Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
1.
J Agric Food Chem ; 72(11): 5993-6005, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450613

RESUMO

Pseudocapacitive nanomaterials have recently gained significant attention in electrochemical biosensors due to their rapid response, long cycle life, high surface area, biomolecule compatibility, and superior energy storage capabilities. In our study, we introduce the potential of using Ni-NiO nanofilm's pseudocapacitive traits as transducer signals in electrochemical aptasensors. Capitalizing on the innate affinity between histidine and nickel, we immobilized histidine-tagged streptavidin (HTS) onto Ni-NiO-modified electrodes. Additionally, we employed a biolayer interferometry-based SELEX to generate biotinylated patulin aptamers. These aptamers, when placed on Ni-NiO-HTS surfaces, make a suitable biosensing platform for rapid patulin mycotoxin detection in apple juice using electrochemical amperometry in microseconds. The novelty lies in optimizing pseudocapacitive nanomaterials structurally and electrochemically, offering the potential for redox mediator-free electrochemical aptasensors. Proof-of-concept is conducted by applying this surface for the ultrasensitive detection of a model analyte, patulin mycotoxin. The aptamer-functionalized bioelectrode showed an excellent linear response (10-106 fg/mL) and an impressive detection limit (1.65 fg/mL, +3σ of blank signal). Furthermore, reproducibility tests yielded a low relative standard deviation of 0.51%, indicating the good performance of the developed biosensor. Real sample analysis in freshly prepared apple juice revealed no significant difference (P < 0.05) in current intensity between spiked and real samples. The sensor interface maintained excellent stability for up to 2 weeks (signal retention 96.45%). The excellent selectivity, stability, and sensitivity of the electrochemical aptasensor exemplify the potential for using nickel-based pseudocapacitive nanomaterials for a wide variety of electrochemical sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Malus , Nanoestruturas , Patulina , Malus/química , Níquel/química , Histidina , Reprodutibilidade dos Testes , Nanoestruturas/química , Oxirredução , Técnicas Eletroquímicas , Limite de Detecção , Aptâmeros de Nucleotídeos/química
2.
Anal Chim Acta ; 1299: 342442, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499422

RESUMO

Self-powered electrochemical sensors based on photofuel cells have attracted considerable research interest because their unique advantage of not requiring an external electric source, but their application in portable and multiplexed targets assay is limited by the inherent mechanism. In this work, a portable self-powered sensor constructed with multichannel photofuel cells was developed for the ratiometric detection of mycotoxins, namely ochratoxin A (OTA) and patulin (PAT). The spatially resolved CdS/Bi2S3-modified photoanodes and a shared Prussian Blue cathode were integrated on an etched indium-tin oxide slide to fabricate the multichannel photofuel cell. The aptamers of OTA and PAT were covalently bonded to individual photoanode regions to build sensitive interfaces, and the specific recognition of analytes impaired the output performance of constructed PFC. Accordingly, ratiometric sensing of OTA and PAT was achieved by utilizing the output performance of a control PFC as a reference signal. This approach effectively eliminates the impact of light intensity on the accuracy of the detection. Under the optimal conditions, the proposed sensing chip exhibited linear ranges of 2.0-1000 nM and 5.0-500 nM for OTA and PAT, respectively. The detection limits (3 S/N) were determined to be 0.25 nM for OTA and 0.27 nM for PAT. The developed ratiometric sensing method demonstrated good selectivity and stability in the simultaneous detection of OTA and PAT. It was successfully utilized for the analysis of OTA and PAT real samples. This work provides a new perspective for construction of portable and ratiometric self-powered sensing platform.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Micotoxinas , Ocratoxinas , Patulina , Micotoxinas/análise , Ocratoxinas/análise , Patulina/análise , Luz , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
3.
Food Chem Toxicol ; 186: 114556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432441

RESUMO

Mycotoxins can be found in food and feed storage as well as in several kinds of foodstuff and are capable of harming mammals and some of them even in small doses. This study investigated on the undifferentiated neuronal cell line SH-SY5Y the effects of two mycotoxins: patulin (PAT) and citrinin (CTN), which are predominantly produced by fungi species Penicillium and Aspergillus. Here, the individual and combined cytotoxicity of PAT and CTN was investigated using the cytotoxic assay MTT. Our findings indicate that after 24 h of treatment, the IC50 value for PAT is 2.01 µM, which decreases at 1.5 µM after 48 h. In contrast, CTN did not attain an IC50 value at the tested concentration. Therefore, we found PAT to be the more toxic compared to CTN. However, the combined treatment suggests an additive toxic effect. With 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) DCFH-DA assay, ROS generation was demonstrated after CTN treatment, but PAT showed only small changes. The mixture presented a very constant behavior over time. Finally, the median-effect/combination index (CI-) isobologram equation demonstrated an additive effect after 24 h, but an antagonistic effect after 48 h for the interaction of the two mycotoxins.


Assuntos
Citrinina , Fluoresceínas , Neuroblastoma , Patulina , Animais , Humanos , Linhagem Celular , Citrinina/toxicidade , Mamíferos , Patulina/toxicidade , Patulina/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo
4.
Arch Microbiol ; 206(4): 166, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485821

RESUMO

Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.


Assuntos
Patulina , Penicillium , Patulina/metabolismo , Patulina/farmacologia , Aspergillus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Penicillium/metabolismo
5.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339470

RESUMO

Patulin (PAT) is a mycotoxin that adversely affects the health of humans and animals. PAT can be particularly found in products such as apples and apple juice and can cause many health problems if consumed. Therefore, accurate and sensitive determination of PAT is very important for food quality and human and animal health. A voltammetric aptasensor was introduced in this study for PAT determination while measuring the changes at redox probe signal. The limit of detection (LOD) was found to be 0.18 pg/mL in the range of 1-104 pg/mL of PAT in buffer medium under optimum experimental conditions. The selectivity of the PAT aptasensor against ochratoxin A, fumonisin B1 and deoxynivalenol mycotoxins was examined and it was found that the aptasensor was very selective to PAT. PAT determination was performed in an apple juice medium for the first time by using a smartphone-integrated portable device, and accordingly, an LOD of 0.47 pg/mL was achieved in diluted apple juice medium. A recovery range of 91.24-93.47% was obtained for PAT detection.


Assuntos
Malus , Patulina , Humanos , Patulina/análise , Bebidas/análise , Smartphone , Contaminação de Alimentos/análise
6.
Food Chem ; 443: 138576, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301556

RESUMO

A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 µg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.


Assuntos
Quitosana , Malus , Patulina , Poluentes Químicos da Água , Patulina/análise , Ácido Fítico , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
7.
Toxins (Basel) ; 16(2)2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393181

RESUMO

Patulin is a secondary metabolite primarily synthesized by the fungus Penicillium expansum, which is responsible for blue mold disease on apples. The latter are highly susceptible to fungal infection in the postharvest stages. Apples destined to produce compotes are processed throughout the year, which implies that long periods of storage are required under controlled atmospheres. P. expansum is capable of infecting apples throughout the whole process, and patulin can be detected in the end-product. In the present study, 455 apples (organically and conventionally grown), destined to produce compotes, of the variety "Golden Delicious" were sampled at multiple postharvest steps. The apple samples were analyzed for their patulin content and P. expansum was quantified using real-time PCR. The patulin results showed no significant differences between the two cultivation techniques; however, two critical control points were identified: the long-term storage and the deck storage of apples at ambient temperature before transport. Additionally, alterations in the epiphytic microbiota of both fungi and bacteria throughout various steps were investigated through the application of a metabarcoding approach. The alpha and beta diversity analysis highlighted the effect of long-term storage, causing an increase in the bacterial and fungal diversity on apples, and showed significant differences in the microbial communities during the different postharvest steps. The different network analyses demonstrated intra-species relationships. Multiple pairs of fungal and bacterial competitive relationships were observed. Positive interactions were also observed between P. expansum and multiple fungal and bacterial species. These network analyses provide a basis for further fungal and bacterial interaction analyses for fruit disease biocontrol.


Assuntos
Malus , Patulina , Penicillium , Malus/microbiologia , Patulina/análise , Frutas/microbiologia , Penicillium/metabolismo
8.
J Agric Food Chem ; 72(2): 1025-1034, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181197

RESUMO

In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.


Assuntos
Patulina , Penicillium , Pyrus , Frutas , Penicillium/genética , Penicillium/patogenicidade , Virulência
9.
Food Chem ; 441: 138364, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219369

RESUMO

Patulin (PAT) commonly contaminates fruits, posing a significant risk to human health. Therefore, a highly effective and sensitive approach in identifying PAT is warranted. Herein, a SERS aptasensor was constructed based on a two-dimensional film-like structure. GO@Au nanosheets modified with SH-cDNA were employed as capture probes, while core-shell Au@Ag nanoparticles modified with 4-MBA and SH-Apt were utilized as signal probes. Through the interaction between capture probes and signal probes, adjustable hotspots were formed, yielding a significant Raman signal. During sensing, the GO@Au-cDNA competitively attached to Au@AgNPs@MBA-Apt, resulting in an inverse relationship between PAT levels and SERS intensity. The acquired results exhibited linear responses to PAT within the range of 1-70 ng/mL, with a calculated limit of detection of 0.46 ng/mL. In addition, the SERS aptasensor exhibited satisfactory recoveries in apple samples, which aligned closely with HPLC. With high sensitivity and specificity, this method holds significant potential for PAT detection.


Assuntos
Nanopartículas Metálicas , Patulina , Humanos , Nanopartículas Metálicas/química , DNA Complementar , Ouro/química , Análise Espectral Raman/métodos , Prata/química , Limite de Detecção
10.
Toxins (Basel) ; 16(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251268

RESUMO

Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed.


Assuntos
Patulina , Penicillium , Patulina/toxicidade , Penicillium/genética , Membrana Celular , Frutas
11.
Int J Food Microbiol ; 412: 110545, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38237417

RESUMO

Hard apple cider is considered to be a low-risk product for food spoilage and mycotoxin contamination due to its alcoholic nature and associated food sanitation measures. However, the thermotolerant mycotoxin-producing fungus Paecilomyces niveus may pose a significant threat to hard cider producers. P. niveus is known to infect apples (Malus xdomestica), and previous research indicates that it can survive thermal processing and contaminate finished apple juice with the mycotoxin patulin. To determine if hard apple cider is susceptible to a similar spoilage phenomenon, cider apples were infected with P. niveus or one of three patulin-producing Penicillium species and the infected fruits underwent benchtop fermentation. Cider was made with lab inoculated Dabinett and Medaille d'Or apple cultivars, and patulin was quantified before and after fermentation. Results show that all four fungi can infect cider apples and produce patulin, some of which is lost during fermentation. Only P. niveus was able to actively grow throughout the fermentation process. To determine if apple cider can be treated to hinder P. niveus growth, selected industry-grade sanitation measures were tested, including chemical preservatives and pasteurization. High concentrations of preservatives inhibited P. niveus growth, but apple cider flash pasteurization was not found to significantly impact spore germination. This study confirms that hard apple cider is susceptible to fungal-mediated spoilage and patulin contamination. P. niveus is an important concern for hard apple cider producers due to its demonstrated thermotolerance, survival in fermentative environments, and resistance to sanitation measures.


Assuntos
Byssochlamys , Malus , Patulina , Penicillium , Malus/microbiologia , Patulina/análise , Contaminação de Alimentos/análise , Fatores de Risco
12.
Food Microbiol ; 119: 104434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225046

RESUMO

Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.


Assuntos
Malus , Proteínas Monoméricas de Ligação ao GTP , Patulina , Penicillium , Virulência/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Frutas/metabolismo
13.
Ecotoxicol Environ Saf ; 269: 115784, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061079

RESUMO

Patulin (PAT) is one of the mycotoxins commonly found in agricultural products and fruits, and has obvious toxic effects on animals and humans. PAT has been found to cause myocardial toxicity and oxidative damage, but the mechanism of myocardial toxicity remained to be elucidated. We investigated the toxic effects and potential mechanisms of PAT on human cardiomyocytes and explored the effects of reactive oxygen species (ROS) on them. The study showed that treatment with PAT for 24 h decreased cell viability and superoxide dismutase (SOD) activity, and increased ROS and lactate dehydrogenase (LDH) levels. Moreover, in addition to detecting increased γ-H2AX expression and observing nuclear damage, the comet assay also showed increased DNA tail distance in the PAT-treated group, followed by an increase in phosphorylation of the p53 protein and p21 protein expression, and a decrease in CDK1 and Cyclin B1 protein expression, and G2/M phase arrest. In addition, PAT induced endoplasmic reticulum stress (ERS) and induced apoptosis, as evidenced by Ca2+ increase, ER enlargement and swelling, and upregulation of ERS-related genes and proteins expression, and increased expression of three apoptotic pathway proteins under ERS, including CHOP, JNK, and caspase-12. Meanwhile, N-acetylcysteine (NAC, a ROS scavenger) reversed the negative effects of PAT treatment on cells. These results clarify that excessive ROS production by PAT-treated AC16 cells not only causes DNA damage, leading to cell cycle arrest, but also causes ERS, which triggers apoptotic pathways to cause apoptosis.


Assuntos
Patulina , Animais , Humanos , Patulina/toxicidade , Patulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Dano ao DNA , Apoptose , Estresse do Retículo Endoplasmático
14.
Int J Food Microbiol ; 410: 110465, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980812

RESUMO

The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, ß-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.


Assuntos
Malus , Patulina , Penicillium , Pyrus , Pyrus/microbiologia , Glicosídeo Hidrolases , Frutas/microbiologia , Penicillium/metabolismo , Patulina/metabolismo , Malus/microbiologia
15.
J Hazard Mater ; 463: 132806, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37922585

RESUMO

Global warming has increased the contamination of mycotoxins. Patulin (PAT) is a harmful contaminant that poses a serious threat to food safety and human health. Saccharomyces cerevisiae biodegrades PAT by its enzymes during fermentation, which is a safe and efficient method of detoxification. However, the key degradation enzymes remain unclear. In this study, the proteomic differences of Saccharomyces cerevisiae under PAT stress were investigated. The results showed that the proteins involved in redox reactions and defense mechanisms were significantly up-regulated to resist PAT stress. Subsequently, molecular docking was used to virtual screen for degrading enzymes. Among 18 proteins, YKL069W showed the highest binding affinity to PAT and was then expressed in Escherichia coli, where the purified YKL069W completely degraded 10 µg/mL PAT at 48 h. YKL069W was demonstrated to be able to degrade PAT into E-ascladiol. Molecular dynamics simulations confirmed that YKL069W was stable in catalyzing PAT degradation with a binding free energy of - 7.5 kcal/mol. Furthermore, it was hypothesized that CYS125 and CYS101 were the key amino acid residues for degradation. This study offers new insights for the rapid screening and development of PAT degrading enzymes and provides a theoretical basis for the detoxification of mycotoxins.


Assuntos
Patulina , Humanos , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Proteômica , Fermentação
16.
Analyst ; 149(2): 442-450, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099486

RESUMO

Zearalenone (ZEN) is one of the most toxic mycotoxins widely found in agricultural products. In this study, a sensitive enzyme-linked immunosorbent assay (ELISA) integrated with immunoaffinity column extraction for the detection of ZEN in food and feed samples was developed. A ZEN derivative containing a carboxylic group was first synthesized and then linked to bovine serum albumin (BSA). The formed ZEN-BSA conjugate was used as the immunogen for the production of the monoclonal antibody (mAb) against ZEN. The hybridoma clones (1G5) capable of secreting antibodies against ZEN were successfully selected. Based on this mAb, the IC50 and LOD of the ELISA for ZEN were 0.37 ng mL-1 and 0.04 ng mL-1, respectively, which were 1.6-308.1 times lower than those in the published ELISAs, indicating the high sensitivity of our assay. There was no cross-reactivity of the mAb with other four mycotoxins (patulin, AFB1, DON, and OTA). Due to the high similarity in molecular structures among ZEN and its homologs (α-zearalanol, ß-zearalanol, zearalanone, α-zearalenol, ß-zearalenol), the CR values of the mAb with the homologs were within 3.59%-105.71%. Taking advantage of plenty of mAb, the immunoaffinity column was prepared by immobilizing the mAb on Sepharose-4B gel and filling it into an SPE column. ZEN spiked samples (corn, wheat, feed) were extracted using an immunoaffinity column and measured by ELISA and HPLC-FLD simultaneously. The recoveries of the ELISA for ZEN in the spiked samples were 92.46-105.48% with RSDs of 4.87-10.11%. A good correlation between ELISA (x) and HPLC-FLD (y) with the linear regression equation y = 1.0589x + 1.43815 (R2 = 0.998, n = 6) was obtained. To verify the applicability, the proposed ELISA was also applied to some real samples randomly collected from a local market. It was proven that the newly produced mAb-based ELISA was a feasible and sensitive method for the detection of ZEN in food and feed samples.


Assuntos
Patulina , Zearalenona , Zeranol/análogos & derivados , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática/métodos , Patulina/análise , Contaminação de Alimentos/análise , Soroalbumina Bovina/química
17.
Food Chem Toxicol ; 184: 114414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128688

RESUMO

Identification and pretreatment analysis of endogenous metabolites of patulin (PAT) in zebrafish were successfully carried out using UHPLC-Q-Orbitrap-HRMS. Three major metabolites, namely hydroascladiol, E-ascladiol, and Z-ascladiol, were identified. They exhibited similar fragmentation pathways to PAT, with the structurally significant ions *b' and *c' generated through the cleavage of the side chains of *b and *c, respectively. These ions were crucial for confirming the modification site and have been confirmed as characteristic fragments for the identification of PAT metabolites. Furthermore, a pretreatment method for analyzing PAT and the three metabolites in zebrafish was proposed, using solid-phase-assisted liquid/liquid extraction (SLLE) and matrix solid-phase dispersion (MSPD) techniques. The initial purification process involved loading the aqueous phase onto a macroporous diatomaceous column, followed by elution with acetonitrile. Following this, neutral alumina powder was added to the organic phase, effectively eliminating interference from hydrophilic and lipid-soluble compounds through the optimization of this step. Due to their structural similarity, the three metabolites were semi-quantitatively analyzed using a PAT standard curve. The results demonstrated a good linear relationship in the concentration range of 0.001-0.02 µg/mL (r2 ≥ 0.999). The limit of detection for PAT and the three metabolites ranged from 0.01 to 0.03 mg/kg.


Assuntos
Patulina , Peixe-Zebra , Animais , Cromatografia Líquida de Alta Pressão/métodos , Patulina/análise , Extração em Fase Sólida/métodos , Íons
18.
Ecotoxicol Environ Saf ; 270: 115871, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141335

RESUMO

Tenuazonic acid (TeA) and patulin (PAT), as the naturally occurring mycotoxins with various toxic effects, are often detected in environment and food chain, has attracted more and more attention due to their widespread and high contaminations as well as the coexistence, which leads to potential human and animals' risks. However, their combined toxicity has not been reported yet. In our study, C. elegans was used to evaluate the type of combined toxicity caused by TeA+PAT and its related mechanisms. The results showed that TeA and PAT can induce synergistic toxic effects based on Combination Index (CI) evaluation model (Chou-Talalay method), that is, the body length, brood size as well as the levels of ROS, CAT and ATP were significantly affected in TeA+PAT-treated group compared with those in TeA- or PAT-treated group. Besides, the expressions of oxidative (daf-2, daf-16, cyp-35a2, ctl-1, ctl-3, pmk-1, jnk-1, skn-1) and intestinal (fat-5, pod-2, egl-8, pkc-3, ajm-1, nhx-2) stress-related genes were disrupted, among which daf-16 displayed the most significant alternation. Further study on daf-16 gene defective C. elegans showed that the damages to the mutant nematodes were significantly attenuated. Since daf-2, daf-16, jnk-1 and pmk-1 are evolutionarily conserved, our findings could hint synergistic toxic effects of TeA+PAT on higher organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Patulina , Animais , Humanos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Patulina/toxicidade , Patulina/metabolismo , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Oxirredução , Longevidade
19.
Toxicon ; 239: 107583, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141970

RESUMO

In this study, an electrochemical and aptamer-based aptasensor was developed for the sensitive detection of patulin, a mycotoxin commonly found in fruits and fruit-based products. The aptasensor used an innovative structural switching signal-off platform for detecting patulin. The aptamer immobilization on screen-printed carbon electrodes was achieved through Au electrodeposition and thiol group (-SH) route. Response surface methodology was used to determine the optimal incubation times for the aptamer, blocking agent, and target molecule, which were found to be 180 min, 40 min, and 89 min, respectively. The response of the aptamer to different concentrations of patulin was measured using square wave voltammetry by exploiting the structural switching mechanism. The sensor response was determined by quantifying differences in the aptasensor's background current. The aptasensor exhibited a linear working range of 1-25 µM and a low detection limit of 3.56 ng/mL for patulin. The aptasensor's relative standard deviation and accuracy were determined to be 0.067 and 94.4%, respectively. A non-specific interaction was observed at low concentrations of two other mycotoxins, ochratoxin A and zearalenone. The interference from ochratoxin A in the measurements was below 10%. In real sample tests using apple juice, interference, particularly at low concentrations, had changed the recovery of patulin negatively with a significant effect on the structural switching behavior. Nevertheless, at a concentration of 25 ng/mL, the interference effect was eliminated, and the recovery standard deviation improved to 6.6%. The aptasensor's stability was evaluated over 10 days, and it demonstrated good performance, retaining 13.12% of its initial response. These findings demonstrate the potential of the developed electrochemical aptasensor for the sensitive detection of patulin in fruit-based products, with prospects for application in food safety and quality control.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Malus , Patulina , Zearalenona , Sucos de Frutas e Vegetais , Frutas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-38011597

RESUMO

To evaluate the safety of orange consumption induced by mycotoxins, 'Newhall' navel oranges were artificially inoculated with P. expansum and A. tenuissima, followed by an evaluation of the distribution and migration patterns of corresponding mycotoxins (patulin [PAT], tentoxin [Ten], altenuene [ALT], alternariol monomethyl ether [AME], alternariol [AOH] and tenuazonic acid [TeA]) during orange storage and processing. The concentration of mycotoxins decreased as the increase of distance from the lesion, and mycotoxins could be detected throughout the orange when the lesion extended to 8 mm in diameter. AOH and AME pose the primary source of dietary risk with high concentrations and low thresholds of toxicological concern. Orange juice and pectin processing could remove 43.4-98.7% of mycotoxins, while tangerine peelprocessing might lead to significant enrichment of mycotoxins with the processing factors (PFs) of 2.8-3.5. The findings may offer scientific insights into mitigating the dietary risk of mycotoxin exposure from oranges and their derivatives.


Assuntos
Citrus sinensis , Micotoxinas , Patulina , Micotoxinas/análise , Alternaria , Ácido Tenuazônico , Lactonas/análise , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...