufatureira , Alcenos , China
4.
Ecotoxicol Environ Saf ; 275: 116250, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552387

RESUMO

Forests emit a large amount of biogenic volatile organic compounds (BVOCs) in response to biotic and abiotic stress. Despite frequent occurrence of large forest fires in recent years, the impact of smoke stress derived from these forest fires on the emission of BVOCs is largely unexplored. Thus, the aims of the study were to quantify the amount and composition of BVOCs released by two sub-tropical tree species, Cunninghamia lanceolata and Schima superba, in response to exposure to smoke. Physiological responses and their relationship with BVOCs were also investigated. The results showed that smoke treatments significantly (p < 0.001) promoted short-term release of BVOCs by C. lanceolata leaves than S. superba; and alkanes, olefins and benzene homologs were identified as major classes of BVOCs. Both C. lanceolata and S. superba seedlings showed significant (p < 0.005) physiological responses after being smoke-stressed where photosynthetic rate remained unaffected, chlorophyll content greatly reduced and Activities of anti-oxidant enzymes and the malondialdehyde content generally increased with the increase in smoke concentration. Activities of anti-oxidant enzymes showed mainly positive correlations with the major BVOCs. In conclusion, the release of BVOCs following smoke stress is species-specific and there exists a link between activities of antioxidant enzymes and BVOCs released. The findings provide insight about management of forest fires in order to control excessive emission of smoke that would trigger increased release of BVOCs.


Assuntos
Compostos Orgânicos Voláteis , Incêndios Florestais , Árvores , Antioxidantes , Fumar
5.
J Virol Methods ; 326: 114910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452823

RESUMO

INTRODUCTION: SARS-CoV-2 is usually diagnosed from naso-/oropharyngeal swabs which are uncomfortable and prone to false results. This study investigated a novel diagnostic approach to Covid-19 measuring volatile organic compounds (VOC) from patients' urine. METHODS: Between June 2020 and February 2021, 84 patients with positive RT-PCR for SARS-CoV-2 were recruited as well as 54 symptomatic individuals with negative RT-PCR. Midstream urine samples were obtained for VOC analysis using ion mobility spectrometry (IMS) which detects individual molecular components of a gas sample based on their size, configuration, and charge after ionization. RESULTS: Peak analysis of the 84 Covid and 54 control samples showed good group separation. In total, 37 individual specific peaks were identified, 5 of which (P134, 198, 135, 75, 136) accounted for significant differences between groups, resulting in sensitivities of 89-94% and specificities of 82-94%. A decision tree was generated from the relevant peaks, leading to a combined sensitivity and specificity of 98% each. DISCUSSION: VOC-based diagnosis can establish a reliable separation between urine samples of Covid-19 patients and negative controls. Molecular peaks which apparently are disease-specific were identified. IMS is an additional non-invasive and cheap device for the diagnosis of this ongoing endemic infection. Further studies are needed to validate sensitivity and specificity.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Compostos Orgânicos Voláteis/análise , Espectrometria de Mobilidade Iônica , Sensibilidade e Especificidade , Teste para COVID-19
6.
Food Chem ; 447: 138968, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489877

RESUMO

Given the severe problem of Baijiu authenticity, it is essential to discriminate Baijiu from different origins quickly and effectively. As organic acids (OAs) are the most dominant taste-imparting substances in Baijiu, we proposed a simple, fast, and effective OAs-targeted colorimetric sensor array based on the colorimetric reaction of 4-aminophenol (AP)/4-amino-3-chlorophenol (ACP) under oxidation of Cu(NO3)2 for the rapid discrimination of origins of Baijiu with three main aroma types. Hydrogen ions ionized from OAs induced the protonation of the amino group, which blocked the colorimetric reaction, and the different levels of OAs in Baijiu enabled the array to discriminate different origins of Baijiu. The array was implemented to analyze 10 simple OAs and 16 mixed OAs and further for the discrimination of 42 Baijius with an accuracy of 98%. This method provided an efficient research strategy for a basis for rapid quality analysis of Baijiu.


Assuntos
Clorofenóis , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Colorimetria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Ácidos/análise
7.
Food Chem ; 447: 138877, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492302

RESUMO

The UHPLCHRMS and Gas Chromatography-Olfactometry-Mass Spectrometry (GC-O-MS) techniques were applied to investigate effects of lipid molecules and heat transfer on the generation of aroma compounds in roasted chicken skin. Nineteen odorants were identified as most important aroma contributors based on odor activity values (OAVs) exceeding 1. Lipidomic analysis identified 3926 lipids in the samples, in which triglycerides (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and ceramide (Cer) had a contribution of 20.63%, 12.46%, 11.95%, and 11.39%, respectively. Furthermore, it was observed that PS(18:3e_22:5) and TG(18:0_18:1_18:1) serve as significant chemical markers for distinguishing chicken skin during the roasting (p < 0.05). TGs, notably TG(16:1_18:1_18:2) and TG(18:1_18:2_18:2), were postulated as key retainers for binding crucial aroma compounds. Meanwhile, PC, PE, and Cer played pivotal roles in aroma compound formation. Additionally, higher thermal conductivity and reduced thermal diffusivity significantly contributed to the formation of key odorants.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Olfatometria/métodos , Odorantes/análise , Galinhas , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Compostos Orgânicos Voláteis/análise , Lipídeos
8.
Food Chem ; 447: 139023, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507949

RESUMO

This study presents a method employing gas chromatography coupled with mass spectrometry and headspace solid-phase microextraction (HS-SPME-GC-MS), supplemented with chemometrics (Soft independent modelling of class analogies - SIMCA), to analyze volatile organic compound (VOCs) profiles in suspect whiskey samples. Furthermore, a sensory analysis of aroma and color was conducted with a panel of 52 non-trained volunteers to evaluate their ability to discriminate and preference for counterfeit whiskeys. The HS-SPME-GC-MS method successfully distinguished 41 seized samples from authentic beverages. Interestingly, sensory analysis revealed that panelists could differentiate between counterfeit and authentic samples with a reference standard but did not consistently show a preference for aroma. In some cases, there was even a preference for the color of counterfeit whiskeys. The findings suggest that sensorial tests alone may not effectively distinguish counterfeit from authentic whiskeys, especially for non-expert consumers, highlighting the need for analytical instrumentation methods in fraud detection.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Humanos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Bebidas Alcoólicas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Microextração em Fase Sólida/métodos
9.
Sci Rep ; 14(1): 6870, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519512

RESUMO

Bee bread is one of the least studied bee products. In this study, ten bee bread samples were characterized using palynology and HS-SPME-GC-MS (headspace solid-phase microextraction gas chromatography-mass spectrometry). In total, over one hundred different volatile components were identified, belonging to different chemical groups. Only ten common components were detected in all the samples. These volatiles were ethanol, ethylene chloride, ethyl acetate, acetic acid, α-pinene, furfural, nonane, nonanal, n-hexane and isovaleric acid. Several other components were commonly shared among various bee bread samples. Over sixty detected compounds have not been previously reported in bee bread. The analysis required a mild extraction temperature of 40 °C, as higher temperatures resulted in the Maillard reaction, leading to the production of furfural. The profile of volatile compounds of the tested bee pollen samples was complex and varied. Some relationships have been shown between botanical origin and volatile organic compound profile.


Assuntos
Própole , Compostos Orgânicos Voláteis , Abelhas , Animais , Furaldeído/análise , Compostos Orgânicos Voláteis/análise , Ácido Acético , Microextração em Fase Sólida/métodos
10.
J Agric Food Chem ; 72(14): 8060-8071, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533667

RESUMO

Smoke taint in wine has become a critical issue in the wine industry due to its significant negative impact on wine quality. Data-driven approaches including univariate analysis and predictive modeling are applied to a data set containing concentrations of 20 VOCs in 48 grape samples and 56 corresponding wine samples with a taster-evaluated smoke taint index. The resulting models for predicting the smoke taint index of wines are highly predictive when using as inputs VOC concentrations after log conversion in both grapes and wines (Pearson Correlation Coefficient PCC = 0.82; R2 = 0.68) and less so when only grape VOCs are used (Pearson Correlation Coefficient PCC = 0.76; R2 = 0.56), and the classification models also show the capacity for detecting smoke-tainted wines using both wine and grape VOC concentrations (Recall = 0.76; Precision = 0.92; F1 = 0.82) or using only grape VOC concentrations (Recall = 0.74; Precision = 0.92; F1 = 0.80). The performance of the predictive model shows the possibility of predicting the smoke taint index of the wine and grape samples before fermentation. The corresponding code of data analysis and predictive modeling of smoke taint in wine is available in the Github repository (https://github.com/IBPA/smoke_taint_prediction).


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Compostos Orgânicos Voláteis/análise , Fumaça/análise , Frutas/química , Tabaco
11.
Science ; 383(6689): 1318-1325, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513014

RESUMO

Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (-)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).


Assuntos
Furanos , Hidrolases , Petunia , Piranos , Compostos Orgânicos Voláteis , Hidrolases/genética , Hidrolases/metabolismo , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo , Petunia/fisiologia , Furanos/metabolismo , Piranos/metabolismo , Sesquiterpenos de Germacrano/metabolismo
12.
Plant Physiol Biochem ; 208: 108532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503189

RESUMO

Potatoes are a staple crop with many health benefits. Postharvest storage of potatoes takes a considerable amount of time. Potato dry rot is one of the most serious postharvest storage diseases, caused primarily by the fungus Fusarium sambucinum. It is possible to minimize losses if disease is detected early, which allows it to be controlled promptly. A phytopathogen infection can alter the volatile profile of plants. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection is an area of considerable research interest. In this study, we compared the VOC profiles of healthy and dry rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). There were 29 differentially emitting VOCs between healthy and dry rot inoculated potatoes. Nevertheless, only four of these compounds (linalool tetrahydride, γ-muurolene, alloaromadendrene, and α-isomethyl ionone) were exclusively found in dry rot inoculated potatoes, and hence they were considered biomarkers. Furthermore, reactive oxygen species (ROS) levels were altered in potatoes that were inoculated with dry rot, suggesting a role for ROS signaling in differential VOC emissions. In the early stages of dry rot infection, when symptoms were barely visible, these four biomarker VOCs were robustly useful in distinguishing healthy and dry rot-infected potatoes. These novel biomarkers associated with this disease are promising candidates for non-destructive detection of dry rot in stored potatoes at an early asymptomatic stage. These biomarkers can be used to develop an e-nose sensor to predict dry rot in the future.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Espécies Reativas de Oxigênio , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores
13.
BMC Public Health ; 24(1): 671, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431552

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a health issue consisting of multiple metabolic abnormalities. The impact of exposure to volatile organic compounds (VOCs) on MetS and its components remains uncertain. This study aimed to assess the associations of individual urinary metabolites of VOC (mVOCs) and mVOC mixtures with MetS and its components among the general adult population in the United States. METHODS: A total of 5345 participants with eligible data were filtered from the 2011-2020 cycles of the National Health and Nutrition Examination Survey. Multivariate logistic regression models were applied to assess the associations of individual mVOCs with MetS and its components. The least absolute shrinkage and selection operator (LASSO) regression models were constructed to identify more relevant mVOCs. The weight quantile sum regression model was applied to further explore the links between mVOC co-exposure and MetS and its components. RESULTS: The results indicated positive associations between multiple mVOCs and MetS, including CEMA, DHBMA, and HMPMA. CEMA was found to be positively correlated with all components of MetS. HMPMA was associated with elevated triglyceride (TG), reduced high-density lipoprotein, and fasting blood glucose (FBG) impairment; 3HPMA was associated with an elevated risk of high TG and FBG impairment; and DHBMA had positive associations with elevated TG and high blood pressure. The co-exposure of LASSO-selected mVOCs was associated with an increased risk of elevated TG, high blood pressure, and FBG impairment. CONCLUSION: Positive associations of certain individual urinary mVOCs and mVOC mixtures with MetS and its components were observed by utilizing multiple statistical models and large-scale national data. These findings may serve as the theoretical basis for future experimental and mechanistic studies and have important implications for public health.


Assuntos
Hipertensão , Síndrome Metabólica , Compostos Orgânicos Voláteis , Adulto , Humanos , Síndrome Metabólica/diagnóstico , Fatores de Risco , Estudos Transversais , Inquéritos Nutricionais
14.
Commun Biol ; 7(1): 258, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431745

RESUMO

Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Masculino , Feminino , Compostos Orgânicos Voláteis/análise , Metabolômica/métodos , Expiração , Testes Respiratórios/métodos , Biomarcadores/análise
15.
Environ Sci Technol ; 58(11): 5058-5067, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445590

RESUMO

In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Ventilação , Poluição do Ar em Ambientes Fechados/análise , Gases , Poluentes Atmosféricos/análise , Monitoramento Ambiental
16.
J Breath Res ; 18(2)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467063

RESUMO

Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.


Assuntos
Neoplasias Gástricas , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes Respiratórios/métodos , Biomarcadores/análise , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Suco Gástrico/metabolismo
17.
Environ Sci Technol ; 58(11): 5047-5057, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437595

RESUMO

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , California , Aerossóis/análise
18.
Environ Sci Technol ; 58(12): 5430-5441, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471097

RESUMO

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Temperatura , Monitoramento Ambiental/métodos , China
19.
Sci Rep ; 14(1): 7238, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538690

RESUMO

Thirty-five women were included in a clinical study to characterize the volatile organic compounds (VOCs) emitted by the skin during exposure to psychological stress. An original silicon-based polymeric phase was used for VOC sampling on the forehead before and after stress induction. Cognitive stress was induced using specialized software that included a chronometer for semantic and arithmetic tasks. Assessment of stress was monitored using a State-trait anxiety inventory questionnaire, analysis of participants' verbal expressions and clinical measurements. Identification and relative quantification of VOCs were performed by gas chromatography-mass spectrometry. Stress induction was validated by a significant increase in state-anxiety as indicated by the questionnaire, modifications in electrodermal activity measurements and the expression of stress verbatims. In parallel, a sebum production increase and a skin pH decrease were observed. A total of 198 VOCs with different potential sources were identified. They were categorized in 5 groups: probable cosmetic composition, VOCs produced by the body or its microbiota, environmental origin, and dietary intake. In our qualitative statistical approach, three VOCs were found to be correlated with stress induction and 14 compounds showed significance in the paired Wilcoxon test. Fatty-acyls derived from lipids were predominantly identified as well as ethylbenzenes.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Feminino , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Pele/metabolismo , Estresse Psicológico , Poluentes Atmosféricos/análise , Monitoramento Ambiental
20.
J Oleo Sci ; 73(4): 503-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556284

RESUMO

This study was investigated the effect of adding fat to pork sausage on taste and aroma persistence. Sensory evaluation indicated that increasing fat content intensified umami and saltiness perception, enhancing the mouthfulness and flavor persistence, leading to Koku enhancing effect. Gas chromatography/mass spectrometry (GC/MS) analysis identified aroma compounds such as ß-pinene, 3-carene, D-limonene, octanal, nonanal, caryophyllene, and methyl eugenol, which were consistently present regardless of fat content. These aroma compounds were less likely to be released as the fat content increased. Furthermore, the release of these aroma compounds from the sausage with addition of fat was larger than that without addition of fat in the presence of saline, indicating that the added fat retained these aroma compounds and released them in the presence of saline. This suggests that sausages with added fat release more aroma compounds during consumption, resulting in a more intense flavor and flavor persistence of Koku perception. These seven compounds detected in pork sausage were found to be easily retained by cholesterol and lecithin, likely due to differences in their log P values (octanol/water partition coefficients), which were greater than 3.


Assuntos
Carne de Porco , Carne Vermelha , Compostos Orgânicos Voláteis , Animais , Suínos , Paladar , Carne Vermelha/análise , Carne de Porco/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Percepção , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...