Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.241
Filtrar
1.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461874

RESUMO

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Assuntos
Nitroimidazóis , Pirazinamida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/química , Moxifloxacina/farmacologia , Moxifloxacina/química , Pós/química , Leucina/química , Aerossóis/química , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração por Inalação , Inaladores de Pó Seco/métodos , Tamanho da Partícula
2.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466092

RESUMO

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/líquido cefalorraquidiano , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidade e Especificidade , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Líquido Cefalorraquidiano , Testes de Sensibilidade Microbiana
3.
Arch Biochem Biophys ; 754: 109917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395123

RESUMO

As one of the oldest infectious diseases in the world, tuberculosis (TB) is the second most deadly infectious disease after COVID-19. Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), which can attack various organs of the human body. Up to now, drug-resistant TB continues to be a public health threat. Pyrazinamide (PZA) is regarded as a sterilizing drug in the treatment of TB due to its distinct ability to target Mtb persisters. Previously we demonstrated that a D67N mutation in Mycobacterium tuberculosis polynucleotide phosphorylase (MtbPNPase, Rv2783c) confers resistance to PZA and Rv2783c is a potential target for PZA, but the mechanism leading to PZA resistance remains unclear. To gain further insight into the MtbPNPase, we determined the cryo-EM structures of apo Rv2783c, its mutant form and its complex with RNA. Our studies revealed the Rv2783c structure at atomic resolution and identified its enzymatic functional groups essential for its phosphorylase activities. We also investigated the molecular mechanisms underlying the resistance to PZA conferred by the mutation. Our research findings provide structural and functional insights enabling the development of new anti-tuberculosis drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , Microscopia Crioeletrônica , Amidoidrolases , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Pirazinamida/química , Pirazinamida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mutação , RNA
4.
Braz J Biol ; 84: e278911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422295

RESUMO

The mutations of pncA gene encoding pyrazinamidase/PZase in Mycobacterium tuberculosis are often associated with pyrazinamide/PZA resistance. The H and R1 isolates showed significant phenotypic differences to PZA. The H isolate was PZA sensitive, but R1 was PZA resistant up to 100 ug/ml. The paper reports the pncA profile for both isolates and the activity of their protein expressed in Escherichia coli BL21(DE3). The 0.6 kb of each pncA genes have been subcloned successfully into the 5.4 kb pET30a vector and formed the pET30a-pncA recombinant with a size of 6.0 kb. The pncAR1 profile exhibited base mutations, but not for pncAH against to pncA from the PZA-sensitive M. tuberculosis H37RV published in Genbank ID: 888260. Three mutations were found in pncAR1, ie T41C, G419A, and A535G that subsequently changed amino acids of Cys14Arg, Arg140His and Ser179Gly in its protein level. The mutant PZase R1 that expressed as a 21 kDa protein in E. coli Bl21(DE3) lost 32% of its performance in activating PZA drug to pyrazinoic acid/POA compared to the wild-type PZase H. The mutation in the pncAR1 gene that followed by the decreasing of its PZase activity underlies the emergence of pyrazinamide resistance in the clinical isolate. Structural studies for the R1 mutant PZase protein should be further developed to reveal more precise drug resistance mechanisms and design more effective TB drugs.


Assuntos
Amidoidrolases , Escherichia coli , Mycobacterium tuberculosis , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Pirazinamida/farmacologia , Pontos de Acupuntura , Mutação/genética , Testes de Sensibilidade Microbiana
5.
Clin Rheumatol ; 43(3): 1183-1188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305936

RESUMO

OBJECTIVES: The research aimed to study the following questions: (1) five well-known gout-related medications were selected to test the validity of the prescription symmetry sequence analysis in Taiwan; (2) four exploratory medications were selected to test their relation to gout flares. METHODS: We utilized the 2003-2017 dataset of the Taiwan National Health Insurance Program containing all claims data with 2 million beneficiaries as a data source. In order to explore the temporal association, we designed a scenario of medication-induced gout flares. Nine medications were selected as the index agent, including aspirin (low-dose), thiazide diuretics, loop diuretics, ethambutol, pyrazinamide, metformin, pioglitazone, fenofibrate, and losartan. The gout flare was defined as subjects with use of the marker agent for treatment of gout flares. The observation-window period between initiation of the index agent and initiation of the marker agent was 1 year. Subjects who used an index agent and a marker agent on the same day were excluded. The prescription symmetry sequence analysis was carried out to compare the observed number of persons who took an index agent prior to starting a marker agent with the observed number of persons who took a marker agent before starting an index agent. The adjusted sequence ratio (adjusted SR) with 95% confidence interval was applied to estimate the relation between an index agent and the marker agent. RESULTS: Among five medications including aspirin (low-dose), thiazide diuretics, loop diuretics, ethambutol, and pyrazinamide, the adjusted sequence ratio ranged from 1.15 to 3.35 and all reached statistical significance. Fenofibrate use and losartan use were associated with a lower probability of gout flares, with reaching statistical significance (adjusted SR = 0.60 for fenofibrate and adjusted SR = 0.92 for losartan). Metformin use was associated with a greater probability of gout flares, with reaching statistical significance (adjusted SR = 1.14). Pioglitazone use did not reach statistical significance. CONCLUSION: Based on the confirmatory analysis including five well-known gout-related medications, this study supports that the prescription symmetry sequence analysis can be used to detect an adverse drug event associated with one potential offending agent. The exposure to fenofibrate or losartan might be a protective factor against gout flares. Metformin use could be associated with a greater probability of gout flares, but this finding should be validated by other studies. KEY POINTS: • What is already known about this subject? 1. The prescription symmetry sequence analysis is a useful method for detecting an adverse drug reaction associated with one potential offending drug. 2. Numerous medications are found to induce gout flares. • What does this study add? 1. The prescription symmetry sequence analysis supports the evidence that aspirin (low-dose), thiazide diuretics, loop diuretics, ethambutol and pyrazinamide are associated with a greater probability of gout flares. 2. The exposure to fenofibrate or losartan might be a protective factor against gout flares. 3. Metformin use could be associated with a greater probability of gout flares. • How might this impact on clinical practice or future developments? 1. Clinicians should always consider the possibility of medication-induced gout flares. If gout flares develop, discontinuation of risky medications is the first step. Then prescribing cascades can be eliminated.


Assuntos
Fenofibrato , Gota , Metformina , Humanos , Gota/diagnóstico , Inibidores de Simportadores de Cloreto de Sódio/efeitos adversos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/efeitos adversos , Pirazinamida/efeitos adversos , Losartan/efeitos adversos , Pioglitazona/efeitos adversos , Fenofibrato/efeitos adversos , Etambutol/efeitos adversos , Exacerbação dos Sintomas , Prescrições , Aspirina/uso terapêutico , Metformina/efeitos adversos
6.
BMJ Case Rep ; 17(2)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378592

RESUMO

Tuberculosis (TB) poses a major global health threat, substantially affecting children, who contribute notably to new cases and deaths. Diagnosing TB in kids is challenging due to collection issues and the paucibacillary nature of the disease. Disseminated TB, uncommon in children in low TB incidence countries, remains a significant cause of morbidity in migrant populations. We illustrate a rare case of disseminated TB in a middle-childhood boy who migrated from Angola to France, displaying chronic cough, fatigue, weight loss and persistent fever. Investigations revealed widespread TB affecting several organs (lungs, heart, bones and lymph nodes). Prompt diagnosis led to a treatment regimen of four antibiotics (isoniazid, rifampin, pyrazinamide, ethambutol) and corticosteroids, resulting in substantial improvement after 2 months. Subsequent treatment involved two antibiotics (isoniazid and rifampin) for 10 more months. This case underscores the criticality of early identification and comprehensive treatment for disseminated TB, ensuring improved outcomes and reduced risks.


Assuntos
Migrantes , Tuberculose Miliar , Masculino , Humanos , Criança , Rifampina/uso terapêutico , Isoniazida , Etambutol , Pirazinamida , Antibacterianos , Tuberculose Miliar/tratamento farmacológico , Antituberculosos/uso terapêutico
7.
Microbiol Spectr ; 12(3): e0346223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323824

RESUMO

Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE: The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/farmacologia , Pirazinamida/uso terapêutico , Etambutol , Rifampina/farmacologia , Rifampina/uso terapêutico , Levofloxacino/uso terapêutico , Tailândia/epidemiologia , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Centros de Atenção Terciária , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação
8.
Tuberculosis (Edinb) ; 145: 102479, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262199

RESUMO

Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
9.
Bioorg Med Chem ; 98: 117562, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184947

RESUMO

In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Simulação de Acoplamento Molecular , Isoniazida/farmacologia , Pirazinamida , Piperazinas/farmacologia , Triazóis/farmacologia , Triazóis/metabolismo , Piperazina , Relação Estrutura-Atividade , Mycobacterium tuberculosis/metabolismo , Indóis/farmacologia , Testes de Sensibilidade Microbiana
10.
J Aerosol Med Pulm Drug Deliv ; 37(1): 30-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197850

RESUMO

Background: Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. Methods: In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. Results: Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and in vitro drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, in vitro drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 µm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in in vivo deposition with respect to pure drug deposition, respectively. In vitro drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. Conclusion: PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.


Assuntos
Nanopartículas , Tuberculose Pulmonar , Humanos , Pirazinamida/uso terapêutico , Administração por Inalação , Sistemas de Liberação de Medicamentos , Tuberculose Pulmonar/tratamento farmacológico , Polímeros/química , Polímeros/uso terapêutico , Nanopartículas/química , Tamanho da Partícula
11.
J Biomol Struct Dyn ; 42(2): 759-765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096659

RESUMO

This study aims to conduct a comprehensive molecular dynamics strategy to evaluate whether mutations found in pyrazinamide monoresistant (PZAMR) strains of Mycobacterium tuberculosis (MTB) can potentially reduce the effectiveness of pyrazinamide (PZA) for tuberculosis (TB) treatment. Five single point mutations of pyrazinamidase (PZAse), an enzyme which is responsible for the activation of prodrug PZA into pyrazinoic acid, found in MTB clinical isolates, namely His82Arg, Thr87Met, Ser66Pro, Ala171Val, and Pro62Leu, were analyzed by the dynamics simulations both in the apo state (unbound state) and in the PZA bound state. The results showed that the mutation of His82 to Arg, Thr87 to Met, and Ser66 to Pro in PZAse affects the coordination state of the Fe2+ ion, which is a cofactor required for enzyme activity. These mutations change the flexibility, stability, and fluctuation of His51, His57, and ASP49 amino acid residues around the Fe2+ ion, culminating in an unstable complex and dissociation of PZA from the PZAse binding site. However, mutations of Ala171 to Val and Pro62 to Leu were found to have no effect on the complex's stability. Based on the results, PZAse mutations of His82Arg, Thr87Met, and Ser66Pro culminated in weak binding affinity for PZA and caused significant structural deformations that led to PZA resistance. Future structural and functional studies, as well as investigations into other aspects of drug resistance in PZAse, will require experimental clarification.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Pirazinamida , Pirazinamida/farmacologia , Pirazinamida/metabolismo , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Amidoidrolases/genética , Mutação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
12.
J Comput Chem ; 45(10): 622-632, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38063457

RESUMO

Pyrazinamide, an antituberculosis but documented toxic drug, is subjected to computational investigation along with the metal complexes via a DFT approach to predict the structure-activity and structure-toxicity relationship. 6-31G(d,p) basis set was used for Zn, Ni, Mn, Fe, and Co, while the SDD basis set was applied to Cu, Cr, Cd, and Hg. Several reactivity parameters and charge distribution were calculated and the reactivity profile was estimated. The complexes were found to be soft and polarizable which could be responsible for their binding with bacterial targets to inhibit their growth. In contrast, pyrazinamide which is found to be hard among all is susceptible to being toxic. Moreover, the electronegative nature of the complexes can endow them with a better antibacterial effect. Since metal complexes have been found to be less toxic and more biologically interactive by computational methods, they can be employed as potent drugs for the cure of tuberculosis.


Assuntos
Complexos de Coordenação , Mercúrio , Pirazinamida/farmacologia , Complexos de Coordenação/farmacologia , Antibacterianos
13.
Clin Microbiol Infect ; 30(2): 189-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37741621

RESUMO

BACKGROUND: Contacts of patients with multidrug-resistant tuberculosis (MDR-TB) are at risk of developing TB disease. Tuberculosis preventive treatment (TPT) is an intervention that can potentially reduce this risk. OBJECTIVES: To evaluate the effectiveness and safety of TPT for contacts of patients with MDR-TB. DATA SOURCES: EMBASE, PubMed, Web of Science, and the Cochrane Library were searched for eligible studies on 24 July 2023, without start date restrictions. STUDY ELIGIBILITY CRITERIA: We included studies that compared TPT with no treatment in contacts of patients with MDR-TB and reported outcomes of progression to TB disease. PARTICIPANTS: Contacts of patients with MDR-TB. INTERVENTIONS: TPT. ASSESSMENT OF RISK OF BIAS: A modified version of the Newcastle-Ottawa Scale was used. METHODS OF DATA SYNTHESIS: Random-effects meta-analysis was utilized to calculate the relative risk for disease progression to TB in contacts of patients with MDR-TB who received TPT compared to those who did not. Additionally, completion, adverse effect, and discontinued rates were assessed. RESULTS: Involving 1105 individuals from 11 studies, the pooled relative risk for disease progression in contacts receiving TPT versus those without treatment was 0.34 (95% CI: 0.16-0.72). Subgroup analysis indicated a lower pooled relative risk for regimens based on the drug-resistance profile of the index patients with TB compared to uniform treatment regimens (0.22 [95% CI: 0.06-0.84] vs. 0.49 [95% CI: 0.17-1.35]), although not statistically significant. The pooled completed rate was 83.8%, adverse effect rate was 22.9%, and discontinued rate was 6.5%. After excluding the levofloxacin and pyrazinamide regimen study, the completed rate increased to 88.0%, and adverse effects and discontinued rates decreased to 8.0% and 4.0%, respectively. DISCUSSION: TPT reduces TB disease progression risk in contacts of patients with MDR-TB. Tailored TPT regimens based on drug-resistance profiles may offer additional benefits. Furthermore, efforts to improve completed rates and manage adverse effects are essential for optimizing effectiveness and safety.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/prevenção & controle , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Pirazinamida/uso terapêutico , Levofloxacino/uso terapêutico , Progressão da Doença
14.
Skinmed ; 21(6): 439-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051246

RESUMO

A-24-year-old woman reported with asymptomatic facial lesions present for 6 months. Examination revealed two closely located nodules which were firm, nontender, slightly erythematosus with crusting over the left cheek (Figure 1A). There was no regional lymphadenopathy, and the systemic examination was within normal limits. The differential diagnosis included cutaneous leishmaniasis, keratoacanthoma, and basal cell carcinoma. Tissue smear from nodules failed to reveal Leishmania donovan bodies. The histopathologic examination revealed nonca-seating epithelioid granulomas with lymphocyte cuffing in the dermis (Figures 2A and 2B). Special staining performed with Ziehl-Neelsen and Periodic acid-Schiff (PAS) stains was negative. Tissue cultures for bacteria, mycobacteria, and fungi were also negative; however Mantoux test (MT) performed for latent tuberculosis was strongly positive. Sputum for acid fast bacilli was negative, and serology for human immuno-deficiency virus (HIV)-1 and HIV-2 was nonreactive. A chest x-ray and ultrasound of the abdomen did not reveal any abnormality. Although the morphology of skin lesions did not favor classic lupus vulgaris (LV), considering the endemicity of tuberculosis in India, positive results of Mantoux test, and a dermal epithelioid granuloma, the patient was prescribed antitubercular therapy (ATT), comprising isoniazid, rifampicin, ethambutol, and pyrazinamide. Dramatic response was observed after 2 months, and complete healing with residual scarring took place in next 4 months (Figure 1B).


Assuntos
Antituberculosos , Neoplasias Cutâneas , Feminino , Humanos , Antituberculosos/uso terapêutico , Etambutol , Isoniazida , Pirazinamida , Neoplasias Cutâneas/tratamento farmacológico
15.
Int J Tuberc Lung Dis ; 27(12): 931-937, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042977

RESUMO

BACKGROUND: Whether HIV infection adversely affects exposure to first-line TB drugs in children is debatable. It is also not known whether HIV infection increases the risk of plasma underexposure or overexposure to TB drugs. This study sought to address these questions.DESIGN/METHODS: Children on TB treatment were enrolled. After 4 weeks on therapy, blood samples were collected at pre-dose, 1, 2, 4, 8, and 12 h post-dose for pharmacokinetic analysis. Plasma drug exposure below and above the lower and upper bounds of the 95% confidence intervals of the reference mean for children were considered underexposure and overexposure, respectively. The effect of HIV infection on drugs exposure and risk of underexposure were examined using multivariate analysis.RESULTS: Of 86 participants (median age: 4.9 years), 45 had HIV coinfection. HIV coinfection was associated with lower pyrazinamide (PZA) and ethambutol exposures in adjusted analysis. Patients with TB-HIV coinfection were three times more likely to have PZA underexposure than those with TB only. Underexposure of rifampin was common irrespective of HIV coinfection status.CONCLUSIONS: HIV coinfection was associated with a higher risk for PZA underexposure in children. This effect should be accounted for in models and simulations to determine optimal PZA dose for children.


Assuntos
Coinfecção , Infecções por HIV , Tuberculose , Criança , Humanos , Pré-Escolar , Antituberculosos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Isoniazida/uso terapêutico , Pirazinamida/uso terapêutico , Coinfecção/tratamento farmacológico
16.
Nat Commun ; 14(1): 8161, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071218

RESUMO

The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Testes de Sensibilidade Microbiana , Poli(ADP-Ribose) Polimerase-1
17.
Indian J Tuberc ; 70(4): 489-496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37968056

RESUMO

INTRODUCTION: Drug-induced thrombocytopenia is a known adverse event of several drugs. Antitubercular therapy (ATT) is rarely reported but important cause of thrombocytopenia. The present review aimed to understand the profile of thrombocytopenia caused by first-line ATT i.e. isoniazid, rifampicin, pyrazinamide, and ethambutol. MATERIALS AND METHODS: We screened case reports, case series, and letter-to-editor from databases, like Pubmed/MEDLINE, Ovid, and EMBASE from 1970 to 2021. The PRISMA guidelines were followed in the present systematic review. RESULTS: Categorical data were expressed as n (%) and quantitative data were expressed as median (IQR). After applying the inclusion/exclusion criteria, 17 case reports and 7 letters to the editor were selected for the present review. Rifampicin was most frequently associated with thrombocytopenia (65%). A median (IQR) drop to 20,000 (49,500) platelets/mm3 was observed. Anti-rifampicin associated antibodies and anti-dsDNA positivity were found in six studies. Except for two, all patients responded to symptomatic treatment. DISCUSSION: ATT-induced thrombocytopenia can be life-threatening and require hospitalization. Clinicians should be aware of the association of ATT with thrombocytopenia and should take appropriate measures for patient management. CONCLUSION: This review provides clinicians a comprehensive picture of adverse effects and their management in ATT induced thrombocytopenia.


Assuntos
Rifampina , Trombocitopenia , Humanos , Rifampina/efeitos adversos , Antituberculosos/efeitos adversos , Pirazinamida/uso terapêutico , Isoniazida/efeitos adversos , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico
18.
PLoS Med ; 20(11): e1004303, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988391

RESUMO

BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.


Assuntos
Infecções por HIV , Tuberculose , Adulto , Recém-Nascido , Criança , Humanos , Feminino , Lactente , Pré-Escolar , Adolescente , Masculino , Ritonavir/farmacocinética , Ritonavir/uso terapêutico , Lopinavir/farmacocinética , Lopinavir/uso terapêutico , Rifampina , Isoniazida/uso terapêutico , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Antituberculosos , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Infecções por HIV/tratamento farmacológico , HIV
19.
Antimicrob Agents Chemother ; 67(11): e0073723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882552

RESUMO

Physiological changes during pregnancy may alter the pharmacokinetics (PK) of antituberculosis drugs. The International Maternal Pediatric Adolescent AIDS Clinical Trials Network P1026s was a multicenter, phase IV, observational, prospective PK and safety study of antiretroviral and antituberculosis drugs administered as part of clinical care in pregnant persons living with and without HIV. We assessed the effects of pregnancy on rifampin, isoniazid, ethambutol, and pyrazinamide PK in pregnant and postpartum (PP) persons without HIV treated for drug-susceptible tuberculosis disease. Daily antituberculosis treatment was prescribed following World Health Organization-recommended weight-band dosing guidelines. Steady-state 12-hour PK profiles of rifampin, isoniazid, ethambutol, and pyrazinamide were performed during second trimester (2T), third trimester (3T), and 2-8 of weeks PP. PK parameters were characterized using noncompartmental analysis, and comparisons were made using geometric mean ratios (GMRs) with 90% confidence intervals (CI). Twenty-seven participants were included: 11 African, 9 Asian, 3 Hispanic, and 4 mixed descent. PK data were available for 17, 21, and 14 participants in 2T, 3T, and PP, respectively. Rifampin and pyrazinamide AUC0-24 and C max in pregnancy were comparable to PP with the GMR between 0.80 and 1.25. Compared to PP, isoniazid AUC0-24 was 25% lower and C max was 23% lower in 3T. Ethambutol AUC0-24 was 39% lower in 3T but limited by a low PP sample size. In summary, isoniazid and ethambutol concentrations were lower during pregnancy compared to PP concentrations, while rifampin and pyrazinamide concentrations were similar. However, the median AUC0-24 for rifampin, isoniazid, and pyrazinamide met the therapeutic targets. The clinical impact of lower isoniazid and ethambutol exposure during pregnancy needs to be determined.


Assuntos
Antituberculosos , Tuberculose , Adolescente , Feminino , Humanos , Gravidez , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Etambutol/efeitos adversos , Etambutol/farmacocinética , Infecções por HIV/tratamento farmacológico , Isoniazida/efeitos adversos , Isoniazida/farmacocinética , Período Pós-Parto , Estudos Prospectivos , Pirazinamida/efeitos adversos , Pirazinamida/farmacocinética , Rifampina/efeitos adversos , Rifampina/farmacocinética , Tuberculose/tratamento farmacológico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase IV como Assunto , Estudos Observacionais como Assunto
20.
PLoS One ; 18(10): e0293194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883448

RESUMO

Tuberculosis stands as a prominent cause of mortality in developing countries. The treatment of tuberculosis involves a complex procedure requiring the administration of a panel of at least four antimicrobial drugs for the duration of six months. The occurrence of treatment failure after the completion of a standard treatment course presents a serious medical problem. The purpose of this study was to evaluate antimicrobial drug resistant features of Mycobacterium tuberculosis associated with treatment failure. Additionally, it aimed to evaluate the effectiveness of second line drugs such as amikacin, linezolid, moxifloxacin, and the efflux pump inhibitor verapamil against M. tuberculosis isolates associated with treatment failure. We monitored 1200 tuberculosis patients who visited TB centres in Lahore and found that 64 of them were not cured after six months of treatment. Among the M. tuberculosis isolates recovered from the sputum of these 64 patients, 46 (71.9%) isolates were simultaneously resistant to rifampicin and isoniazid (MDR), and 30 (46.9%) isolates were resistant to pyrazinamide, Resistance to amikacin was detected in 17 (26,5%) isolates whereas resistance to moxifloxacin and linezolid was detected in 1 (1.5%) and 2 (3.1%) isolates respectively. Among MDR isolates, the additional resistance to pyrazinamide, amikacin, and linezolid was detected in 15(23.4%), 4(2.6%) and 1(1.56%) isolates respectively. One isolate simultaneously resistant to rifampicin, isoniazid, amikacin, pyrazinamide, and linezolid was also identified. In our investigations, the most frequently mutated amino acid in the treatment failure group was Serine 315 in katG. Three novel mutations were detected at codons 99, 149 and 154 in pncA which were associated with pyrazinamide resistance. The effect of verapamil on the minimum inhibitory concentration of isoniazid and rifampicin was observed in drug susceptible isolates but not in drug resistant isolates. Rifampicin and isoniazid enhanced the transcription of the efflux pump gene rv1258 in drug susceptible isolates collected from the treatment failure patients. Our findings emphasize a high prevalence of MDR isolates linked primarily to drug exposure. Moreover, the use of amikacin as a second line drug may not be the most suitable choice in such cases.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Linezolida/farmacologia , Linezolida/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Moxifloxacina/uso terapêutico , Moxifloxacina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Testes de Sensibilidade Microbiana , Verapamil/farmacologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...