Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.810
Filtrar
1.
Transl Vis Sci Technol ; 13(3): 24, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546981

RESUMO

Purpose: To investigate the potential effects and mechanism of nicotinamide riboside (NR) on the oxidative stress and fibrosis model of human trabecular meshwork (HTM) cell line cells. Methods: HTM cells were pretreated with NR, followed by the induction of oxidative injury and fibrosis by hydrogen peroxide (H2O2) and TGF-ß2, respectively. Cell viability was tested using Hoechst staining and MTT assays, cell proliferation was assessed by EdU assay, and cell apoptosis was detected by flow cytometry and western blotting. DCFH-DA and DHE probes were used to measure the level of reactive oxygen species (ROS), and MitoTracker staining was used to measure the mitochondrial membrane potential (MMP). Fibrotic responses, including cell migration and deposition of extracellular matrix (ECM) proteins, were detected via Transwell assays, qRT-PCR, and immunoblotting. Results: NR pretreatment improved the viability, proliferation, and MMP of H2O2-treated HTM cells. Compared to cells treated solely with H2O2, HTM cells treated with both NR and H2O2, exhibited a reduced rate of apoptosis and generation of ROS. Compared with H2O2 pretreatment, NR pretreatment upregulated expression of the JAK2/Stat3 pathway but inhibited mitogen-activated protein kinase (MAPK) pathway expression. Moreover, 10-ng/mL TGF-ß2 promoted cell proliferation and migration, which were inhibited by NR pretreatment. Both qRT-PCR and immunoblotting showed that NR inhibited the expression of fibronectin in a TGF-ß2-induced fibrosis model. Conclusions: NR has a protective effect on oxidative stress and fibrosis in HTM cells, which may be related to the JAK2/Stat3 pathway and MAPK pathway. Translational Relevance: Our research provides the ongoing data for potential therapy of NAD+ precursors in glaucoma.


Assuntos
Niacinamida/análogos & derivados , Compostos de Piridínio , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Fibrose
2.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474420

RESUMO

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Assuntos
Dinoprostona , Niacinamida/análogos & derivados , Compostos de Piridínio , Sirtuína 3 , Humanos , Dinoprostona/metabolismo , Ligantes , Receptores CCR7/metabolismo , Macrófagos/metabolismo
3.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
4.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474332

RESUMO

BACKGROUND: Most patients with testicular germ cell tumors (GCTs) are treated with cisplatin (CP)-based chemotherapy. However, some of them may develop CP resistance and therefore represent a clinical challenge. Cyclin-dependent kinase 5 (CDK5) is involved in chemotherapy resistance in different types of cancer. Here, we investigated the possible role of CDK5 and other CDKs targeted by dinaciclib in nonseminoma cell models (both CP-sensitive and CP-resistant), evaluating the potential of the CDK inhibitor dinaciclib as a single/combined agent for the treatment of advanced/metastatic testicular cancer (TC). METHODS: The effects of dinaciclib and CP on sensitive and resistant NT2/D1 and NCCIT cell viability and proliferation were evaluated using MTT assays and direct count methods. Flow cytometry cell-cycle analysis was performed. The protein expression was assessed via Western blotting. The in vivo experiments were conducted in zebrafish embryos xenografted with TC cells. RESULTS: Among all the CDKs analyzed, CDK5 protein expression was significantly higher in CP-resistant models. Dinaciclib reduced the cell viability and proliferation in each cell model, inducing changes in cell-cycle distribution. In drug combination experiments, dinaciclib enhances the CP effect both in vitro and in the zebrafish model. CONCLUSIONS: Dinaciclib, when combined with CP, could be useful for improving nonseminoma TC response to CP.


Assuntos
Cisplatino , Óxidos N-Cíclicos , Indolizinas , Neoplasias Embrionárias de Células Germinativas , Compostos de Piridínio , Neoplasias Testiculares , Masculino , Animais , Humanos , Cisplatino/farmacologia , Peixe-Zebra , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia
5.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
6.
ACS Appl Mater Interfaces ; 16(8): 10590-10600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343039

RESUMO

To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage ϕ6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection.


Assuntos
Polipropilenos , Polivinil , Compostos de Piridínio , Compostos de Vinila , Viroses , Humanos , Polipropilenos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Polímeros/farmacologia , Antivirais/farmacologia
7.
Toxicology ; 503: 153741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311098

RESUMO

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Intoxicação por Organofosfatos , Ratos , Animais , Oximas/farmacologia , Oximas/uso terapêutico , Agentes Neurotóxicos/toxicidade , Diafragma , Acetilcolinesterase/metabolismo , Compostos de Piridínio/farmacologia , Compostos de Piridínio/uso terapêutico , Relação Estrutura-Atividade , Intoxicação por Organofosfatos/tratamento farmacológico , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia
8.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385069

RESUMO

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Assuntos
Esclerose Cerebral Difusa de Schilder , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , DNA Polimerase gama , NAD/genética , DNA Mitocondrial/genética , Mutação
9.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387764

RESUMO

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Assuntos
Intoxicação por Organofosfatos , Compostos de Piridínio , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Sais/metabolismo , Sais/uso terapêutico , Relação Estrutura-Atividade , Sítios de Ligação , Intoxicação por Organofosfatos/tratamento farmacológico , Ligantes
10.
Neurotherapeutics ; 21(1): e00301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241160

RESUMO

Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1ß increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.


Assuntos
Esclerose Amiotrófica Lateral , Indolizinas , Niacinamida/análogos & derivados , Pirazóis , Compostos de Piridínio , Camundongos , Animais , Humanos , Superóxido Dismutase-1 , Esclerose Amiotrófica Lateral/tratamento farmacológico , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa , Células Endoteliais , Peróxido de Hidrogênio , Projetos Piloto , Neurônios Motores , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase , Medula Espinal
11.
Toxicol Lett ; 392: 94-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216073

RESUMO

Intoxications with organophosphorus compounds (OPCs) based chemical warfare agents and insecticides may result in a detrimental overstimulation of muscarinic and nicotinic acetylcholine receptors evolving into a cholinergic crisis leading to death due to respiratory failure. In the case of the nicotinic acetylcholine receptor (nAChR), overstimulation leads to a desensitization of the receptor, which cannot be pharmacologically treated so far. Still, compounds interacting with the MB327 binding site of the nAChR like the bispyridinium salt MB327 have been found to re-establish the functional activity of the desensitized receptor. Only recently, a series of quinazoline derivatives with UNC0642 as one of the most prominent representatives has been identified to address the MB327 binding site of the nAChR, as well. In this study, UNC0642 has been utilized as a reporter ligand to establish new Binding Assays for this target. These assays follow the concept of MS Binding Assays for which by assessing the amount of bound reporter ligand by mass spectrometry no radiolabeled material is required. According to the results of the performed MS Binding Assays comprising saturation and competition experiments it can be concluded, that UNC0642 used as a reporter ligand addresses the MB327 binding site of the Torpedo-nAChR. This is further supported by the outcome of ex vivo studies carried out with poisoned rat diaphragm muscles as well as by in silico studies predicting the binding mode of UNC0646, an analog of UNC0642 with the highest binding affinity, in the recently proposed binding site of MB327 (MB327-PAM-1). With UNC0642 addressing the MB327 binding site of the Torpedo-nAChR, this and related quinazoline derivatives represent a promising starting point for the development of novel ligands of the nAChR as antidotes for the treatment of intoxications with organophosphorus compounds. Further, the new MS Binding Assays are a potent alternative to established assays and of particular value, as they do not require the use of radiolabeled material and are based on a commercially available compound as reporter ligand, UNC0642, exhibiting one of the highest binding affinities for the MB327 binding site known so far.


Assuntos
Compostos de Piridínio , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/metabolismo , Ligantes , Relação Estrutura-Atividade , Sítios de Ligação , Quinazolinas , Compostos Organofosforados , Torpedo/metabolismo
12.
Mov Disord ; 39(2): 360-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899683

RESUMO

BACKGROUND: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS: A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS: NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS: Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Telangiectasia , Niacinamida/análogos & derivados , Animais , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Movimentos Oculares , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Piridínio/uso terapêutico
13.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048886

RESUMO

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Animais , Cobaias , Agentes Neurotóxicos/toxicidade , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Atropina/farmacologia , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico
14.
Biosci Biotechnol Biochem ; 88(2): 181-188, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37968134

RESUMO

Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as ß-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of ß-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.


Assuntos
Degranulação Celular , Compostos de Piridínio , Compostos de Amônio Quaternário , Ratos , Animais , Vesículas Secretórias/metabolismo , Mastócitos , beta-N-Acetil-Hexosaminidases
15.
Stem Cells ; 42(2): 116-127, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37952104

RESUMO

Human dental pulp stem cells (hDPSCs) play a vital role in the regeneration of the pulp-dentin complex after pulp disease. While the regeneration efficiency relies on the odontoblastic differentiation capacity of hDPSCs, this is difficult to regulate within the pulp cavity. Although nicotinamide riboside (NR) has been found to promote tissue regeneration, its specific role in pulp-dentin complex regeneration is not fully understood. Here, we aimed to explore the role of NR in the odontoblastic differentiation of hDPSCs and its underlying molecular mechanism. It was found that NR enhanced the viability and retarded senescence in hDPSCs with higher NAD+/NADH levels. In contrast to the sustained action of NR, the multi-directional differentiation of hDPSCs was enhanced after NR pre-treatment. Moreover, in an ectopic pulp regeneration assay in nude mice, transplantation of hDPSCs pretreated with NR promoted the formation of a dentin-like structure surrounded by cells positively expressing DMP-1 and DSPP. RNA-Seq demonstrated inhibition of the HIF-1 signaling pathway in hDPSCs pretreated with NR. The number of HIF-1α-positive cells was significantly decreased in hDPSCs pretreated by NR in vivo. Similarly, NR significantly downregulated the expression of HIF-1α in vitro. The findings suggested that NR could potentially regulate hDPSC odontoblastic differentiation and promote the development of innovative strategies for dental pulp repair.


Assuntos
Polpa Dentária , Niacinamida , Odontoblastos , Compostos de Piridínio , Animais , Humanos , Camundongos , Diferenciação Celular , Células Cultivadas , Camundongos Nus , Niacinamida/análogos & derivados , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo
16.
Geroscience ; 46(1): 665-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994989

RESUMO

Nicotinamide riboside (NR) increases blood levels of NAD+, a cofactor central to energy metabolism, and improves brain function in some rodent models of neurodegeneration. We conducted a placebo-controlled randomized pilot study with the primary objective of determining safety of NR in older adults with mild cognitive impairment (MCI). Twenty subjects with MCI were randomized to receive placebo or NR using dose escalation to achieve, and maintain, a final dose of 1 g/day over a 10-week study duration. The primary outcome was post-treatment change from baseline measures of cognition (Montreal Cognitive Assessment, MoCA). Predefined secondary outcomes included post-treatment changes in cerebral blood flow (CBF); blood NAD+ levels; and additional neurocognitive, psychometric, and physical performance tests. DNA methylation was assessed in peripheral blood mononuclear cells (PBMCs) as an exploratory outcome. The target NR dose was safely achieved as evidenced by a 2.6-fold increase in blood NAD+ in the NR group (p < 0.001, 95% CI [17.77, 43.49]) with no between-group difference in adverse event reporting. MoCA and other neurocognitive and psychometric metrics remained stable throughout the study. NR reduced CBF in the default mode network (DMN) with greatest differences observed in the left inferior parietal lobe (IPL) (DMN p = 0.013, µ = 0.92, 95% CI [0.23, 1.62]; left IPL p = 0.009, µ = 1.66, 95% CI [0.5, 2.82]). Walking speed in the placebo group significantly improved across the study duration suggestive of a practice effect but did not change in the NR group (p = 0.0402 and p = 0.4698, respectively). Other secondary outcome measures remained stable. Global methylation analyses indicated a modest NR-associated increase in DNA methylation and concomitant reduction in epigenetic age as measured by PhenoAge and GrimAge epigenetic clock analyses. In summary, NR significantly increased blood NAD+ concentrations in older adults with MCI. NR was well tolerated and did not alter cognition. While CBF was reduced by NR treatment, statistical significance would not have withstood multiple comparisons correction. A larger trial of longer duration is needed to determine the potential of NR as a strategy to improve cognition and alter CBF in older adults with MCI. ClinicalTrials.gov NCT02942888.


Assuntos
Disfunção Cognitiva , NAD , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , Idoso , Projetos Piloto , Leucócitos Mononucleares , Disfunção Cognitiva/tratamento farmacológico
17.
Clin Cancer Res ; 30(4): 849-864, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37703185

RESUMO

PURPOSE: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN: Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS: PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS: The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.


Assuntos
Neoplasias Ósseas , Óxidos N-Cíclicos , Indolizinas , Osteossarcoma , Compostos de Piridínio , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaios Antitumorais Modelo de Xenoenxerto , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
18.
Bioorg Med Chem Lett ; 98: 129585, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086468

RESUMO

Ceramides, crucial sphingolipids in cellular biology, play various roles ranging from structural membrane integrity to signaling pathway regulation. Structurally, a ceramide consists of a fatty acid connected to a sphingoid base. The characteristics of the fatty acid chain, including length and saturation, determine the physiological properties of the ceramide. Ceramides typically fall into the following categories based on chain length: medium, long, very-long, and ultra-long. Among them, two very-long-chain ceramides, Cer(24:1(15Z)) and Cer(24:0), have been extensively studied, and they are known for their regulatory functions. However, the hydrophobic natures of ceramides, arising from their long hydrocarbon chain impedes their solubilities and levels of cellular delivery. Although ω-pyridinium ceramide analogs (ω-PyrCers) have been developed to address this issue, ω-PyrCers with very-long fatty acid chains or unsaturation have not been developed, presumably due to limited access to the corresponding ω-bromo fatty acids required in their syntheses. In this study, we prepared the ω-PyrCers of Cer(24:1(15Z)) and Cer(24:0), PyrCer(24:1(15Z)) and PyrCer(24:0), respectively. The key in the synthesis is the Wittig reaction to prepare the ω-bromo fatty acid with an appropriate chain length and (Z)-double bond position. Preliminary evaluation of the PyrCer(24:1(15Z)) and PyrCer(24:0) revealed their potential in hepatocellular carcinoma treatment.


Assuntos
Antineoplásicos , Ceramidas , Esfingolipídeos , Ceramidas/farmacologia , Ceramidas/química , Ácidos Graxos/farmacologia , Compostos de Piridínio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico
19.
J Chem Inf Model ; 64(2): 518-531, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38157204

RESUMO

A multistep computational approach has been employed to study a multimillion all-atom dyed plasma membrane, with no less than 42 different lipid species spanning the major head groups and a variety of fatty acids, as well as cholesterol, with the objective of investigating its structure and dynamics, as well as its impact on the embedded di-8-ANEPPS dyes. The latter are commonly used as bioimaging probes and serve as local microscopes. So, they provide information on membrane morphology via their second harmonic nonlinear optical (NLO) responses, which have the advantage of being specific to interface regions and sensitive to the chromophore environment. In previous studies, this chromophore has only been studied in simpler membrane models, far from the complexity of real lipid bilayers, while, owing to the ever-increasing computational resources, multimillion lipid bilayers have been studied, giving access to the effects of its heterogeneity. First, using molecular dynamics (MD) simulations, it is found that the combination of lipids produces a more ordered and denser membrane compared to its homogeneous model counterparts, while the local environment of the embedded dyes becomes enriched in phosphatidylcholine. Subsequently, the second harmonic first hyperpolarizability of the probes was calculated at the TDDFT level on selected frames of MD, highlighting the influence of the lipid environment. Due to the complexity of the system, machine learning (ML) tools have been employed to establish relationships between the membrane structural parameters, the orientation of the probes, and their NLO responses. These ML approaches have revealed influential features, including the presence of diacylglycerol lipids close to the dye. On the whole, this work provides a first step toward understanding the cooperation, synergy, and interactions that occur in such complex guest-host environments, which have emerged as new targets for drug design and membrane lipid therapy.


Assuntos
Corantes , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Membrana Celular , Compostos de Piridínio , Simulação de Dinâmica Molecular
20.
Toxicol In Vitro ; 96: 105768, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135130

RESUMO

Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear. In the current study, we treated HL-60 and KG-1 AML cell lines with dinaciclib and investigated the potential mechanisms of dinaciclib-induced AML cell growth inhibition using flow cytometry and western blotting assays. Data from HL-60 and KG-1 AML cells were validated using human primary AML cells. The results showed that the growth inhibitory effect of dinaciclib was more sensitive in HL-60 cells (IC50: 8.46 nM) than in KG-1 cells (IC50: 14.37 nM). The protein decline in Cyclin A/B and CDK1 and cell cycle arrest in the G2/M phase were more profound in HL-60 cells, corresponding to its growth inhibition. Although the growth inhibition of KG-1 cells by dinaciclib was still pronounced, the cell cycle-associated proteins were relatively insensitive. In addition to cell cycle regulation, the activation/expression of ERK1/STAT3/MYC signaling was significantly reduced by dinaciclib in KG-1 cells compared with that in HL-60 cells. Regarding the results of primary AML cells, we observed ERK1/STAT3/MYC inhibition and cell cycle regulation in different patients. These findings suggest that the cell cycle-associated and ERK1/STAT3/MYC signaling pathways might be two distinct mechanisms by which dinaciclib inhibits AML cells, which could facilitate the development of combination therapy for AML in the future.


Assuntos
Óxidos N-Cíclicos , Indolizinas , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myc , Compostos de Piridínio , Humanos , Transdução de Sinais , Divisão Celular , Ciclo Celular , Proteínas de Ciclo Celular , Leucemia Mieloide Aguda/tratamento farmacológico , Fator de Transcrição STAT3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...