Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474467

RESUMO

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Assuntos
Genisteína , Isoflavonas , Humanos , Genisteína/farmacologia , Cumestrol , Espécies Reativas de Oxigênio , Fitoestrógenos , Antioxidantes , Peróxido de Hidrogênio , Isoflavonas/química , Estresse Oxidativo , Queratinócitos , Fibroblastos
2.
Aquat Toxicol ; 261: 106639, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515925

RESUMO

In the last two decades, much controversy has grown over the use of soybean products in aquafeeds, especially for carnivorous fish like sturgeons. One point of discussion is the effect of soybean phytoestrogens on fish health. There are many aspects of phytoestrogen utilization in aquafeeds, therefore, the aim of this study is to verify if common legume phytoestrogens can affect juvenile cultured sturgeon erythrocyte and hepatocyte genotoxicity and cause liver pathology. Russian sturgeons were fed from 100 till 365 dph1 with daidzein, genistein, and coumestrol supplemented diets in concentrations: 10, 0.05 and 0.001 g kg-1 of feed, respectively. The SCGE2 method combined with qPCR of three genes involved in DNA repair and genome maintenance, namely cyp1a1, gaad45a and p53 were analyzed. The results were compared with histopathological evaluation of liver tissue. In fish fed with coumestrol supplemented diet, DNA strand damage was the highest in both erythrocytes and hepatocytes, however, simultaneously the lowest level of oxidative DNA damage was found. Additionally, slightly elevated expression of the p53 gene was observed along with a decreased number of apoptotic hepatocytes, which suggests that low concentration of coumestrol may support DNA repair mechanisms in the liver. Although, daidzein showed a preventive effect only against fibrosis. Isoflavones did not show a significant effect on DNA damage in studied cells. Genistein was found to increase macro- and microvesicular steatosis, portal hepatitis and fibrosis, indicating its negative role in the development of liver injuries. Daidzein alleviated some sturgeon liver damage, especially macrovesicular steatosis and interface hepatitis. However, it increased hepatocyte apoptosis, which may suggest daidzein potentially inducing liver injury, though not manifested by other histopathological lesions. Therefore, it can be concluded that at given concentrations, the tested phytoestrogens did not show clearly hepatoprotective effect in sturgeons.


Assuntos
Estrogênios não Esteroides , Poluentes Químicos da Água , Animais , Fitoestrógenos/toxicidade , Genisteína/toxicidade , Genisteína/metabolismo , Cumestrol/toxicidade , Estrogênios não Esteroides/metabolismo , Estrogênios não Esteroides/farmacologia , Poluentes Químicos da Água/toxicidade , Dieta , Fibrose
3.
Reproduction ; 166(1): 1-11, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078791

RESUMO

In brief: Healthy development of the placenta is dependent on trophoblast cell migration and reduced oxidative stress presence. This article describes how a phytoestrogen found in spinach and soy causes impaired placental development during pregnancy. Abstract: Although vegetarianism has grown in popularity, especially among pregnant women, the effects of phytoestrogens in placentation lack understanding. Factors such as cellular oxidative stress and hypoxia and external factors including cigarette smoke, phytoestrogens, and dietary supplements can regulate placental development. The isoflavone phytoestrogen coumestrol was identified in spinach and soy and was found to not cross the fetal-placental barrier. Since coumestrol could be a valuable supplement or potent toxin during pregnancy, we sought to examine its role in trophoblast cell function and placentation in murine pregnancy. After treating trophoblast cells (HTR8/SVneo) with coumestrol and performing an RNA microarray, we determined 3079 genes were significantly changed with the top differentially changed pathways related to the oxidative stress response, cell cycle regulation, cell migration, and angiogenesis. Upon treatment with coumestrol, trophoblast cells exhibited reduced migration and proliferation. Additionally, we observed increased reactive oxygen species accumulation with coumestrol administration. We then examined the role of coumestrol within an in vivo pregnancy by treating wildtype pregnant mice with coumestrol or vehicle from day 0 to 12.5 of gestation. Upon euthanasia, fetal and placental weights were significantly decreased in coumestrol-treated animals with the placenta exhibiting a proportional decrease with no obvious changes in morphology. Therefore, we conclude that coumestrol impairs trophoblast cell migration and proliferation, causes accumulation of reactive oxygen species, and reduces fetal and placental weights in murine pregnancy.


Assuntos
Cumestrol , Placenta , Gravidez , Feminino , Camundongos , Humanos , Animais , Placenta/metabolismo , Cumestrol/farmacologia , Cumestrol/metabolismo , Fitoestrógenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Placentação/fisiologia , Trofoblastos/metabolismo , Estresse Oxidativo
4.
Arch Biochem Biophys ; 740: 109583, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967033

RESUMO

The propensity of breast cancer to preferentially metastasize to the skeleton is well known. Once established in bone metastatic breast cancers have a poor prognosis due to their ability to promote extensive bone loss which augments tumor burden. Unfortunately, current anti-resorptive therapies for skeletal metastasis are typically prescribed after secondary tumors have formed and are palliative in nature. One group of compounds with the potential to reduce both tumor burden and osteolysis are phytoestrogens (PE), but the mechanisms mediating a beneficial effect are unclear. Therefore, the current study examined the effect of genistein and coumestrol alone or in combination on breast cancer cell number, expression of mediators of preferential skeletal metastasis, bone matrix attachment and tumor-induced osteoclast formation. Results showed that genistein and coumestrol significantly reduced viable cell number in an estrogen receptor dependent manner (p < 0.05), whereas combinations of PE had no effect. In addition, genistein and coumestrol significantly reduced expression of genes driving epithelial to mesenchymal transition (snail), bone attachment (CXCR4 and integrin αV) and osteolysis (PTHrP and TNF-α). In keeping with this genistein and coumestrol significantly suppressed attachment of breast cancer cells to bone matrix and inhibited tumor and RANKL-induced osteoclast formation. Our data suggests that phytoestrogens not only decrease breast cancer cell viability but also antagonize essential tumor bone interactions that establish and drive the progression of skeletal metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Osteólise , Humanos , Feminino , Genisteína/farmacologia , Cumestrol/farmacologia , Fitoestrógenos/farmacologia , Neoplasias da Mama/patologia , Células MCF-7 , Osteogênese , Transição Epitelial-Mesenquimal , Sobrevivência Celular , Matriz Óssea/patologia , Neoplasias Ósseas/tratamento farmacológico
5.
Nutrients ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839308

RESUMO

Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a potent estrogen receptor (ER) agonist, with a higher binding affinity for ERß than for ERα. However, there is currently limited information regarding its beneficial effects in postmenopausal disorders and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in comparison with the effects of 17ß-estradiol (E2) replacement. Coumestrol was administered daily at a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions involved in browning of white fat and insulin signaling, including increased hepatic expression of fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at 10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERß-selective antagonist but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in OVX mice are primarily mediated by ERß. These findings provide important insights into the beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of postmenopausal symptoms.


Assuntos
Cumestrol , Receptor alfa de Estrogênio , Animais , Feminino , Camundongos , Cumestrol/farmacologia , Estradiol/farmacologia , Receptor beta de Estrogênio , Ovariectomia , Fitoestrógenos , Receptores de Estrogênio
6.
Biochimie ; 204: 78-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36084910

RESUMO

Coumestrol is a phytoestrogen found in various plant foods. Increasing evidence ascertained its robust anti-inflammatory, anti-oxidative properties likewise ability to mitigate insulin resistance. Thus, it may be a potential medicine in the treatment of many metabolic disorders, including obesity, type 2 diabetes (T2D) as well as non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to shed some light on its influence on the accumulation of certain lipid fractions and the expression of pro-inflammatory proteins in primary rat hepatocytes during the lipid-overload state. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. It was followed by incubation of the cells with the presence or absence of palmitic acid and/or coumestrol. The accumulation of lipid fractions was assessed by gas-liquid chromatography (GLC) whereas the expression of the proteins was evaluated by the Western blot technique. Treatment with coumestrol in the state of increased fatty acids availability led to the deposition of triacylglycerols rather than diacylglycerols, significantly decreased expression of proinflammatory and profibrotic cytokines, especially interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), as well as transforming growth factor ß (TGF-ß), and nuclear factor κß (NF-κß). Also, we observed a substantial diminution in proinflammatory enzymes expression. Taking into consideration the direction of the aforementioned changes, we may assume that coumestrol can ameliorate the array of factors leading to the development of steatosis, likewise counteracting progression to steatohepatitis, thus it may be a step forward to the long-awaited breakthrough in the treatment of NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cumestrol/farmacologia , Cumestrol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Hepatócitos/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Ácidos Graxos/metabolismo
7.
Nutrients ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145197

RESUMO

Pueraria lobata leaves contain a variety of phytoestrogens, including flavonoids, isoflavonoids, and coumestan derivatives. In this study, we aimed to identify the active ingredients of P. lobata leaves and to elucidate their function in monoamine oxidase (MAO) activation and Aß self-aggregation using in vitro and in silico approaches. To the best of our knowledge, this is the first study to elucidate coumestrol as a selective and competitive MAO-A inhibitor. We identified that coumestrol, a coumestan-derivative, exhibited a selective inhibitory effect against MAO-A (IC50 = 1.99 ± 0.68 µM), a key target protein for depression. In a kinetics analysis with 0.5 µg MAO-A, 40-160 µM substrate, and 25 °C reaction conditions, coumestrol acts as a competitive MAO-A inhibitor with an inhibition constant of 1.32 µM. During an in silico molecular docking analysis, coumestrol formed hydrogen bonds with FAD and pi-pi bonds with hydrophobic residues at the active site of the enzyme. Moreover, based on thioflavin-T-based fluorometric assays, we elucidated that coumestrol effectively prevented self-aggregation of amyloid beta (Aß), which induces an inflammatory response in the central nervous system (CNS) and is a major cause of Alzheimer's disease (AD). Therefore, coumestrol could be used as a CNS drug to prevent diseases such as depression and AD by the inhibition of MAO-A and Aß self-aggregation.


Assuntos
Doença de Alzheimer , Monoaminoxidase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides , Cumestrol/farmacologia , Flavina-Adenina Dinucleotídeo , Flavonoides , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fitoestrógenos/farmacologia , Relação Estrutura-Atividade
8.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684438

RESUMO

Eleven indanoyl derivatives were synthesized and, along with methyl jasmonate, evaluated as isoflavonoid-phytoalexin elicitors in two cultivars of common bean (Phaseolus vulgaris L. cvs. ICA-Cerinza and Uribe Rosado, tolerant and susceptible to anthracnose, respectively). Indanoyl derivatives (an ester, two amides, and eight indanoyl-amino acid conjugates) were obtained from 1-oxo-indane-4-carboxylic acid. In general, the accumulation of isoflavonoid-type phytoalexins, such as isoflavones (genistein, daidzein, and 2'-hydroxygenistein), isoflavanones (dalbergioidin and kievitone), isoflavan (phaseollinisoflavan), coumestrol, and pterocarpans (phaseollidin and phaseollin), was dependent on the common bean cultivar, the post-induction time, and the elicitor structure. Isoflavones, dalbergioidin, and coumestrol reached their highest amounts during the first 48 to 72 h, whereas kievitone, phaseollinisoflavano, and the pterocarpans reached maximum levels between 72 and 96 h. The 1-oxo-indanoyl-L-isoleucine methyl ester elicited the highest levels of phytoalexins (similar to those elicited by the methyl jasmonate) and showed no significant phytotoxic effects on common bean seedlings. The indanoyl-type synthetic elicitor, 1-oxo-indanoyl-L-isoleucine methyl ester, may represent a promising agronomic alternative for disease control in common bean by enhancing the accumulation of antimicrobial isoflavonoid phytoalexins.


Assuntos
Isoflavonas , Phaseolus , Pterocarpanos , Colômbia , Cumestrol , Isoflavonas/farmacologia , Sesquiterpenos , Fitoalexinas
9.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630566

RESUMO

Coumestrol (3,9-dihydroxy-6-benzofuran [3,2-c] chromenone) as a phytoestrogen and polyphenolic compound is a member of the Coumestans family and is quite common in plants. In this study, antiglaucoma, antidiabetic, anticholinergic, and antioxidant effects of Coumestrol were evaluated and compared with standards. To determine the antioxidant activity of coumestrol, several methods-namely N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+)-scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+)-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging activity, potassium ferric cyanide reduction ability, and cupric ion (Cu2+)-reducing activity-were performed. Butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were used as the reference antioxidants for comparison. Coumestrol scavenged the DPPH radical with an IC50 value of 25.95 µg/mL (r2: 0.9005) while BHA, BHT, Trolox, and α-Tocopherol demonstrated IC50 values of 10.10, 25.95, 7.059, and 11.31 µg/mL, respectively. When these results evaluated, Coumestrol had similar DPPH•-scavenging effect to BHT and lower better than Trolox, BHA and α-tocopherol. In addition, the inhibition effects of Coumestrol were tested against the metabolic enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which are associated with some global diseases such as Alzheimer's disease (AD), glaucoma, and diabetes. Coumestrol exhibited Ki values of 10.25 ± 1.94, 5.99 ± 1.79, 25.41 ± 1.10, and 30.56 ± 3.36 nM towards these enzymes, respectively.


Assuntos
Antioxidantes , Anidrases Carbônicas , Acetilcolinesterase , Antioxidantes/química , Antioxidantes/farmacologia , Hidroxianisol Butilado/farmacologia , Hidroxitolueno Butilado/farmacologia , Butirilcolinesterase , Cumestrol/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Glicosídeo Hidrolases , alfa-Tocoferol/farmacologia
10.
Hippocampus ; 32(6): 413-418, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347795

RESUMO

Transient global ischemia is a leading cause of learning and memory dysfunction and induces a pattern of delayed neuronal death in the CA1 subfield of the hippocampus by down-regulating GluR2 mRNA AMPA receptors in this cerebral area. This study sought to investigate the neuroprotective effect of coumestrol against spatial memory impairment induced by global ischemia that leads to neural death by reducing the GluR2 receptors content in the hippocampal CA1 area. Our studies demonstrated that coumestrol administration prevented spatial memory deficits in mice. These findings suggest a cognitive enhancement role of coumestrol against cognitive impairment in ischemic events.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Cumestrol , Hipocampo/metabolismo , Isquemia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/genética , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Receptores de AMPA/metabolismo , Aprendizagem Espacial
11.
Phytopathology ; 112(8): 1766-1775, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35147446

RESUMO

Pseudomonas savastanoi pv. phaseolicola is a bacterium that causes halo blight in beans. Different varieties of beans have hypersensitive resistance to specific races of P. savastanoi pv. phaseolicola. During hypersensitive resistance, also known as effector-triggered immunity (ETI), beans produce hormones that signal molecular processes to produce phytoalexins that are presumed to be antibiotic to bacteria. To shed light on hormone and phytoalexin production during immunity, we inoculated beans with virulent and avirulent races of P. savastanoi pv. phaseolicola. We then used mass spectrometry to measure the accumulation of salicylic acid (SA), the primary hormone that controls immunity in plants, and other hormones including jasmonate, methyljasmonate, indole-3-acetic acid, abscisic acid, cytokinin, gibberellic acid, and 1-aminocyclopropane-1-carboxylic acid. SA, but no other examined hormone, consistently increased at sites of infection to greater levels in resistant beans compared with susceptible beans at 4 days after inoculation. We then monitored 10 candidate bean phytoalexins. Daidzein, genistein, kievitone, phaseollin, phaseollidin, coumestrol, and resveratrol substantially increased alongside SA in resistant beans but not in susceptible beans. In vitro culture assays revealed that SA, daidzein, genistein, coumestrol, and resveratrol inhibited P. savastanoi pv. phaseolicola race 5 culture growth. These results demonstrate that these phytoalexins may be regulated by SA and work with SA during ETI to restrict bacterial replication. This is the first report of antibiotic activity for daidzein, genistein, and resveratrol to P. savastanoi pv. phaseolicola. These results improve our understanding of the mechanistic output of ETI toward this bacterial pathogen of beans.


Assuntos
Fabaceae , Ácido Salicílico , Antibacterianos , Cumestrol , Fabaceae/microbiologia , Genisteína , Hormônios , Doenças das Plantas/microbiologia , Pseudomonas syringae , Resveratrol , Sesquiterpenos , Fitoalexinas
12.
PLoS One ; 16(11): e0260147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793574

RESUMO

Coumestrol (CM), a biologically active compound found in Leguminosae plants, provides various human health benefits. To identify easy and effective methods to increase CM content in vegetables, we developed a quantitative analysis method using high-performance liquid chromatography (HPLC). Using this method, we found that soybean sprouts (1.76 ± 0.13 µg/g) have high CM contents among nine vegetables and evaluated the difference in CM contents between two organs of the sprouts: cotyledons and hypocotyls. Next, soybean sprouts were cultivated under different light, temperature, and water conditions and their CM contents were evaluated. CM content was higher in hypocotyls (4.11 ± 0.04 µg/g) than in cotyledons. Cultivating soybean sprouts at 24°C enhanced CM content regardless of light conditions, the growth of fungi and bacteria, and sprout color. Thus, we identified methods of soybean sprout cultivation to increase CM content, which may provide health benefits and enhance value.


Assuntos
Agricultura/métodos , Cumestrol/metabolismo , /metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cotilédone/metabolismo , Cumestrol/análise , Hipocótilo/metabolismo , Plântula/metabolismo , Temperatura
13.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205446

RESUMO

A combination of Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and 2D correlation analysis (2D-COS) was applied here for the first time in order to investigate the temperature-dependent dynamical evolution occurring in a particular type of inclusion complex, based on sulfobutylether-ß-cyclodextrin (SBE-ß-CD) as hosting agent and Coumestrol (7,12-dihydorxcoumestane, Coum), a poorly-soluble active compound known for its anti-viral and anti-oxidant activity. For this purpose, synchronous and asynchronous 2D spectra were calculated in three different wavenumber regions (960-1320 cm-1, 1580-1760 cm-1 and 2780-3750 cm-1) and over a temperature range between 250 K and 340 K. The resolution enhancement provided by the 2D-COS offers the possibility to extract the sequential order of events tracked by specific functional groups of the system, and allows, at the same time, the overcoming of some of the limits associated with conventional 1D FTIR-ATR analysis. Acquired information could be used, in principle, for the definition of an optimized procedure capable to provide high-performance T-sensitive drug carrier systems for different applications.


Assuntos
Cumestrol/química , beta-Ciclodextrinas/química , Antioxidantes/química , Antivirais/química , Portadores de Fármacos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
14.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062716

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Benzidrílicos/toxicidade , Cumestrol/toxicidade , Dioxinas/toxicidade , Disruptores Endócrinos/classificação , Genisteína/toxicidade , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Fenóis/toxicidade , Fitoestrógenos/toxicidade , Bifenilos Policlorados/toxicidade
15.
Biomolecules ; 11(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673122

RESUMO

Coumestrol is a phytoestrogen widely known for its anti-diabetic, anti-oxidant, and anti-inflammatory properties. Thus, it gets a lot of attention as a potential agent in the nutritional therapy of diseases such as obesity and type 2 diabetes. In our study, we evaluated whether coumestrol affects insulin resistance development via the sphingolipid signaling pathway in primary rat hepatocytes. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. Next, we incubated the cells with the presence or absence of palmitic acid and/or coumestrol. Additionally, some groups were incubated with insulin. The sphingolipid concentrations were assessed by HPLC whereas the expression of all the proteins was evaluated by Western blot. Coumestrol markedly reduced the accumulation of sphingolipids, namely, ceramide and sphinganine through noticeable inhibition of the ceramide de novo synthesis pathway in insulin-resistant hepatocytes. Moreover, coumestrol augmented the expression of fatty acid transport proteins, especially FATP5 and FAT/CD36, which also were responsible for excessive sphingolipid accumulation. Furthermore, coumestrol altered the sphingolipid salvage pathway, which was observed as the excessive deposition of the sphingosine-1-phosphate and sphingosine. Our study clearly showed that coumestrol ameliorated hepatic insulin resistance in primary rat hepatocytes. Thus, we believe that our study may contribute to the discovery of novel preventive and therapeutic methods for metabolic disorders.


Assuntos
Cumestrol/farmacologia , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Animais , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Masculino , Oxirredução , Ratos , Ratos Wistar
16.
Aging (Albany NY) ; 13(4): 5342-5357, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536350

RESUMO

Diabetes-induced oxidative stress is vital in initiating neuronal damage in the diabetic retina, leading to diabetic retinopathy (DR). This study investigates the possible effects of coumestrol (CMS) on streptozotocin (STZ)-induced DR. First, we established a rat model of DR by STZ injection and a cell model involving high-glucose (HG) exposure of human retinal microvascular endothelial cells (hRMECs). We characterized the expression patterns of oxidative stress indicators, pro-inflammatory cytokines, and pro-apoptotic proteins in hRMECs. Polymerase chain reaction showed sirtuin 1 (SIRT1) to be poorly expressed in the retinal tissues of STZ-treated rats and HG-exposed hRMECs, but its expression was upregulated upon treatment with CMS treatment. Furthermore, CMS treatment attenuated the STZ-induced pathologies such as oxidative stress, inflammation, and cell apoptosis. Consistent with the in vivo results, CMS activated the expression of SIRT1, thereby inhibiting oxidative stress, inflammation, and apoptosis of HG-treated hRMECs. From these findings, we concluded that CMS ameliorated DR by inhibiting inflammation, apoptosis and oxidative stress through activation of SIRT1.


Assuntos
Apoptose/efeitos dos fármacos , Cumestrol/farmacologia , Retinopatia Diabética/metabolismo , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoestrógenos/farmacologia , Retina/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glucose/toxicidade , Humanos , Inflamação/metabolismo , Ratos , Retina/metabolismo , Retina/patologia , Vasos Retinianos/citologia , Sirtuína 1/metabolismo
17.
IET Nanobiotechnol ; 14(7): 574-583, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33010132

RESUMO

The authors tested the efficacy of two salt nanoparticles (NPs), namely, copper dioxide (CuO) and tri-calcium phosphate [Ca3(PO4)2] to induce resistance in green bean pods against grey mould and white rot diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum, respectively. High amounts of phytoalexins, kievitone, coumestrol, phaseollidin, 6-ά-hydroxyphaseollin, and phaseollin, were detected in naturally infected and artificially inoculated green bean pods in response to the tested NPs. Green bean plants treated in the field with CuO and Ca3(PO4)2 NPs had the highest mRNA quantity of all the studied defence genes, receptor-like kinase (PvRK20), pathogenesis-related protein (PR1), 1,3-ß-D-glucanase (pvgluc), polygalacturonase inhibitor protein (PvGIP), and alpha-dioxygenase (a-DOX) than that of the control group. CuO NPs followed by Ca3(PO4)2 NPs at 0.15 mg ml-1 were the most potent in increasing the transcriptomic levels of pk20, DOX, PR1, PvGIP, and pvgluc. Field applications of both chemical elicitor NPs exhibited a non-genotoxic effect on the Paulista green bean DNA using eight ISSR primers. The field application of the studied NPs could effectively extend the shelf life of green bean pods by up to 21 days at 7 ± 1°C during marketing and export due to its potent effect against grey mould and white rot diseases.


Assuntos
Ascomicetos , Botrytis , Fabaceae/metabolismo , Fabaceae/microbiologia , Nanopartículas/química , Transcriptoma , Agricultura , Temperatura Baixa , Cobre/química , Cumestrol/análise , DNA/química , Primers do DNA/química , DNA de Plantas/química , Fungos , Perfilação da Expressão Gênica , Isoflavonas/análise , Microscopia Eletrônica de Transmissão , Mutagênicos , Tamanho da Partícula , Doenças das Plantas , Pterocarpanos/análise , Sesquiterpenos/análise , Software , Temperatura , Fitoalexinas
18.
Free Radic Res ; 54(8-9): 629-639, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32924662

RESUMO

Doxorubicin (DOX) acts as the cornerstone in multiple tumour chemotherapy regimens, however, its clinical application is often impeded due to the induction of a severe cardiotoxicity that eventually provokes left ventricular dysfunction and congestive heart failure. Coumestrol (CMT) is a common dietary phytoestrogen with pleiotropic pharmacological effects. The present study aims to investigate the role and mechanism of CMT on DOX-induced cardiotoxicity. Mice were intragastrically administrated with CMT (5 mg/kg/day) for consecutive 2 weeks and then received a single intraperitoneal injection of DOX (15 mg/kg) to mimic the clinical toxic effects after 8-day additional feeding. To verify the role of 5' AMP-activated protein kinase alpha (AMPKα), AMPKα2 global knockout mice were used. H9C2 cells were cultured to further validate the beneficial role of CMT in vitro. CMT administration notably ameliorated oxidative damage, cell apoptosis and cardiac dysfunction in DOX-treated mice. Besides, we observed that DOX-induced reactive oxygen species overproduction and cardiomyocyte apoptosis were also reduced by CMT incubation in H9C2 cells. Mechanistically, CMT activated AMPKα and Ampkα deficiency abolished the beneficial effects of CMT in vivo and in vitro. Finally, we proved that protein kinase A (PKA) was required for CMT-mediated AMPKα activation and cardioprotective effects. CMT activated PKA/AMPKα pathway to alleviate DOX-induced oxidative damage, cell apoptosis and cardiac dysfunction. Our findings provide a promising therapeutic agent for cancer patients receiving anthracycline chemotherapy.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cumestrol/uso terapêutico , Doxorrubicina/efeitos adversos , Fitoestrógenos/uso terapêutico , Animais , Cardiotoxicidade/patologia , Cumestrol/farmacologia , Masculino , Camundongos , Fitoestrógenos/farmacologia
19.
Adv Biosyst ; 4(4): e1900187, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293160

RESUMO

Isoflavones are a class of flavonoids present in legumes and are called phytoestrogens because of their estrogen-like activity. Endogenous estrogen is well known to regulate mammary gland morphogenesis during pregnancy. Each isoflavone also has different physiological activities. However, it is difficult to investigate the direct effect of each isoflavone in mammary morphogenesis in vivo because isoflavones are metabolized into different isoflavones by enteric bacteria. In this study, investigated are the direct influences of coumestrol, daidzein, and genistein on mammary structure development and future milk production ability of mammary epithelial cells (MECs) using in vitro culture models. Mouse MECs are cultured in Matrigel with basic fibroblast growth factor and epidermal growth factor to induce ductal branching and alveolar formation, respectively. Coumestrol and genistein inhibit ductal branching and alveolar formation by affecting the proliferation and migration of MECs with the induction of apoptosis. Daidzein hardly influences mammary structure development. Furthermore, pretreatment with coumestrol adversely affects the induction of milk production ability of MECs. These results suggest that each isoflavone differentially influences mammary morphogenesis and future milk production by affecting MEC behaviors. These results also suggest that the culture models are effective to study mammary epithelial morphogenesis in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Cumestrol/efeitos adversos , Células Epiteliais/metabolismo , Genisteína/efeitos adversos , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Animais , Cumestrol/farmacologia , Células Epiteliais/patologia , Feminino , Genisteína/farmacologia , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos ICR
20.
Daru ; 28(1): 97-108, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31912375

RESUMO

BACKGROUND: Phytoestrogens are plant compounds that are structurally similar to estrogen and that possess anti-cancer properties. Previous studies have reported that coumestrol, daidzein and genistein could induce cell death by reducing Annexin A1 protein in leukemic cell lines. Annexin A1 (ANXA1) is involved in cell progression, metastasis, and apoptosis in several types of cancer cells. The present study sought to investigate if the effects of phytoestrogens on apoptosis, cell cycle arrest and phagocytosis in ANXA1-knockdown leukemic cells are mediated through ANXA1 or occurred independently. METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining. RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines. CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.


Assuntos
Anexina A1/genética , Cumestrol/farmacologia , Genisteína/farmacologia , Isoflavonas/farmacologia , Fitoestrógenos/farmacologia , Anexina A1/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Células K562 , Leucemia/genética , Leucemia/metabolismo , Fagocitose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Células THP-1 , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...