Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.280
Filtrar
1.
Behav Brain Res ; 465: 114956, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479475

RESUMO

Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.


Assuntos
Epilepsia , Nanopartículas Metálicas , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Masculino , Bicuculina/farmacologia , Platina/efeitos adversos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
2.
Sci Rep ; 14(1): 6402, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493224

RESUMO

Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3ß-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.


Assuntos
Pregnanolona , Progesterona , Gravidez , Feminino , Ratos , Animais , Pregnanolona/farmacologia , Progesterona/farmacologia , Antígeno Nuclear de Célula em Proliferação , Bicuculina/farmacologia , Receptores de GABA-A , Corpo Lúteo
3.
Pharmacol Biochem Behav ; 236: 173710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262489

RESUMO

Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or ß-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and ß-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and ß-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and ß-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and ß-noradrenergic receptors in the MH, both α1- and ß-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.


Assuntos
Transtorno de Pânico , Ratos , Masculino , Animais , Núcleo Hipotalâmico Ventromedial , Bicuculina/farmacologia , Ratos Wistar , Transmissão Sináptica , Microinjeções
4.
Biomed Chromatogr ; 38(3): e5802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110194

RESUMO

Bicuculline is a natural isoquinoline alkaloid that works as a gamma-aminobutyric acid receptor antagonist. It is widely found in Papaveraceae plants used in traditional Chinese medicines. Bicuculline not only has been shown to have favorable analgesic, memory-improving, and anxiolytic effects but may also cause adverse effects such as convulsions and epilepsy. A simple, rapid, and sensitive method was developed and validated for the determination of bicuculline in the plasma and tissue samples in rats by ultra-high-performance liquid chromatography-tandem mass spectrometry (MS/MS). The chromatographic separation was performed on a Thermo Scientific C18 column. The MS/MS system was operated in the positive multiple reaction monitoring mode, and the precursor-product ion transitions were optimized as m/z 368.0 → 307.1 for bicuculline and as 354.1 → 188.1 for protopine (internal standard). The linearity, accuracy, precision, recovery, and matrix effect were within acceptable limits. The experimental data showed that bicuculline was rapidly absorbed and eliminated in rats, with a moderate plasma protein binding ratio and low bioavailability. The main tissues of distribution were the kidney, liver, and brain; bicuculline could exert its pharmacological effects across the blood-brain barrier. This study has positive implications for the clinical use of herbal medicines containing bicuculline and for further development.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Bicuculina , Ratos Sprague-Dawley , Distribuição Tecidual , Ligação Proteica , Administração Intravenosa , Reprodutibilidade dos Testes
5.
Pflugers Arch ; 476(3): 337-350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159130

RESUMO

In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.


Assuntos
Canais de Cálcio Tipo T , Epilepsia Tipo Ausência , Ratos , Animais , Masculino , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/metabolismo , Ratos Wistar , Receptores de GABA-A , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Eletroencefalografia , Anticonvulsivantes/uso terapêutico , Muscimol , Bicuculina , Bloqueadores dos Canais de Cálcio/farmacologia , Ácido gama-Aminobutírico , Modelos Animais de Doenças
6.
Artigo em Inglês | MEDLINE | ID: mdl-38083479

RESUMO

Goal of this work is to show how the developmental conditions of in vitro neuronal networks influence the effect of drug delivery. The proposed experimental neuronal model consists of dissociated cortical neurons plated to Micro-Electrode Arrays (MEAs) and grown according to different conditions (i.e., by varying both the adopted culture medium and the number of days needed to let the network grow before performing the chemical modulation). We delivered rising amount of bicuculline (BIC), a competitive antagonist of GABAA receptors, and we computed the firing rate dose-response curve for each culture. We found that networks matured in BrainPhys for 18 days in vitro exhibited a decreasing firing trend as a function of the BIC concentration, quantified by an average IC50 (i.e., half maximal inhibitory concentration) of 4.64 ± 4.02 µM. On the other hand, both cultures grown in the same medium for 11 days, and ones matured in Neurobasal for 18 days displayed an increasing firing rate when rising amounts of BIC were delivered, characterized by average EC50 values (i.e., half maximal excitatory concentration) of 0.24 ± 0.05 µM and 0.59 ± 0.46 µM, respectively.Clinical Relevance- This research proves the relevance of the experimental factors that can influence the network development as key variables when developing a neuronal model to conduct drug delivery in vitro, simulating the in vivo environment. Our findings suggest that not considering the consequences of the chosen growing conditions when performing in vitro pharmacological studies could lead to incomplete predictions of the chemically induced alterations.


Assuntos
Neurônios , Bicuculina/farmacologia , Neurônios/fisiologia , Eletrodos
7.
Neuron ; 111(21): 3450-3464.e5, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659407

RESUMO

The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.


Assuntos
Receptores de GABA-A , Ácido gama-Aminobutírico , Humanos , Receptores de GABA-A/metabolismo , Picrotoxina/farmacologia , Ligantes , Ácido gama-Aminobutírico/metabolismo , Bicuculina/farmacologia , Sítios de Ligação
8.
J Exp Biol ; 226(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694288

RESUMO

Fossorial Damaraland mole-rats (Fukomys damarensis) mount a robust hypoxic metabolic response (HMR) but a blunted hypoxic ventilatory response (HVR) to acute hypoxia. Although these reflex physiological responses have been described previously, the underlying signalling pathways are entirely unknown. Of particular interest are contributions from γ-aminobutyric acid (GABA), which is the primary inhibitory neurotransmitter in the nervous system of most adult mammals, and adenosine, the accumulation of which increases during hypoxia as a breakdown product of ATP. Therefore, we hypothesized that GABAergic and/or adenosinergic signalling contributes to the blunted HVR and robust HMR in Damaraland mole-rats. To test this hypothesis, we injected adult animals with saline alone (controls), or 100 mg kg-1 aminophylline or 1 mg kg-1 bicuculline, to block adenosine or GABAA receptors, respectively. We then used respirometry, plethysmography and thermal RFID probes to non-invasively measure metabolic, ventilator and thermoregulatory responses, respectively, to acute hypoxia (1 h in 5 or 7% O2) in awake and freely behaving animals. We found that bicuculline had relatively minor effects on metabolism and thermoregulation but sensitized ventilation such that the HVR became manifest at 7% instead of 5% O2 and was greater in magnitude. Aminophylline increased metabolic rate, ventilation and body temperature in normoxia, and augmented the HMR and HVR. Taken together, these findings indicate that adenosinergic and GABAergic signalling play important roles in mediating the robust HMR and blunted HVR in Damaraland mole-rats.


Assuntos
Adenosina , Aminofilina , Animais , Bicuculina/farmacologia , Adenosina/farmacologia , Ratos-Toupeira/fisiologia , Hipóxia/metabolismo , Ácido gama-Aminobutírico
9.
Phytomedicine ; 119: 154969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516088

RESUMO

BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.


Assuntos
Antipruriginosos , Qualidade de Vida , Camundongos , Animais , Antipruriginosos/efeitos adversos , Peptídeo Liberador de Gastrina/metabolismo , Peptídeo Liberador de Gastrina/farmacologia , Bicuculina/efeitos adversos , Bicuculina/metabolismo , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Medula Espinal , Cloroquina/farmacologia , Ácido gama-Aminobutírico/metabolismo
10.
Respir Physiol Neurobiol ; 315: 104115, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460080

RESUMO

Bicuculline and saclofen were microinjected into the rostral (rNTS) and caudal nucleus of the solitary tract (cNTS) in 17 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed. Bilateral microinjections of 1 mM bicuculline in the rNTS significantly reduced the number of coughs (CN), amplitudes of DIA and ABD EMG, inspiratory and expiratory EP, and prolonged the duration of the cough expiratory phase (CTE) as well as the total cough cycle duration (CTtot). Bilateral microinjections of 2 mM saclofen reduced only cough expiratory efforts. Bilateral microinjection of bicuculline in the cNTS significantly reduced CN and amplitudes of ABD EMG and elongated CTE and CTtot. Bilateral microinjections of saclofen in cNTS had no significant effect on analyzed cough parameters. Our results confirm a different GABAergic inhibitory system in the rNTS and cNTS acting on mechanically induced cough in cats.


Assuntos
Tosse , Núcleo Solitário , Gatos , Animais , Tosse/tratamento farmacológico , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/uso terapêutico , Baclofeno/farmacologia , Microinjeções
11.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446169

RESUMO

Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.


Assuntos
Hipocampo , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Bicuculina/farmacologia , Neurônios , Potenciais de Ação , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
12.
Behav Pharmacol ; 34(4): 225-235, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171461

RESUMO

Although ethanol administration produces a range of physiological effects, the rewarding aspect associated with its consumption is a major contributory factor to its abuse liability. Recently, lateral habenula (LHb) has been shown to be engaged by both rewarding and aversive stimuli. Its major glutamatergic output, the fasciculus retroflexus, projects to the rostromedial tegmental nucleus (RMTg) and controls the activity of the ventral tegmental area (VTA) dopaminergic system to promote reward circuitry. While several attempts have been made to understand the relationship between LHb and addiction, there is still a lack of knowledge in relation to ethanol addiction. In the present study, by pharmacologically exacerbating or inhibiting the LHb or RMTg neuronal activity during a post-conditioning test, we investigated the role of LHb-RMTg fasciculus retroflexus in ethanol-induced reward behavior using the conditioned place preference (CPP) test. We found that activation of LHb glutamatergic system by intra-LHb administration of l-trans-2,4-pyrrolidine dicarboxylate (PDC) (glutamate transporter inhibitor) significantly decreased CPP score; on the contrary, lamotrigine (inhibits glutamate release) significantly increased CPP score and showed a rewarding effect in CPP. Instead, intra-RMTg administration of muscimol (GABAA receptor agonist) significantly increased CPP score, whereas bicuculline (GABAA antagonist) treatment decreased CPP score. In immunohistochemistry, we found that PDC administration significantly decreased, whereas lamotrigine treatment significantly increased tyrosine hydroxylase immunoreactivity (TH-ir) in VTA and nucleus accumbens (NAc). Furthermore, while intra-RMTg administration of muscimol increased, the bicuculline treatment significantly decreased the TH-ir in VTA and NAc. Together, our behavioral and immunohistochemical results signify the role of LHb and RMTg in the expression of ethanol-conditioned reward behavior.


Assuntos
Habenula , Habenula/metabolismo , Bicuculina/farmacologia , Bicuculina/metabolismo , Lamotrigina/metabolismo , Muscimol/farmacologia , Muscimol/metabolismo , Área Tegmentar Ventral/fisiologia , Etanol/farmacologia , Etanol/metabolismo
13.
Epilepsia ; 64(7): 1939-1950, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37133275

RESUMO

OBJECTIVE: Focal epilepsy is thought to be a network disease, in which epileptiform activity can spread noncontiguously through the brain via highly interconnected nodes, or hubs, within existing networks. Animal models confirming this hypothesis are scarce, and our understanding of how distant nodes are recruited is also lacking. Whether interictal spikes (IISs) also create and reverberate through a network is not well understood. METHODS: We injected bicuculline into the S1 barrel cortex and employed multisite local field potential and Thy-1 and parvalbumin (PV) cell mesoscopic calcium imaging during IISs to monitor excitatory and inhibitory cells in two monosynaptically connected nodes and one disynaptically connected node: ipsilateral secondary motor area (iM2), contralateral S1 (cS1), and contralateral secondary motor area (cM2). Node participation was analyzed with spike-triggered coactivity maps. Experiments were repeated with 4-aminopyridine as an epileptic agent. RESULTS: We found that each IIS reverberated throughout the network, differentially recruiting both excitatory and inhibitory cells in all connected nodes. The strongest response was found in iM2. Paradoxically, node cM2, which was connected disynaptically to the focus, was recruited more intensely than node cS1, which was connected monosynaptically. The explanation for this effect could be found in node-specific excitatory/inhibitory (E/I) balance, as cS1 demonstrated greater PV inhibitory cell activation compared with cM2, where Thy-1 excitatory cells were more heavily recruited. SIGNIFICANCE: Our data show that IISs spread noncontiguously by exploiting fiber pathways that connect nodes in a distributed network and that E/I balance plays a critical role in node recruitment. This multinodal IIS network model can be used to investigate cell-specific dynamics in the spatial propagation of epileptiform activity.


Assuntos
Epilepsia , Animais , Encéfalo , Mapeamento Encefálico , Bicuculina/farmacologia , 4-Aminopiridina
14.
Biomed Res ; 44(2): 41-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005282

RESUMO

Seizure-like burst activities are induced by blockade of GABAA and/or glycine receptors in various spinal ventral roots of brainstem-spinal cord preparation from neonatal rodents. We found that this is not applicable to the phrenic nerve and that a new inhibitory descending pathway may suppress seizure-like activity in the phrenic nerve. Experiments were performed in brainstem-spinal cord preparation from newborn rats (age: 0-1 day). Left phrenic nerve and right C4 activities were recorded simultaneously. When GABAA and glycine receptors were blocked by 10 µM bicuculline and 10 µM strychnine (Bic+Str), seizure-like burst activities appeared in the fourth cervical ventral root (C4) but not the phrenic nerve. After making a transverse section at C1, the inspiratory burst activity disappeared from both C4 and the phrenic nerve, whereas seizure-like activity appeared in both nerves. We hypothesized that inhibitory descending pathways other than those via GABAA and/or glycine receptors (from the medulla to the spinal cord) work to avoid disturbance of regular respiratory-related diaphragm contraction by seizure-like activity. We found that cannabinoid receptor antagonist, AM251 was effective for the induction of seizure-like activity by Bic+Str in the phrenic nerve in brainstem-spinal cord preparation. Cannabinoid receptors may be involved in this descending inhibitory system.


Assuntos
Receptores de Glicina , Medula Espinal , Animais , Ratos , Animais Recém-Nascidos , Receptores de Canabinoides , Bicuculina/farmacologia , Estricnina/farmacologia , Convulsões/tratamento farmacológico , Nervo Frênico/fisiologia
15.
Behav Brain Res ; 448: 114436, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061200

RESUMO

The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Our findings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.


Assuntos
Colículos Inferiores , Núcleo Tegmental Pedunculopontino , Ratos , Animais , Masculino , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Receptores de GABA-A , Receptor 5-HT2A de Serotonina , Bicuculina/farmacologia , Serotonina/farmacologia , Ratos Wistar
16.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963834

RESUMO

Brain stores new information by modifying connections between neurons. When new information is learnt, a group of neurons gets activated and they are connected to each other via synapses. Dendritic spines are protrusions along neuronal dendrites where excitatory synapses are located. Dendritic spines are the first structures to protrude out from the dendrite to reach out to other neurons and establish a new connection. Thus, it is expected that neuronal activity enhances spine initiation. However, the molecular mechanisms linking neuronal activity to spine initiation are poorly known. Membrane binding BAR domain proteins are involved in spine initiation, but it is not known whether neuronal activity affects BAR domain proteins. Here, we used bicuculline treatment to activate excitatory neurons in organotypic hippocampal slices. With this experimental setup, we identified F-BAR domain containing growth arrest-specific protein (Gas7) as a novel spine initiation factor responding to neuron activity. Upon bicuculline addition, Gas7 clustered to create spine initiation hotspots, thus increasing the probability to form new spines in activated neurons. Gas7 clustering and localization was dependent on PI3-kinase (PI3K) activity and intact F-BAR domain. Gas7 overexpression enhanced N-WASP localization to clusters as well as it increased the clustering of actin. Arp2/3 complex was required for normal Gas7-induced actin clustering. Gas7 overexpression increased and knock-down decreased spine density in hippocampal pyramidal neurons. Taken together, we suggest that Gas7 creates platforms under the dendritic plasma membrane which facilitate spine initiation. These platforms grow on neuronal activation, increasing the probability of making new spines and new connections between active neurons. As such, we identified a novel molecular mechanism to link neuronal activity to the formation of new connections between neurons.


Assuntos
Actinas , Espinhas Dendríticas , Actinas/metabolismo , Bicuculina , Células Cultivadas , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas do Tecido Nervoso/metabolismo
17.
Physiol Behav ; 265: 114156, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918107

RESUMO

This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).


Assuntos
Corticosterona , Glucocorticoides , Ratos , Animais , Glucocorticoides/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Extinção Psicológica/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Receptores de GABA/metabolismo , Medo/fisiologia , Bicuculina/farmacologia , Bicuculina/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Ácido gama-Aminobutírico/metabolismo
18.
Neurosci Lett ; 799: 137130, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792026

RESUMO

Brown adipose tissue (BAT) activity is controlled by the sympathetic nervous system. Activation of BAT has shown significant promise in preclinical studies to elicit weight loss. Since the hypothalamic paraventricular nucleus (PVN) contributes to the regulation of BAT thermogenic activity, we sought to determine the effects of electrical stimulation of the PVN as a model of deep brain stimulation (DBS) for increasing BAT sympathetic nerve activity (SNA). The rostral raphe pallidus area (rRPa) was also chosen as a target for DBS since it contains the sympathetic premotor neurons for BAT. Electrical stimulation (100 µA, 100 µs, 100 Hz, for 5 min at a 50 % duty cycle) of the PVN increased BAT SNA and BAT thermogenesis. These effects were prevented by a local nanoinjection of bicuculline, a GABAA receptor antagonist. We suggest that electrical stimulation of the PVN elicited local release of GABA, which inhibited BAT sympathoinhibitory neurons in PVN, thereby releasing a restraint on BAT SNA. Electrical stimulation of the rRPa inhibited BAT thermogenesis and this was prevented by a local nanoinjection of bicuculline, suggesting that local release of GABA suppressed BAT SNA. Electrical stimulation of the PVN activates BAT metabolism via a mechanism that may include activation of local GABAA receptors. These findings contribute to our understanding of the mechanisms underlying the effects of DBS in the regulation of fat metabolism and provide a foundation for further DBS studies targeting hypothalamic circuits regulating BAT thermogenesis as a therapy for obesity.


Assuntos
Estimulação Encefálica Profunda , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Ratos Sprague-Dawley , Bicuculina/farmacologia , Tecido Adiposo Marrom/inervação , Termogênese , Hipotálamo , Ácido gama-Aminobutírico/metabolismo , Sistema Nervoso Simpático/metabolismo
19.
ACS Chem Neurosci ; 14(6): 1146-1155, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36802490

RESUMO

Sevoflurane (Sevo) is one of the most commonly used general anesthetics for infants and young children. We investigated whether Sevo impairs neurological functions, myelination, and cognition via the γ-aminobutyric acid A receptor (GABAAR) and Na+-K+-2Cl- cotransporter (NKCC1) in neonatal mice. On postnatal days 5-7, mice were exposed to 3% Sevo for 2 h. On postnatal day 14, mouse brains were dissected, and oligodendrocyte precursor cell line level lentivirus knockdown of GABRB3, immunofluorescence, and transwell migration assays were performed. Finally, behavioral tests were conducted. Multiple Sevo exposure groups exhibited increased neuronal apoptosis levels and decreased neurofilament protein levels in the mouse cortex compared with the control group. Sevo exposure inhibited the proliferation, differentiation, and migration of the oligodendrocyte precursor cells, thereby affecting their maturation process. Electron microscopy revealed that Sevo exposure reduced myelin sheath thickness. The behavioral tests showed that multiple Sevo exposures induced cognitive impairment. GABAAR and NKCC1 inhibition provided protection against Sevo-induced neurotoxicity and cognitive dysfunction. Thus, bicuculline and bumetanide can protect against Sevo-induced neuronal injury, myelination impairment, and cognitive dysfunction in neonatal mice. Furthermore, GABAAR and NKCC1 may be mediators of Sevo-induced myelination impairment and cognitive dysfunction.


Assuntos
Anestésicos Inalatórios , Bumetanida , Animais , Camundongos , Sevoflurano/farmacologia , Bumetanida/farmacologia , Bicuculina/farmacologia , Animais Recém-Nascidos , Cognição , Ácido gama-Aminobutírico , Anestésicos Inalatórios/toxicidade
20.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834538

RESUMO

To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 µL of PBS was injected into the left eye, while the right eye was injected with 1 µL of PBS containing different agents: APB, GABA, Bicuculline, TPMPA, Glutamate, DNQX, Glycine, Strychnine, or HEPES. The OP response depends on the type of photoreceptors involved, showing their maximum response amplitude in the ERG induced by mixed rod/cone stimulation. The oscillatory components of the OPs were affected by the injected agents, with some drugs inducing the complete abolition of oscillations (APB, GABA, Glutamate, or DNQX), whereas other drugs merely reduced the oscillatory amplitudes (Bicuculline, Glycine, Strychnine, or HEPES) or did not even affect the oscillations (TPMPA). Assuming that rod bipolar cells (RBC) express metabotropic Glutamate receptors, GABAA, GABAC, and Glycine receptors and that they release glutamate mainly on Glycinergic AII amacrine cells and GABAergic A17 amacrine cells, which are differently affected by the mentioned drugs, we propose that RBC-AII/A17 reciprocal synapses are responsible for the OP generation in the ERG recordings in the mice. We conclude that the reciprocal synapses between RBC and AII/A17 are the basis of the ERG OP oscillations of the light response, and this fact must be taken into consideration in any ERG test that shows a decrease in the OPs' amplitude.


Assuntos
Doenças Retinianas , Estricnina , Camundongos , Animais , Estricnina/farmacologia , Bicuculina , HEPES , Camundongos Endogâmicos C57BL , Retina , Glicina , Ácido gama-Aminobutírico , Glutamatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...