Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.205
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612864

RESUMO

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Assuntos
Anormalidades Craniofaciais , Flavonas , Flavonoides , Perfilação da Expressão Gênica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
2.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611918

RESUMO

Fever is a serious condition that can lead to various consequences ranging from prolonged illness to death. Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) has been used for centuries to treat fever, but the specific chemicals responsible for its antipyretic effects are not well understood. This study aimed to isolate and identify the chemicals with antipyretic bioactivity in T. hemsleyanum extracts and to provide an explanation for the use of T. hemsleyanum as a Chinese herbal medicine for fever treatment. Our results demonstrate that kaempferol 3-rutinoside (K3OR) could be successfully isolated and purified from the roots of T. hemsleyanum. Furthermore, K3OR exhibited a significant reduction in rectal temperature in a mouse model of fever. Notably, a 4 µM concentration of K3OR showed more effective antipyretic effects than ibuprofen and acetaminophen. To explore the underlying mechanism, we conducted an RNA sequencing analysis, which revealed that PXN may act as a key regulator in the fever process induced by lipopolysaccharide (LPS). In the mouse model of fever, K3OR significantly promoted the secretion of IL-6 and TNF-α during the early stage in the LPS-treated group. However, during the middle to late stages, K3OR facilitated the elimination of IL-6 and TNF-α in the LPS-treated group. Overall, our study successfully identified the chemicals responsible for the antipyretic bioactivity in T. hemsleyanum extracts, and it answered the question as to why T. hemsleyanum is used as a traditional Chinese herbal medicine for treating fever. These findings contribute to a better understanding of the therapeutic potential of T. hemsleyanum in managing fever, and they provide a basis for further research and development in this field.


Assuntos
Antocianinas , Antipiréticos , Medicamentos de Ervas Chinesas , Flavonas , Animais , Camundongos , Temperatura Corporal , Fator de Necrose Tumoral alfa/genética , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Interleucina-6 , Quempferóis/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Lipopolissacarídeos , Febre/tratamento farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Modelos Animais de Doenças
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612453

RESUMO

The objective of this study was to investigate gut dysbiosis and its metabolic and inflammatory implications in pediatric metabolic dysfunction-associated fatty liver disease (MAFLD). This study included 105 children and utilized anthropometric measurements, blood tests, the Ultrasound Fatty Liver Index, and fecal DNA sequencing to assess the relationship between gut microbiota and pediatric MAFLD. Notable decreases in Lachnospira spp., Faecalibacterium spp., Oscillospira spp., and Akkermansia spp. were found in the MAFLD group. Lachnospira spp. was particularly reduced in children with MAFLD and hepatitis compared to controls. Both MAFLD groups showed a reduction in flavone and flavonol biosynthesis sequences. Lachnospira spp. correlated positively with flavone and flavonol biosynthesis and negatively with insulin levels and insulin resistance. Body weight, body mass index (BMI), and total cholesterol levels were inversely correlated with flavone and flavonol biosynthesis. Reduced Lachnospira spp. in children with MAFLD may exacerbate insulin resistance and inflammation through reduced flavone and flavonol biosynthesis, offering potential therapeutic targets.


Assuntos
Flavonas , Hepatite A , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Criança , Clostridiales , Flavonóis
4.
Sci Rep ; 14(1): 7889, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570541

RESUMO

Nobiletin, a citrus polymethoxy flavonoid with antiapoptotic and antioxidative properties, could safeguard against cisplatin-induced nephrotoxicity and neurotoxicity. Cisplatin, as the pioneer of anti-cancer drug, the severe ototoxicity limits its clinical applications, while the effect of nobiletin on cisplatin-induced ototoxicity has not been identified. The current study investigated the alleviating effect of nobiletin on cisplatin-induced ototoxicity and the underlying mechanisms. Apoptosis and ROS formation were evaluated using the CCK-8 assay, Western blotting, and immunofluorescence, indicating that nobiletin attenuated cisplatin-induced apoptosis and oxidative stress. LC3B and SQSTM1/p62 were determined by Western blotting, qPCR, and immunofluorescence, indicating that nobiletin significantly activated autophagy. Nobiletin promoted the nuclear translocation of NRF2 and the transcription of its target genes, including Hmox1, Nqo1, and ferroptosis markers (Gpx4, Slc7a11, Fth, and Ftl), thereby inhibiting ferroptosis. Furthermore, RNA sequencing analysis verified that autophagy, ferroptosis, and the NRF2 signaling pathway served as crucial points for the protection of nobiletin against ototoxicity caused by cisplatin. Collectively, these results indicated, for the first time, that nobiletin alleviated cisplatin-elicited ototoxicity through suppressing apoptosis and oxidative stress, which were attributed to the activation of autophagy and the inhibition of NRF2/GPX4-mediated ferroptosis. Our study suggested that nobiletin could be a prospective agent for preventing cisplatin-induced hearing loss.


Assuntos
Ferroptose , Flavonas , Ototoxicidade , Humanos , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/etiologia , Estudos Prospectivos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Autofagia
5.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542959

RESUMO

Previous studies have revealed the microbial metabolism of dietary choline in the gut, leading to its conversion into trimethylamine (TMA). Polymethoxyflavones (PMFs), exemplified by tangeretin, have shown efficacy in mitigating choline-induced cardiovascular inflammation. However, the specific mechanism by which these compounds exert their effects, particularly in modulating the gut microbiota, remains uncertain. This investigation focused on tangeretin, a representative PMFs, to explore its influence on the gut microbiota and the choline-TMA conversion process. Experimental results showed that tangeretin treatment significantly attenuated the population of CutC-active bacteria, particularly Clostridiaceae and Lactobacillus, induced by choline chloride in rat models. This inhibition led to a decreased efficiency in choline conversion to TMA, thereby ameliorating cardiovascular inflammation resulting from prolonged choline consumption. In conclusion, tangeretin's preventive effect against cardiovascular inflammation is intricately linked to its targeted modulation of TMA-producing bacterial activity.


Assuntos
Arterite , Flavonas , Microbioma Gastrointestinal , Ratos , Animais , Colina/metabolismo , Metilaminas/farmacologia , Metilaminas/metabolismo , Bactérias/metabolismo , Inflamação/tratamento farmacológico
6.
J Ethnopharmacol ; 328: 118021, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492793

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY: In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS: First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS: In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-ß, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-ß, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-ß signalling pathways to exert its influence. CONCLUSION: The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.


Assuntos
Flavonas , Gravidez , Animais , Camundongos , Humanos , Feminino , Flavonas/farmacologia , Metaloproteinase 9 da Matriz , Peixe-Zebra , Superóxidos , Galactose , Proteínas Quinases Ativadas por AMP , China , Antioxidantes/farmacologia , Flavonoides/farmacologia , Sementes , Elastase Pancreática , Fator de Crescimento Transformador beta , Serina-Treonina Quinases TOR
7.
Biomed Pharmacother ; 173: 116370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458012

RESUMO

Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.


Assuntos
Flavonas , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Camundongos , Animais , Tirosina 3-Mono-Oxigenase/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cognição , Modelos Animais de Doenças
8.
J Biomater Appl ; 38(9): 1000-1009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456269

RESUMO

Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.


Assuntos
Flavonas , Flavonoides , Neoplasias , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/química , Dióxido de Silício/química , Antioxidantes/química , Ferro , Porosidade
9.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468335

RESUMO

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Assuntos
Aterosclerose , Flavonas , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474023

RESUMO

Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in Streptomyces albidoflavus. A total of eight different genes (TAL, 4CL, CHS, CHI, FNS1, F3'H/CPR, 3'-OMT, 4'-OMT) are necessary for the heterologous biosynthesis of these two flavonoids, and all of them have been integrated along the chromosome of the bacterial host. The biosynthesis of diosmetin and chrysoeriol has been achieved, reaching titers of 2.44 mg/L and 2.34 mg/L, respectively. Furthermore, an additional compound, putatively identified as luteolin 3',4'-dimethyl ether, was produced in both diosmetin and chrysoeriol-producing strains. With the purpose of increasing flavonoid titers, a 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase) from an antibiotic biosynthetic gene cluster (BGC) from Amycolatopsis balhimycina was heterologously expressed in S. albidoflavus, enhancing diosmetin and chrysoeriol production titers of 4.03 mg/L and 3.13 mg/L, which is an increase of 65% and 34%, respectively. To the best of our knowledge, this is the first report on the de novo biosynthesis of diosmetin and chrysoeriol in a heterologous host.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , Flavonas , Streptomyces , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Fosfatos , Flavonas/metabolismo , Flavonoides/química
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474182

RESUMO

Blocking the interaction between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme II (hACE2) protein serves as a therapeutic strategy for treating COVID-19. Traditional Chinese medicine (TCM) treatments containing bioactive products could alleviate the symptoms of severe COVID-19. However, the emergence of SARS-CoV-2 variants has complicated the process of developing broad-spectrum drugs. As such, the aim of this study was to explore the efficacy of TCM treatments against SARS-CoV-2 variants through targeting the interaction of the viral spike protein with the hACE2 receptor. Antiviral activity was systematically evaluated using a pseudovirus system. Scutellaria baicalensis (S. baicalensis) was found to be effective against SARS-CoV-2 infection, as it mediated the interaction between the viral spike protein and the hACE2 protein. Moreover, the active molecules of S. baicalensis were identified and analyzed. Baicalein and baicalin, a flavone and a flavone glycoside found in S. baicalensis, respectively, exhibited strong inhibitory activities targeting the viral spike protein and the hACE2 protein, respectively. Under optimized conditions, virus infection was inhibited by 98% via baicalein-treated pseudovirus and baicalin-treated hACE2. In summary, we identified the potential SARS-CoV-2 inhibitors from S. baicalensis that mediate the interaction between the Omicron spike protein and the hACE2 receptor. Future studies on the therapeutic application of baicalein and baicalin against SARS-CoV-2 variants are needed.


Assuntos
COVID-19 , Flavonas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Glicoproteína da Espícula de Coronavírus , Angiotensinas , Ligação Proteica
12.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474379

RESUMO

With the increase in the age of laying chickens, the aging of follicles is accelerated, and the reproductive ability is decreased. Increased oxidative stress and mitochondrial malfunction are indispensable causes of ovarian aging. In this study, the physiological condition of prehierarchical small white follicles (SWFs) was compared between D280 high-producing chickens and D580 aging chickens, and the effect of a plant-derived flavonoid nobiletin (Nob), a natural antioxidant, on senescence of SWFs granulosa cells (SWF-GCs) was investigated. The results showed that Nob treatment activated cell autophagy by activating the AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT1) pathways in D-galactose (D-gal)-generated senescent SWF-GCs, restoring the expression of proliferation-related mRNAs and proteins. In addition, the expression of inflammation-related protein NF-κB was significantly enhanced in aging GCs that were induced by D-gal. Nob supplementation significantly increased the antioxidant capacity and decreased the expression of several genes associated with cell apoptosis. Furthermore, Nob promoted activation of PINK1 and Parkin pathways for mitophagy and alleviated mitochondrial edema. Either the AMPK inhibitor dorsomorphin (Compound C) or SIRT1 inhibitor selisistat (EX-527) attenuated the effect of Nob on mitophagy. The protective effect of Nob on natural aging, GC proliferation, and elimination of the beneficial impact on energy regulation of naturally aging ovaries was diminished by inhibition of Nob-mediated autophagy. These data suggest that Nob treatment increases the expression of mitophagy-related proteins (PINK1 and Parkin) via the AMPK/SIRT1 pathways to prevent ovarian aging in the laying chickens.


Assuntos
Antioxidantes , Galinhas , Flavonas , Feminino , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Envelhecimento , Autofagia , Ubiquitina-Proteína Ligases/metabolismo
13.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474489

RESUMO

Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1ß and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.


Assuntos
Flavonas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , RNA Ribossômico 16S/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL
14.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503700

RESUMO

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos de Ervas Chinesas/química , Ácido Betulínico , Saponinas/química , Ácidos Oleicos , Cromatografia Líquida de Alta Pressão , Ziziphus/química , Sementes
15.
Microb Pathog ; 189: 106609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452830

RESUMO

The emergence of multidrug resistance and increased pathogenicity in microorganisms is conferred by the presence of highly synchronized cell density dependent signalling pathway known as quorum sensing (QS). The QS hierarchy is accountable for the secretion of virulence phenotypes, biofilm formation and drug resistance. Hence, targeting the QS phenomenon could be a promising strategy to counteract the bacterial virulence and drug resistance. In the present study, artocarpesin (ACN), a 6-prenylated flavone was investigated for its capability to quench the synthesis of QS regulated virulence factors. From the results, ACN showed significant inhibition of secreted virulence phenotypes such as pyocyanin (80%), rhamnolipid (79%), protease (69%), elastase (84%), alginate (88%) and biofilm formation (88%) in opportunistic pathogen, Pseudomonas aeruginosa PAO1. Further, microscopic observation of biofilm confirmed a significant reduction in biofilm matrix when P. aeruginosa PAO1 was supplemented with ACN at its sub-MIC concentration. Quantitative gene expression studies showed the promising aspects of ACN in down regulation of several QS regulatory genes associated with production of virulence phenotypes. Upon treatment with sub-MIC of ACN, the bacterial colonization in the gut of Caenorhabditis elegans was potentially reduced and the survival rate was greatly improved. The promising QS inhibition activities were further validated through in silico studies, which put an insight into the mechanism of QS inhibition. Thus, ACN could be considered as possible drug candidate targeting chronic microbial infections.


Assuntos
Flavonas , Infecções por Pseudomonas , Percepção de Quorum , Humanos , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/microbiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Biochem Biophys Res Commun ; 706: 149747, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479243

RESUMO

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Assuntos
Flavonas , Mitocôndrias , Sirtuína 1 , Animais , Suínos , Sirtuína 1/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Oócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
17.
Sci Rep ; 14(1): 7184, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532039

RESUMO

The goal of this study was to analyse, whether malting technique (consisting of seed hydration, germination and drying) can be used to modify concentration of various isoflavonoids in soybean seeds. Seeds of three soybean varieties were germinated by different lengths of time (from 24 to 120 h) and dried by two different methods, typically used to produce so-called 'light' and 'caramel' malts. It was determined, that malting decreases concentration of 7-O-ß-D-glucosides such as daidzin, genisitin and glycitin, while at the same time increasing concentration of aglycones (daidzein, genistein and glycitein). Increasing time of the germination period increased concentration of aglycones. 'Caramel' type malts were characterised with higher concentration of most of the isoflavonoids (daidzin, daidzein, genistin, genistein and glycitein) than 'light' type malts. Results of this study suggest that soybean malts can be an interesting substrate in the production of various food products with increased aglycone content.


Assuntos
Flavonas , Isoflavonas , Soja , Genisteína , Isoflavonas/química , Germinação , Plântula/química , Sementes/química
18.
Biomed Pharmacother ; 173: 116322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401524

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases and is emerging as one of the fastest-growing causes of liver-related deaths worldwide. It is necessary to find strategies to effectively prevent and treat NAFLD, as no definitive drug has been approved. Nobiletin (NOB) is the critical active ingredient of Chinese herbal medicines such as Citrus aurantium and Citri Reticulatae Pericarpium, which have anti-inflammatory, antioxidant, lipid regulating, and insulin resistance regulating effects. Numerous studies have demonstrated that NOB can prevent and treat the onset and progression of NAFLD. In this review, the mechanisms of NOB for treating NAFLD have been summarized, hoping to provide a basis for subsequent studies of NOB and to provide a research ground for the development of therapeutic drugs for NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Flavonas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Fígado , Medicamentos de Ervas Chinesas/farmacologia
19.
Phytomedicine ; 126: 155203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387277

RESUMO

BACKGROUND: Slow transit constipation (STC) is a common gastrointestinal disorder that is often accompanied by depression. Nobiletin is a natural compound that has been shown to have anti-inflammatory and anti-depressant effects. PURPOSE: To study the effects of nobiletin extracted from Wenyang Yiqi Formula 19 (WYF) on STC accompanied by depression and the related mechanism in STC mouse models. METHODS: In this study, the effects of nobiletin on STC accompanied by depression were investigated in both an STC animal model and an in vitro study. The animal model was induced by loperamide, and the in vitro study used Interstitial cells of Cajal (ICCs) isolated from STC mice. The efficacy of nobiletin was assessed by comparing various parameters, including stool particle counts, moisture content, intestinal propulsive rate, colon histopathology, microtubule-associated protein-tau (MAPT) expression in colon tissue, serum levels of TNF-α, IL-1ß, IL-6, IFN-γ, and the levels of MAPK pathway-related proteins among three experimental groups. RESULTS: Nobiletin treatment significantly improved stool particle counts, moisture content, intestinal propulsive rate, and colon histopathology in the STC animal model. Nobiletin also decreased MAPT expression in colon tissue and serum levels of TNF-α, IL-1ß, IL-6, IFN-γ, and the levels of MAPK pathway-related proteins. In the in vitro study, nobiletin treatment reversed the increased cell proliferation and cell apoptosis observed in ICC isolated from the STC model. CONCLUSION: The findings of this study indicate that nobiletin exhibits promising therapeutic potential in addressing STC accompanied by depression. This potential may be attributed to its ability to regulate the function of ICC by targeting MAPT.


Assuntos
Depressão , Flavonas , Interleucina-6 , Camundongos , Animais , Depressão/tratamento farmacológico , Fator de Necrose Tumoral alfa , Constipação Intestinal/tratamento farmacológico , Transdução de Sinais , Modelos Animais de Doenças , Trânsito Gastrointestinal/fisiologia
20.
Analyst ; 149(6): 1929-1938, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376111

RESUMO

Mass spectrometry was used to study the binding interaction between serum albumin proteins (BSA and HSA) and flavone dyes, which is known to induce large fluorescence signals for protein detection. By electrospray ionization mass spectrometry (ESI-MS), multiple charged species/states could be produced in ammonium acetate buffer, while preserving the native structures of the proteins. Subsequent introduction of a flavone dye into the buffered solution resulted in an immediate interaction, forming the respective protein-dye conjugates associated by non-covalent interactions. Formation of protein-dye conjugates induced a notable response in the ESI-MS spectra, including changes in both the charge states and molecular mass of the protein species. The resulting data pointed out that the protein-flavone dye maintained a 1 : 1 ratio in the conjugate, although multiple binding sites for drug molecules are present in albumin proteins.


Assuntos
Flavonas , Flavonoides , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteínas , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...